/****************************************************************************** * * Copyright(c) 2003 - 2015 Intel Corporation. All rights reserved. * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH * Copyright(c) 2016 Intel Deutschland GmbH * * Portions of this file are derived from the ipw3945 project, as well * as portions of the ieee80211 subsystem header files. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * *****************************************************************************/ #ifndef __iwl_trans_int_pcie_h__ #define __iwl_trans_int_pcie_h__ #include #include #include #include #include #include #include #include "iwl-fh.h" #include "iwl-csr.h" #include "iwl-trans.h" #include "iwl-debug.h" #include "iwl-io.h" #include "iwl-op-mode.h" /* We need 2 entries for the TX command and header, and another one might * be needed for potential data in the SKB's head. The remaining ones can * be used for frags. */ #define IWL_PCIE_MAX_FRAGS(x) (x->max_tbs - 3) /* * RX related structures and functions */ #define RX_NUM_QUEUES 1 #define RX_POST_REQ_ALLOC 2 #define RX_CLAIM_REQ_ALLOC 8 #define RX_PENDING_WATERMARK 16 struct iwl_host_cmd; /*This file includes the declaration that are internal to the * trans_pcie layer */ /** * struct iwl_rx_mem_buffer * @page_dma: bus address of rxb page * @page: driver's pointer to the rxb page * @invalid: rxb is in driver ownership - not owned by HW * @vid: index of this rxb in the global table */ struct iwl_rx_mem_buffer { dma_addr_t page_dma; struct page *page; u16 vid; bool invalid; struct list_head list; }; /** * struct isr_statistics - interrupt statistics * */ struct isr_statistics { u32 hw; u32 sw; u32 err_code; u32 sch; u32 alive; u32 rfkill; u32 ctkill; u32 wakeup; u32 rx; u32 tx; u32 unhandled; }; /** * struct iwl_rxq - Rx queue * @id: queue index * @bd: driver's pointer to buffer of receive buffer descriptors (rbd). * Address size is 32 bit in pre-9000 devices and 64 bit in 9000 devices. * @bd_dma: bus address of buffer of receive buffer descriptors (rbd) * @ubd: driver's pointer to buffer of used receive buffer descriptors (rbd) * @ubd_dma: physical address of buffer of used receive buffer descriptors (rbd) * @read: Shared index to newest available Rx buffer * @write: Shared index to oldest written Rx packet * @free_count: Number of pre-allocated buffers in rx_free * @used_count: Number of RBDs handled to allocator to use for allocation * @write_actual: * @rx_free: list of RBDs with allocated RB ready for use * @rx_used: list of RBDs with no RB attached * @need_update: flag to indicate we need to update read/write index * @rb_stts: driver's pointer to receive buffer status * @rb_stts_dma: bus address of receive buffer status * @lock: * @queue: actual rx queue. Not used for multi-rx queue. * * NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers */ struct iwl_rxq { int id; void *bd; dma_addr_t bd_dma; __le32 *used_bd; dma_addr_t used_bd_dma; u32 read; u32 write; u32 free_count; u32 used_count; u32 write_actual; u32 queue_size; struct list_head rx_free; struct list_head rx_used; bool need_update; struct iwl_rb_status *rb_stts; dma_addr_t rb_stts_dma; spinlock_t lock; struct napi_struct napi; struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE]; }; /** * struct iwl_rb_allocator - Rx allocator * @req_pending: number of requests the allcator had not processed yet * @req_ready: number of requests honored and ready for claiming * @rbd_allocated: RBDs with pages allocated and ready to be handled to * the queue. This is a list of &struct iwl_rx_mem_buffer * @rbd_empty: RBDs with no page attached for allocator use. This is a list * of &struct iwl_rx_mem_buffer * @lock: protects the rbd_allocated and rbd_empty lists * @alloc_wq: work queue for background calls * @rx_alloc: work struct for background calls */ struct iwl_rb_allocator { atomic_t req_pending; atomic_t req_ready; struct list_head rbd_allocated; struct list_head rbd_empty; spinlock_t lock; struct workqueue_struct *alloc_wq; struct work_struct rx_alloc; }; struct