/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "htt.h" #include "mac.h" #include "hif.h" #include "txrx.h" #include "debug.h" static u8 ath10k_htt_tx_txq_calc_size(size_t count) { int exp; int factor; exp = 0; factor = count >> 7; while (factor >= 64 && exp < 4) { factor >>= 3; exp++; } if (exp == 4) return 0xff; if (count > 0) factor = max(1, factor); return SM(exp, HTT_TX_Q_STATE_ENTRY_EXP) | SM(factor, HTT_TX_Q_STATE_ENTRY_FACTOR); } static void __ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ath10k *ar = hw->priv; struct ath10k_sta *arsta; struct ath10k_vif *arvif = (void *)txq->vif->drv_priv; unsigned long frame_cnt; unsigned long byte_cnt; int idx; u32 bit; u16 peer_id; u8 tid; u8 count; lockdep_assert_held(&ar->htt.tx_lock); if (!ar->htt.tx_q_state.enabled) return; if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL) return; if (txq->sta) { arsta = (void *)txq->sta->drv_priv; peer_id = arsta->peer_id; } else { peer_id = arvif->peer_id; } tid = txq->tid; bit = BIT(peer_id % 32); idx = peer_id / 32; ieee80211_txq_get_depth(txq, &frame_cnt, &byte_cnt); count = ath10k_htt_tx_txq_calc_size(byte_cnt); if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || unlikely(tid >= ar->htt.tx_q_state.num_tids)) { ath10k_warn(ar, "refusing to update txq for peer_id %hu tid %hhu due to out of bounds\n", peer_id, tid); return; } ar->htt.tx_q_state.vaddr->count[tid][peer_id] = count; ar->htt.tx_q_state.vaddr->map[tid][idx] &= ~bit; ar->htt.tx_q_state.vaddr->map[tid][idx] |= count ? bit : 0; ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update peer_id %hu tid %hhu count %hhu\n", peer_id, tid, count); } static void __ath10k_htt_tx_txq_sync(struct ath10k *ar) { u32 seq; size_t size; lockdep_assert_held(&ar->htt.tx_lock); if (!ar->htt.tx_q_state.enabled) return; if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL) return; seq = le32_to_cpu(ar->htt.tx_q_state.vaddr->seq); seq++; ar->htt.tx_q_state.vaddr->seq = cpu_to_le32(seq); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update commit seq %u\n", seq); size = sizeof(*ar->htt.tx_q_state.vaddr); dma_sync_single_for_device(ar->dev, ar->htt.tx_q_state.paddr, size, DMA_TO_DEVICE); } void ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ath10k *ar = hw->priv; spin_lock_bh(&ar->htt.tx_lock); __ath10k_htt_tx_txq_recalc(hw, txq); spin_unlock_bh(&ar->htt.tx_lock); } void ath10k_htt_tx_txq_sync(struct ath10k *ar) { spin_lock_bh(&ar->htt.tx_lock); __ath10k_htt_tx_txq_sync(ar); spin_unlock_bh(&ar->htt.tx_lock); } void ath10k_htt_tx_txq_update(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ath10k *ar = hw->priv; spin_lock_bh(&ar->htt.tx_lock); __ath10k_htt_tx_txq_recalc(hw, txq); __ath10k_htt_tx_txq_sync(ar); spin_unlock_bh(&ar->htt.tx_lock); } void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt) { lockdep_assert_held(&htt->tx_lock); htt->num_pending_tx--; if (htt->num_pending_tx == htt->max_num_pending_tx - 1) ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL); } int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt) { lockdep_assert_held(&htt->tx_lock); if (htt->num_pending_tx >= htt->max_num_pending_tx) return -EBUSY; htt->num_pending_tx++; if (htt->num_pending_tx == htt->max_num_pending_tx) ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL); return 0; } int ath10k_htt_tx_mgmt_inc_pending(struct ath10k_htt *htt, bool is_mgmt, bool is_presp) { struct ath10k *ar = htt->ar; lockdep_assert_held(&htt->tx_lock); if (!is_mgmt || !ar->hw_params.max_probe_resp_desc_thres) return 0; if (is_presp && ar->hw_params.max_probe_resp_desc_thres < htt->num_pending_mgmt_tx) return -EBUSY; htt->num_pending_mgmt_tx++; return 0; } void ath10k_htt_tx_mgmt_dec_pending(struct ath10k_htt *htt) { lockdep_assert_held(&htt->tx_lock); if (!htt->ar->hw_params.max_probe_resp_desc_thres) return; htt->num_pending_mgmt_tx--; } int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb) { struct ath10k *ar = htt->ar; int ret; lockdep_assert_held(&htt->tx_lock); ret = idr_alloc(&htt->pending_tx, skb, 0, htt->max_num_pending_tx, GFP_ATOMIC); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret); return ret; } void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id) { struct ath10k *ar = htt->ar; lockdep_assert_held(&htt->tx_lock); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id); idr_remove(&htt->pending_tx, msdu_id); } static void ath10k_htt_tx_free_cont_txbuf(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; size_t size; if (!htt->txbuf.vaddr) return; size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf); dma_free_coherent(ar->dev, size, htt->txbuf.vaddr, htt->txbuf.paddr); htt->txbuf.vaddr = NULL; } static int ath10k_htt_tx_alloc_cont_txbuf(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; size_t size; size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf); htt->txbuf.vaddr = dma_alloc_coherent(ar->dev, size, &htt->txbuf.paddr, GFP_KERNEL); if (!htt->txbuf.vaddr) return -ENOMEM; return 0; } static void ath10k_htt_tx_free_cont_frag_desc(struct ath10k_htt *htt) { size_t size; if (!htt->frag_desc.vaddr) return; size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc); dma_free_coherent(htt->ar->dev, size, htt->frag_desc.vaddr, htt->frag_desc.paddr); htt->frag_desc.vaddr = NULL; } static int ath10k_htt_tx_alloc_cont_frag_desc(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; size_t size; if (!ar->hw_params.continuous_frag_desc) return 0; size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc); htt->frag_desc.vaddr = dma_alloc_coherent(ar->dev, size, &htt->frag_desc.paddr, GFP_KERNEL); if (!htt->frag_desc.vaddr) return -ENOMEM; return 0; } static void ath10k_htt_tx_free_txq(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; size_t size; if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL, ar->running_fw->fw_file.fw_features)) return; size = sizeof(*htt->tx_q_state.vaddr); dma_unmap_single(ar->dev, htt->tx_q_state.paddr, size, DMA_TO_DEVICE); kfree(htt->tx_q_state.vaddr); } static int ath10k_htt_tx_alloc_txq(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; size_t size; int ret; if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL, ar->running_fw->fw_file.fw_features)) return 0; htt->tx_q_state.num_peers = HTT_TX_Q_STATE_NUM_PEERS; htt->tx_q_state.num_tids = HTT_TX_Q_STATE_NUM_TIDS; htt->tx_q_state.type = HTT_Q_DEPTH_TYPE_BYTES; size = sizeof(*htt->tx_q_state.vaddr); htt->tx_q_state.vaddr = kzalloc(size, GFP_KERNEL); if (!htt->tx_q_state.vaddr) return -ENOMEM; htt->tx_q_state.paddr = dma_map_single(ar->dev, htt->tx_q_state.vaddr, size, DMA_TO_DEVICE); ret = dma_mapping_error(ar->dev, htt->tx_q_state.paddr); if (ret) { ath10k_warn(ar, "failed to dma map tx_q_state: %d\n", ret); kfree(htt->tx_q_state.vaddr); return -EIO; } return 0; } static void ath10k_htt_tx_free_txdone_fifo(struct ath10k_htt *htt) { WARN_ON(!kfifo_is_empty(&htt->txdone_fifo)); kfifo_free(&htt->txdone_fifo); } static int ath10k_htt_tx_alloc_txdone_fifo(struct ath10k_htt *htt) { int ret; size_t size; size = roundup_pow_of_two(htt->max_num_pending_tx); ret = kfifo_alloc(&htt->txdone_fifo, size, GFP_KERNEL); return ret; } static int ath10k_htt_tx_alloc_buf(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; int ret; ret = ath10k_htt_tx_alloc_cont_txbuf(htt); if (ret) { ath10k_err(ar, "failed to alloc cont tx buffer: %d\n", ret); return ret; } ret = ath10k_htt_tx_alloc_cont_frag_desc(htt); if (ret) { ath10k_err(ar, "failed to alloc cont frag desc: %d\n", ret); goto free_txbuf; } ret = ath10k_htt_tx_alloc_txq(htt); if (ret) { ath10k_err(ar, "failed to alloc txq: %d\n", ret); goto free_frag_desc; } ret = ath10k_htt_tx_alloc_txdone_fifo(htt); if (ret) { ath10k_err(ar, "failed to alloc txdone fifo: %d\n", ret); goto free_txq; } return 0; free_txq: ath10k_htt_tx_free_txq(htt); free_frag_desc: ath10k_htt_tx_free_cont_frag_desc(htt); free_txbuf: ath10k_htt_tx_free_cont_txbuf(htt); return ret; } int ath10k_htt_tx_start(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; int ret; ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n", htt->max_num_pending_tx); spin_lock_init(&htt->tx_lock); idr_init(&htt->pending_tx); if (htt->tx_mem_allocated) return 0; ret = ath10k_htt_tx_alloc_buf(htt); if (ret) goto free_idr_pending_tx; htt->tx_mem_allocated = true; return 0; free_idr_pending_tx: idr_destroy(&htt->pending_tx); return ret; } static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx) { struct ath10k *ar = ctx; struct ath10k_htt *htt = &ar->htt; struct htt_tx_done tx_done = {0}; ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id); tx_done.msdu_id = msdu_id; tx_done.status = HTT_TX_COMPL_STATE_DISCARD; ath10k_txrx_tx_unref(htt, &tx_done); return 0; } void ath10k_htt_tx_destroy(struct ath10k_htt *htt) { if (!htt->tx_mem_allocated) return; ath10k_htt_tx_free_cont_txbuf(htt); ath10k_htt_tx_free_txq(htt); ath10k_htt_tx_free_cont_frag_desc(htt); ath10k_htt_tx_free_txdone_fifo(htt); htt->tx_mem_allocated = false; } void ath10k_htt_tx_stop(struct ath10k_htt *htt) { idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar); idr_destroy(&htt->pending_tx); } void ath10k_htt_tx_free(struct ath10k_htt *htt) { ath10k_htt_tx_stop(htt); ath10k_htt_tx_destroy(htt); } void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb) { dev_kfree_skb_any(skb); } void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb) { dev_kfree_skb_any(skb); } EXPORT_SYMBOL(ath10k_htt_hif_tx_complete); int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; struct sk_buff *skb; struct htt_cmd *cmd; int len = 0; int ret; len += sizeof(cmd->hdr); len += sizeof(cmd->ver_req); skb = ath10k_htc_alloc_skb(ar, len); if (!skb) return -ENOMEM; skb_put(skb, len); cmd = (struct htt_cmd *)skb->data; cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ; ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb); if (ret) { dev_kfree_skb_any(skb); return ret; } return 0; } int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie) { struct ath10k *ar = htt->ar; struct htt_stats_req *req; struct sk_buff *skb; struct htt_cmd *cmd; int len = 0, ret; len += sizeof(cmd->hdr); len += sizeof(cmd->stats_req); skb = ath10k_htc_alloc_skb(ar, len); if (!skb) return -ENOMEM; skb_put(skb, len); cmd = (struct htt_cmd *)skb->data; cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ; req = &cmd->stats_req; memset(req, 0, sizeof(*req)); /* currently we support only max 8 bit masks so no need to worry * about endian support */ req->upload_types[0] = mask; req->reset_types[0] = mask; req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID; req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff); req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32); ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb); if (ret) { ath10k_warn(ar, "failed to send htt type stats request: %d", ret); dev_kfree_skb_any(skb); return ret; } return 0; } int ath10k_htt_send_frag_desc_bank_cfg(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; struct sk_buff *skb; struct htt_cmd *cmd; struct htt_frag_desc_bank_cfg *cfg; int ret, size; u8 info; if (!ar->hw_params.continuous_frag_desc) return 0; if (!htt->frag_desc.paddr) { ath10k_warn(ar, "invalid frag desc memory\n"); return -EINVAL; } size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg); skb = ath10k_htc_alloc_skb(ar, size); if (!skb) return -ENOMEM; skb_put(skb, size); cmd = (struct htt_cmd *)skb->data; cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG; info = 0; info |= SM(htt->tx_q_state.type, HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE); if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL, ar->running_fw->fw_file.fw_features)) info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID; cfg = &cmd->frag_desc_bank_cfg; cfg->info = info; cfg->num_banks = 1; cfg->desc_size = sizeof(struct htt_msdu_ext_desc); cfg->bank_base_addrs[0] = __cpu_to_le32(htt->frag_desc.paddr); cfg->bank_id[0].bank_min_id = 0; cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx - 1); cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr); cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers); cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids); cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE; cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER; ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n"); ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb); if (ret) { ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n", ret); dev_kfree_skb_any(skb); return ret; } return 0; } int ath10k_htt_send_rx_ring_cfg_ll(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; struct sk_buff *skb; struct htt_cmd *cmd; struct htt_rx_ring_setup_ring *ring; const int num_rx_ring = 1; u16 flags; u32 fw_idx; int len; int ret; /* * the HW expects the buffer to be an integral number of 4-byte * "words" */ BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4)); BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0); len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup.hdr) + (sizeof(*ring) * num_rx_ring); skb = ath10k_htc_alloc_skb(ar, len); if (!skb) return -ENOMEM; skb_put(skb, len); cmd = (struct htt_cmd *)skb->data; ring = &cmd->rx_setup.rings[0]; cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG; cmd->rx_setup.hdr.num_rings = 1; /* FIXME: do we need all of this? */ flags = 0; flags |= HTT_RX_RING_FLAGS_MAC80211_HDR; flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD; flags |= HTT_RX_RING_FLAGS_PPDU_START; flags |= HTT_RX_RING_FLAGS_PPDU_END; flags |= HTT_RX_RING_FLAGS_MPDU_START; flags |= HTT_RX_RING_FLAGS_MPDU_END; flags |= HTT_RX_RING_FLAGS_MSDU_START; flags |= HTT_RX_RING_FLAGS_MSDU_END; flags |= HTT_RX_RING_FLAGS_RX_ATTENTION; flags |= HTT_RX_RING_FLAGS_FRAG_INFO; flags |= HTT_RX_RING_FLAGS_UNICAST_RX; flags |= HTT_RX_RING_FLAGS_MULTICAST_RX; flags |= HTT_RX_RING_FLAGS_CTRL_RX; flags |= HTT_RX_RING_FLAGS_MGMT_RX; flags |= HTT_RX_RING_FLAGS_NULL_RX; flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX; fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); ring->fw_idx_shadow_reg_paddr = __cpu_to_le32(htt->rx_ring.alloc_idx.paddr); ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr); ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size); ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE); ring->flags = __cpu_to_le16(flags); ring->fw_idx_init_val = __cpu_to_le16(fw_idx); #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4) ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status)); ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload)); ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start)); ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end)); ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start)); ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end)); ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start)); ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end)); ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention)); ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info)); #undef desc_offset ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb); if (ret) { dev_kfree_skb_any(skb); return ret; } return 0; } int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt, u8 max_subfrms_ampdu, u8 max_subfrms_amsdu) { struct ath10k *ar = htt->ar; struct htt_aggr_conf *aggr_conf; struct sk_buff *skb; struct htt_cmd *cmd; int len; int ret; /* Firmware defaults are: amsdu = 3 and ampdu = 64 */ if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64) return -EINVAL; if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31) return -EINVAL; len = sizeof(cmd->hdr); len += sizeof(cmd->aggr_conf); skb = ath10k_htc_alloc_skb(ar, len); if (!skb) return -ENOMEM; skb_put(skb, len); cmd = (struct htt_cmd *)skb->data; cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG; aggr_conf = &cmd->aggr_conf; aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu; aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu; ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d", aggr_conf->max_num_amsdu_subframes, aggr_conf->max_num_ampdu_subframes); ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb); if (ret) { dev_kfree_skb_any(skb); return ret; } return 0; } int ath10k_htt_tx_fetch_resp(struct ath10k *ar, __le32 token, __le16 fetch_seq_num, struct htt_tx_fetch_record *records, size_t num_records) { struct sk_buff *skb; struct htt_cmd *cmd; const u16 resp_id = 0; int len = 0; int ret; /* Response IDs are echo-ed back only for host driver convienence * purposes. They aren't used for anything in the driver yet so use 0. */ len += sizeof(cmd->hdr); len += sizeof(cmd->tx_fetch_resp); len += sizeof(cmd->tx_fetch_resp.records[0]) * num_records; skb = ath10k_htc_alloc_skb(ar, len); if (!skb) return -ENOMEM; skb_put(skb, len); cmd = (struct htt_cmd *)skb->data; cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FETCH_RESP; cmd->tx_fetch_resp.resp_id = cpu_to_le16(resp_id); cmd->tx_fetch_resp.fetch_seq_num = fetch_seq_num; cmd->tx_fetch_resp.num_records = cpu_to_le16(num_records); cmd->tx_fetch_resp.token = token; memcpy(cmd->tx_fetch_resp.records, records, sizeof(records[0]) * num_records); ret = ath10k_htc_send(&ar->htc, ar->htt.eid, skb); if (ret) { ath10k_warn(ar, "failed to submit htc command: %d\n", ret); goto err_free_skb; } return 0; err_free_skb: dev_kfree_skb_any(skb); return ret; } static u8 ath10k_htt_tx_get_vdev_id(struct ath10k *ar, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb); struct ath10k_vif *arvif; if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) { return ar->scan.vdev_id; } else if (cb->vif) { arvif = (void *)cb->vif->drv_priv; return arvif->vdev_id; } else if (ar->monitor_started) { return ar->monitor_vdev_id; } else { return 0; } } static u8 ath10k_htt_tx_get_tid(struct sk_buff *skb, bool is_eth) { struct ieee80211_hdr *hdr = (void *)skb->data; struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb); if (!is_eth && ieee80211_is_mgmt(hdr->frame_control)) return HTT_DATA_TX_EXT_TID_MGMT; else if (cb->flags & ATH10K_SKB_F_QOS) return skb->priority % IEEE80211_QOS_CTL_TID_MASK; else return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST; } int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu) { struct ath10k *ar = htt->ar; struct device *dev = ar->dev; struct sk_buff *txdesc = NULL; struct htt_cmd *cmd; struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu); u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu); int len = 0; int msdu_id = -1; int res; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data; len += sizeof(cmd->hdr); len += sizeof(cmd->mgmt_tx); spin_lock_bh(&htt->tx_lock); res = ath10k_htt_tx_alloc_msdu_id(htt, msdu); spin_unlock_bh(&htt->tx_lock); if (res < 0) goto err; msdu_id = res; if ((ieee80211_is_action(hdr->frame_control) || ieee80211_is_deauth(hdr->frame_control) || ieee80211_is_disassoc(hdr->frame_control)) && ieee80211_has_protected(hdr->frame_control)) { skb_put(msdu, IEEE80211_CCMP_MIC_LEN); } txdesc = ath10k_htc_alloc_skb(ar, len); if (!txdesc) { res = -ENOMEM; goto err_free_msdu_id; } skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len, DMA_TO_DEVICE); res = dma_mapping_error(dev, skb_cb->paddr); if (res) { res = -EIO; goto err_free_txdesc; } skb_put(txdesc, len); cmd = (struct htt_cmd *)txdesc->data; memset(cmd, 0, len); cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_MGMT_TX; cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr); cmd->mgmt_tx.len = __cpu_to_le32(msdu->len); cmd->mgmt_tx.desc_id = __cpu_to_le32(msdu_id); cmd->mgmt_tx.vdev_id = __cpu_to_le32(vdev_id); memcpy(cmd->mgmt_tx.hdr, msdu->data, min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN)); res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc); if (res) goto err_unmap_msdu; return 0; err_unmap_msdu: dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE); err_free_txdesc: dev_kfree_skb_any(txdesc); err_free_msdu_id: spin_lock_bh(&htt->tx_lock); ath10k_htt_tx_free_msdu_id(htt, msdu_id); spin_unlock_bh(&htt->tx_lock); err: return res; } int ath10k_htt_tx(struct ath10k_htt *htt, enum ath10k_hw_txrx_mode txmode, struct sk_buff *msdu) { struct ath10k *ar = htt->ar; struct device *dev = ar->dev; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu); struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu); struct ath10k_hif_sg_item sg_items[2]; struct ath10k_htt_txbuf *txbuf; struct htt_data_tx_desc_frag *frags; bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET); u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu); u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth); int prefetch_len; int res; u8 flags0 = 0; u16 msdu_id, flags1 = 0; u16 freq = 0; u32 frags_paddr = 0; u32 txbuf_paddr; struct htt_msdu_ext_desc *ext_desc = NULL; spin_lock_bh(&htt->tx_lock); res = ath10k_htt_tx_alloc_msdu_id(htt, msdu); spin_unlock_bh(&htt->tx_lock); if (res < 0) goto err; msdu_id = res; prefetch_len = min(htt->prefetch_len, msdu->len); prefetch_len = roundup(prefetch_len, 4); txbuf = &htt->txbuf.vaddr[msdu_id]; txbuf_paddr = htt->txbuf.paddr + (sizeof(struct ath10k_htt_txbuf) * msdu_id); if ((ieee80211_is_action(hdr->frame_control) || ieee80211_is_deauth(hdr->frame_control) || ieee80211_is_disassoc(hdr->frame_control)) && ieee80211_has_protected(hdr->frame_control)) { skb_put(msdu, IEEE80211_CCMP_MIC_LEN); } else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) && txmode == ATH10K_HW_TXRX_RAW && ieee80211_has_protected(hdr->frame_control)) { skb_put(msdu, IEEE80211_CCMP_MIC_LEN); } skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len, DMA_TO_DEVICE); res = dma_mapping_error(dev, skb_cb->paddr); if (res) { res = -EIO; goto err_free_msdu_id; } if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)) freq = ar->scan.roc_freq; switch (txmode) { case ATH10K_HW_TXRX_RAW: case ATH10K_HW_TXRX_NATIVE_WIFI: flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT; /* pass through */ case ATH10K_HW_TXRX_ETHERNET: if (ar->hw_params.continuous_frag_desc) { memset(&htt->frag_desc.vaddr[msdu_id], 0, sizeof(struct htt_msdu_ext_desc)); frags = (struct htt_data_tx_desc_frag *) &htt->frag_desc.vaddr[msdu_id].frags; ext_desc = &htt->frag_desc.vaddr[msdu_id]; frags[0].tword_addr.paddr_lo = __cpu_to_le32(skb_cb->paddr); frags[0].tword_addr.paddr_hi = 0; frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len); frags_paddr = htt->frag_desc.paddr + (sizeof(struct htt_msdu_ext_desc) * msdu_id); } else { frags = txbuf->frags; frags[0].dword_addr.paddr = __cpu_to_le32(skb_cb->paddr); frags[0].dword_addr.len = __cpu_to_le32(msdu->len); frags[1].dword_addr.paddr = 0; frags[1].dword_addr.len = 0; frags_paddr = txbuf_paddr; } flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE); break; case ATH10K_HW_TXRX_MGMT: flags0 |= SM(ATH10K_HW_TXRX_MGMT, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE); flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT; frags_paddr = skb_cb->paddr; break; } /* Normally all commands go through HTC which manages tx credits for * each endpoint and notifies when tx is completed. * * HTT endpoint is creditless so there's no need to care about HTC * flags. In that case it is trivial to fill the HTC header here. * * MSDU transmission is considered completed upon HTT event. This * implies no relevant resources can be freed until after the event is * received. That's why HTC tx completion handler itself is ignored by * setting NULL to transfer_context for all sg items. * * There is simply no point in pushing HTT TX_FRM through HTC tx path * as it's a waste of resources. By bypassing HTC it is possible to * avoid extra memory allocations, compress data structures and thus * improve performance. */ txbuf->htc_hdr.eid = htt->eid; txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) + sizeof(txbuf->cmd_tx) + prefetch_len); txbuf->htc_hdr.flags = 0; if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT; flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID); flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID); if (msdu->ip_summed == CHECKSUM_PARTIAL && !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) { flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD; flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD; if (ar->hw_params.continuous_frag_desc) ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE; } /* Prevent firmware from sending up tx inspection requests. There's * nothing ath10k can do with frames requested for inspection so force * it to simply rely a regular tx completion with discard status. */ flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED; txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM; txbuf->cmd_tx.flags0 = flags0; txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1); txbuf->cmd_tx.len = __cpu_to_le16(msdu->len); txbuf->cmd_tx.id = __cpu_to_le16(msdu_id); txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr); if (ath10k_mac_tx_frm_has_freq(ar)) { txbuf->cmd_tx.offchan_tx.peerid = __cpu_to_le16(HTT_INVALID_PEERID); txbuf->cmd_tx.offchan_tx.freq = __cpu_to_le16(freq); } else { txbuf->cmd_tx.peerid = __cpu_to_le32(HTT_INVALID_PEERID); } trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %08x, msdu_paddr %08x vdev %hhu tid %hhu freq %hu\n", flags0, flags1, msdu->len, msdu_id, frags_paddr, (u32)skb_cb->paddr, vdev_id, tid, freq); ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ", msdu->data, msdu->len); trace_ath10k_tx_hdr(ar, msdu->data, msdu->len); trace_ath10k_tx_payload(ar, msdu->data, msdu->len); sg_items[0].transfer_id = 0; sg_items[0].transfer_context = NULL; sg_items[0].vaddr = &txbuf->htc_hdr; sg_items[0].paddr = txbuf_paddr + sizeof(txbuf->frags); sg_items[0].len = sizeof(txbuf->htc_hdr) + sizeof(txbuf->cmd_hdr) + sizeof(txbuf->cmd_tx); sg_items[1].transfer_id = 0; sg_items[1].transfer_context = NULL; sg_items[1].vaddr = msdu->data; sg_items[1].paddr = skb_cb->paddr; sg_items[1].len = prefetch_len; res = ath10k_hif_tx_sg(htt->ar, htt->ar->htc.endpoint[htt->eid].ul_pipe_id, sg_items, ARRAY_SIZE(sg_items)); if (res) goto err_unmap_msdu; return 0; err_unmap_msdu: dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE); err_free_msdu_id: ath10k_htt_tx_free_msdu_id(htt, msdu_id); err: return res; }