summaryrefslogtreecommitdiff
path: root/arch/arm64/kvm
diff options
context:
space:
mode:
authorSuzuki K Poulose <suzuki.poulose@arm.com>2020-01-13 23:30:23 +0000
committerGreg Kroah-Hartman <gregkh@linuxfoundation.org>2020-02-14 16:34:18 -0500
commit7df80a021f66aea81a859aef6ffbe5cb2a502abf (patch)
treecbbb9e2afc8478b3959d1c22e09a573d72113b0b /arch/arm64/kvm
parent0ec337059d71e9a2f66f223d47a9ae428a435c41 (diff)
arm64: nofpsmid: Handle TIF_FOREIGN_FPSTATE flag cleanly
commit 52f73c383b2418f2d31b798e765ae7d596c35021 upstream. We detect the absence of FP/SIMD after an incapable CPU is brought up, and by then we have kernel threads running already with TIF_FOREIGN_FPSTATE set which could be set for early userspace applications (e.g, modprobe triggered from initramfs) and init. This could cause the applications to loop forever in do_nofity_resume() as we never clear the TIF flag, once we now know that we don't support FP. Fix this by making sure that we clear the TIF_FOREIGN_FPSTATE flag for tasks which may have them set, as we would have done in the normal case, but avoiding touching the hardware state (since we don't support any). Also to make sure we handle the cases seemlessly we categorise the helper functions to two : 1) Helpers for common core code, which calls into take appropriate actions without knowing the current FPSIMD state of the CPU/task. e.g fpsimd_restore_current_state(), fpsimd_flush_task_state(), fpsimd_save_and_flush_cpu_state(). We bail out early for these functions, taking any appropriate actions (e.g, clearing the TIF flag) where necessary to hide the handling from core code. 2) Helpers used when the presence of FP/SIMD is apparent. i.e, save/restore the FP/SIMD register state, modify the CPU/task FP/SIMD state. e.g, fpsimd_save(), task_fpsimd_load() - save/restore task FP/SIMD registers fpsimd_bind_task_to_cpu() \ - Update the "state" metadata for CPU/task. fpsimd_bind_state_to_cpu() / fpsimd_update_current_state() - Update the fp/simd state for the current task from memory. These must not be called in the absence of FP/SIMD. Put in a WARNING to make sure they are not invoked in the absence of FP/SIMD. KVM also uses the TIF_FOREIGN_FPSTATE flag to manage the FP/SIMD state on the CPU. However, without FP/SIMD support we trap all accesses and inject undefined instruction. Thus we should never "load" guest state. Add a sanity check to make sure this is valid. Fixes: 82e0191a1aa11abf ("arm64: Support systems without FP/ASIMD") Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Diffstat (limited to 'arch/arm64/kvm')
-rw-r--r--arch/arm64/kvm/hyp/switch.c10
1 files changed, 9 insertions, 1 deletions
diff --git a/arch/arm64/kvm/hyp/switch.c b/arch/arm64/kvm/hyp/switch.c
index 799e84a40335..d76a3d39b269 100644
--- a/arch/arm64/kvm/hyp/switch.c
+++ b/arch/arm64/kvm/hyp/switch.c
@@ -28,7 +28,15 @@
/* Check whether the FP regs were dirtied while in the host-side run loop: */
static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
{
- if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
+ /*
+ * When the system doesn't support FP/SIMD, we cannot rely on
+ * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
+ * abort on the very first access to FP and thus we should never
+ * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
+ * trap the accesses.
+ */
+ if (!system_supports_fpsimd() ||
+ vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
KVM_ARM64_FP_HOST);