iwl_dma_ptr { dma_addr_t dma; void *addr; size_t size; }; /** * iwl_queue_inc_wrap - increment queue index, wrap back to beginning * @index -- current index */ static inline int iwl_queue_inc_wrap(int index) { return ++index & (TFD_QUEUE_SIZE_MAX - 1); } /** * iwl_queue_dec_wrap - decrement queue index, wrap back to end * @index -- current index */ static inline int iwl_queue_dec_wrap(int index) { return --index & (TFD_QUEUE_SIZE_MAX - 1); } struct iwl_cmd_meta { /* only for SYNC commands, iff the reply skb is wanted */ struct iwl_host_cmd *source; u32 flags; u32 tbs; }; #define TFD_TX_CMD_SLOTS 256 #define TFD_CMD_SLOTS 32 /* * The FH will write back to the first TB only, so we need to copy some data * into the buffer regardless of whether it should be mapped or not. * This indicates how big the first TB must be to include the scratch buffer * and the assigned PN. * Since PN location is 16 bytes at offset 24, it's 40 now. * If we make it bigger then allocations will be bigger and copy slower, so * that's probably not useful. */ #define IWL_FIRST_TB_SIZE 40 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64) struct iwl_pcie_txq_entry { struct iwl_device_cmd *cmd; struct sk_buff *skb; /* buffer to free after command completes */ const void *free_buf; struct iwl_cmd_meta meta; }; struct iwl_pcie_first_tb_buf { u8 buf[IWL_FIRST_TB_SIZE_ALIGN]; }; /** * struct iwl_txq - Tx Queue for DMA * @q: generic Rx/Tx queue descriptor * @tfds: transmit frame descriptors (DMA memory) * @first_tb_bufs: start of command headers, including scratch buffers, for * the writeback -- this is DMA memory and an array holding one buffer * for each command on the queue * @first_tb_dma: DMA address for the first_tb_bufs start * @entries: transmit entries (driver state) * @lock: queue lock * @stuck_timer: timer that fires if queue gets stuck * @trans_pcie: pointer back to transport (for timer) * @need_update: indicates need to update read/write index * @active: stores if queue is active * @ampdu: true if this queue is an ampdu queue for an specific RA/TID * @wd_timeout: queue watchdog timeout (jiffies) - per queue * @frozen: tx stuck queue timer is frozen * @frozen_expiry_remainder: remember how long until the timer fires * @write_ptr: 1-st empty entry (index) host_w * @read_ptr: last used entry (index) host_r * @dma_addr: physical addr for BD's * @n_window: safe queue window * @id: queue id * @low_mark: low watermark, resume queue if free space more than this * @high_mark: high watermark, stop queue if free space less than this * * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame * descriptors) and required locking structures. * * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless * there might be HW changes in the future). For the normal TX * queues, n_window, which is the size of the software queue data * is also 256; however, for the command queue, n_window is only * 32 since we don't need so many commands pending. Since the HW * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256. * This means that we end up with the following: * HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 | * SW entries: | 0 | ... | 31 | * where N is a number between 0 and 7. This means that the SW * data is a window overlayed over the HW queue. */ struct iwl_txq { void *tfds; struct iwl_pcie_first_tb_buf *first_tb_bufs; dma_addr_t first_tb_dma; struct iwl_pcie_txq_entry *entries; spinlock_t lock; unsigned long frozen_expiry_remainder; struct timer_list stuck_timer; struct iwl_trans_pcie *trans_pcie; bool need_update; bool frozen; u8 active; bool ampdu; int block; unsigned long wd_timeout; struct sk_buff_head overflow_q; int write_ptr; int read_ptr; dma_addr_t dma_addr; int n_window; u32 id; int low_mark; int high_mark; }; static inline dma_addr_t iwl_pcie_get_first_tb_dma(struct iwl_txq *txq, int idx) { return txq->first_tb_dma + sizeof(struct iwl_pcie_first_tb_buf) * idx; } struct iwl_tso_hdr_page { struct page *page; u8 *pos; }; /** * enum iwl_shared_irq_flags - level of sharing for irq * @IWL_SHARED_IRQ_NON_RX: interrupt vector serves non rx causes. * @IWL_SHARED_IRQ_FIRST_RSS: interrupt vector serves first RSS queue. */ enum iwl_shared_irq_flags { IWL_SHARED_IRQ_NON_RX = BIT(0), IWL_SHARED_IRQ_FIRST_RSS = BIT(1), }; /** * struct iwl_trans_pcie - PCIe transport specific data * @rxq: all the RX queue data * @rx_pool: initial pool of iwl_rx_mem_buffer for all the queues * @global_table: table mapping received VID from hw to rxb * @rba: allocator for RX replenishing * @trans: pointer to the generic transport area * @scd_base_addr: scheduler sram base address in SRAM * @scd_bc_tbls: pointer to the byte count table of the scheduler * @kw: keep warm address * @pci_dev: basic pci-network driver stuff * @hw_base: pci hardware address support * @ucode_write_complete: indicates that the ucode has been copied. * @ucode_write_waitq: wait queue for uCode load * @cmd_queue - command queue number * @rx_buf_size: Rx buffer size * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes) * @scd_set_active: should the transport configure the SCD for HCMD queue * @sw_csum_tx: if true, then the transport will compute the csum of the TXed * frame. * @rx_page_order: page order for receive buffer size * @reg_lock: protect hw register access * @mutex: to protect stop_device / start_fw / start_hw * @cmd_in_flight: true when we have a host command in flight * @fw_mon_phys: physical address of the buffer for the firmware monitor * @fw_mon_page: points to the first page of the buffer for the firmware monitor * @fw_mon_size: size of the buffer for the firmware monitor * @msix_entries: array of MSI-X entries * @msix_enabled: true if managed to enable MSI-X * @shared_vec_mask: the type of causes the shared vector handles * (see iwl_shared_irq_flags). * @alloc_vecs: the number of interrupt vectors allocated by the OS * @def_irq: default irq for non rx causes * @fh_init_mask: initial unmasked fh causes * @hw_init_mask: initial unmasked hw causes * @fh_mask: current unmasked fh causes * @hw_mask: current unmasked hw causes */ struct iwl_trans_pcie { struct iwl_rxq *rxq; struct iwl_rx_mem_buffer rx_pool[RX_POOL_SIZE]; struct iwl_rx_mem_buffer *global_table[RX_POOL_SIZE]; struct iwl_rb_allocator rba; struct iwl_trans *trans; struct net_device napi_dev; struct __percpu iwl_tso_hdr_page *tso_hdr_page; /* INT ICT Table */ __le32 *ict_tbl; dma_addr_t ict_tbl_dma; int ict_index; bool use_ict; bool is_down; struct isr_statistics isr_stats; spinlock_t irq_lock; struct mutex mutex; u32 inta_mask; u32 scd_base_addr; struct iwl_dma_ptr scd_bc_tbls; struct iwl_dma_ptr kw; struct iwl_txq *txq; unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_HW_QUEUES)]; unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_HW_QUEUES)]; /* PCI bus related data */ struct pci_dev *pci_dev; void __iomem *hw_base; bool ucode_write_complete; wait_queue_head_t ucode_write_waitq; wait_queue_head_t wait_command_queue; wait_queue_head_t d0i3_waitq; u8 page_offs, dev_cmd_offs; u8 cmd_queue; u8 cmd_fifo; unsigned int cmd_q_wdg_timeout; u8 n_no_reclaim_cmds; u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS]; u8 max_tbs; u16 tfd_size; enum iwl_amsdu_size rx_buf_size; bool bc_table_dword; bool scd_set_active; bool sw_csum_tx; u32 rx_page_order; /*protect hw register */ spinlock_t reg_lock; bool cmd_hold_nic_awake; bool ref_cmd_in_flight; dma_addr_t fw_mon_phys; struct page *fw_mon_page; u32 fw_mon_size; struct msix_entry msix_entries[IWL_MAX_RX_HW_QUEUES]; bool msix_enabled; u8 shared_vec_mask; u32 alloc_vecs; u32 def_irq; u32 fh_init_mask; u32 hw_init_mask; u32 fh_mask; u32 hw_mask; cpumask_t affinity_mask[IWL_MAX_RX_HW_QUEUES]; }; static inline struct iwl_trans_pcie * IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans *trans) { return (void *)trans->trans_specific; } static inline struct iwl_trans * iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie) { return container_of((void *)trans_pcie, struct iwl_trans, trans_specific); } /* * Convention: trans API functions: iwl_trans_pcie_XXX * Other functions: iwl_pcie_XXX */ struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev, const struct pci_device_id *ent, const struct iwl_cfg *cfg); void iwl_trans_pcie_free(struct iwl_trans *trans); /***************************************************** * RX ******************************************************/ int iwl_pcie_rx_init(struct iwl_trans *trans); irqreturn_t iwl_pcie_msix_isr(int irq, void *data); irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id); irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id); irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id); int iwl_pcie_rx_stop(struct iwl_trans *trans); void iwl_pcie_rx_free(struct iwl_trans *trans); /***************************************************** * ICT - interrupt handling ******************************************************/ irqreturn_t iwl_pcie_isr(int irq, void *data); int iwl_pcie_alloc_ict(struct iwl_trans *trans); void iwl_pcie_free_ict(struct iwl_trans *trans); void iwl_pcie_reset_ict(struct iwl_trans *trans); void iwl_pcie_disable_ict(struct iwl_trans *trans); /***************************************************** * TX / HCMD ******************************************************/ int iwl_pcie_tx_init(struct iwl_trans *trans); void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr); int iwl_pcie_tx_stop(struct iwl_trans *trans); void iwl_pcie_tx_free(struct iwl_trans *trans); void iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn, const struct iwl_trans_txq_scd_cfg *cfg, unsigned int wdg_timeout); void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue, bool configure_scd); void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id, bool shared_mode); dma_addr_t iwl_trans_pcie_get_txq_byte_table(struct iwl_trans *trans, int txq); void iwl_trans_pcie_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq); int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_device_cmd *dev_cmd, int txq_id); void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans); int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); void iwl_pcie_hcmd_complete(struct iwl_trans *trans, struct iwl_rx_cmd_buffer *rxb); void iwl_trans_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn, struct sk_buff_head *skbs); void iwl_trans_pcie_tx_reset(struct iwl_trans *trans); static inline u16 iwl_pcie_tfd_tb_get_len(struct iwl_trans *trans, void *_tfd, u8 idx) { if (trans->cfg->use_tfh) { struct iwl_tfh_tfd *tfd = _tfd; struct iwl_tfh_tb *tb = &tfd->tbs[idx]; return le16_to_cpu(tb->tb_len); } else { struct iwl_tfd *tfd = _tfd; struct iwl_tfd_tb *tb = &tfd->tbs[idx]; return le16_to_cpu(tb->hi_n_len) >> 4; } } /***************************************************** * Error handling ******************************************************/ void iwl_pcie_dump_csr(struct iwl_trans *trans); /***************************************************** * Helpers ******************************************************/ static inline void _iwl_disable_interrupts(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); clear_bit(STATUS_INT_ENABLED, &trans->status); if (!trans_pcie->msix_enabled) { /* disable interrupts from uCode/NIC to host */ iwl_write32(trans, CSR_INT_MASK, 0x00000000); /* acknowledge/clear/reset any interrupts still pending * from uCode or flow handler (Rx/Tx DMA) */ iwl_write32(trans, CSR_INT, 0xffffffff); iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff); } else { /* disable all the interrupt we might use */ iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, trans_pcie->fh_init_mask); iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, trans_pcie->hw_init_mask); } IWL_DEBUG_ISR(trans, "Disabled interrupts\n"); } static inline void iwl_disable_interrupts(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); spin_lock(&trans_pcie->irq_lock); _iwl_disable_interrupts(trans); spin_unlock(&trans_pcie->irq_lock); } static inline void _iwl_enable_interrupts(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); IWL_DEBUG_ISR(trans, "Enabling interrupts\n"); set_bit(STATUS_INT_ENABLED, &trans->status); if (!trans_pcie->msix_enabled) { trans_pcie->inta_mask = CSR_INI_SET_MASK; iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); } else { /* * fh/hw_mask keeps all the unmasked causes. * Unlike msi, in msix cause is enabled when it is unset. */ trans_pcie->hw_mask = trans_pcie->hw_init_mask; trans_pcie->fh_mask = trans_pcie->fh_init_mask; iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~trans_pcie->fh_mask); iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~trans_pcie->hw_mask); } } static inline void iwl_enable_interrupts(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); spin_lock(&trans_pcie->irq_lock); _iwl_enable_interrupts(trans); spin_unlock(&trans_pcie->irq_lock); } static inline void iwl_enable_hw_int_msk_msix(struct iwl_trans *trans, u32 msk) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~msk); trans_pcie->hw_mask = msk; } static inline void iwl_enable_fh_int_msk_msix(struct iwl_trans *trans, u32 msk) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~msk); trans_pcie->fh_mask = msk; } static inline void iwl_enable_fw_load_int(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); IWL_DEBUG_ISR(trans, "Enabling FW load interrupt\n"); if (!trans_pcie->msix_enabled) { trans_pcie->inta_mask = CSR_INT_BIT_FH_TX; iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); } else { iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, trans_pcie->hw_init_mask); iwl_enable_fh_int_msk_msix(trans, MSIX_FH_INT_CAUSES_D2S_CH0_NUM); } } static inline void iwl_enable_rfkill_int(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n"); if (!trans_pcie->msix_enabled) { trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL; iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); } else { iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, trans_pcie->fh_init_mask); iwl_enable_hw_int_msk_msix(trans, MSIX_HW_INT_CAUSES_REG_RF_KILL); } } static inline void iwl_wake_queue(struct iwl_trans *trans, struct iwl_txq *txq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (test_and_clear_bit(txq->id, trans_pcie->queue_stopped)) { IWL_DEBUG_TX_QUEUES(trans, "Wake hwq %d\n", txq->id); iwl_op_mode_queue_not_full(trans->op_mode, txq->id); } } static inline void iwl_stop_queue(struct iwl_trans *trans, struct iwl_txq *txq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (!test_and_set_bit(txq->id, trans_pcie->queue_stopped)) { iwl_op_mode_queue_full(trans->op_mode, txq->id); IWL_DEBUG_TX_QUEUES(trans, "Stop hwq %d\n", txq->id); } else IWL_DEBUG_TX_QUEUES(trans, "hwq %d already stopped\n", txq->id); } static inline bool iwl_queue_used(const struct iwl_txq *q, int i) { return q->write_ptr >= q->read_ptr ? (i >= q->read_ptr && i < q->write_ptr) : !(i < q->read_ptr && i >= q->write_ptr); } static inline u8 get_cmd_index(struct iwl_txq *q, u32 index) { return index & (q->n_window - 1); } static inline bool iwl_is_rfkill_set(struct iwl_trans *trans) { lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->mutex); return !(iwl_read32(trans, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW); } static inline void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) { u32 v; #ifdef CPTCFG_IWLWIFI_DEBUG WARN_ON_ONCE(value & ~mask); #endif v = iwl_read32(trans, reg); v &= ~mask; v |= value; iwl_write32(trans, reg, v); } static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans, u32 reg, u32 mask) { __iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0); } static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans, u32 reg, u32 mask) { __iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask); } void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state); #ifdef CPTCFG_IWLWIFI_DEBUGFS int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans); #else static inline int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) { return 0; } #endif int iwl_pci_fw_exit_d0i3(struct iwl_trans *trans); int iwl_pci_fw_enter_d0i3(struct iwl_trans *trans); void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable); #endif /* __iwl_trans_int_pcie_h__ */