//========================================================================== // // fpinttestf.c // // Basic FPU integrity test // //========================================================================== // ####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 2012 Free Software Foundation, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later // version. // // eCos is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with eCos; if not, write to the Free Software Foundation, Inc., // 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // As a special exception, if other files instantiate templates or use // macros or inline functions from this file, or you compile this file // and link it with other works to produce a work based on this file, // this file does not by itself cause the resulting work to be covered by // the GNU General Public License. However the source code for this file // must still be made available in accordance with section (3) of the GNU // General Public License v2. // // This exception does not invalidate any other reasons why a work based // on this file might be covered by the GNU General Public License. // ------------------------------------------- // ####ECOSGPLCOPYRIGHTEND#### //========================================================================== //#####DESCRIPTIONBEGIN#### // // Author(s): ilijak // Original code: nickg@calivar.com // Contributors: // Date: 2012-12-18 // Description: Simple FPU test with a mix of threads that do and do not use // floating point. // This is a modification of the original FPU test, and presents // both "integer" and "float" threads in order to enforce LAZY // context switching. Single precision floating point is used. // This is not very sophisticated as far // as checking FPU performance or accuracy. It is more // concerned with checking that several threads doing FP // operations do not interfere with eachother's use of the // FPU. // Note: NONE context switching scheme should NOT pass this test with // multiple FP threads. Look for fpinttestf1.c instead. // //####DESCRIPTIONEND#### //========================================================================== #include #include #include #include #include #include #include #include CYGHWR_MEMORY_LAYOUT_H //========================================================================== #ifndef FP_THREADS_N #define FP_THREADS_N 3 #define FP_TEST_NAME "FP test" #endif #if defined(CYGFUN_KERNEL_API_C) && \ defined(CYGSEM_KERNEL_SCHED_MLQUEUE) && \ (CYGNUM_KERNEL_SCHED_PRIORITIES > 12) && \ (CYGMEM_REGION_ram_SIZE >= (49152-4096)) && \ (!defined(CYGTST_KERNEL_SKIP_MULTI_THREAD_FP_TEST) || (FP_THREADS_N == 1)) //========================================================================== // Base priority for all threads. #define BASE_PRI 5 //========================================================================== // Runtime // // This is the number of ticks that the program will run for. 3000 // ticks is equal to 30 seconds in the default configuration. For // simulators we reduce the run time to 3 simulated seconds. #define RUN_TICKS 3000 #define RUN_TICKS_SIM 300 //========================================================================== // Thread parameters #define STACK_SIZE CYGNUM_HAL_STACK_SIZE_MINIMUM #define THREADS_N 8 static cyg_uint8 stacks[THREADS_N][STACK_SIZE] CYGBLD_ATTRIB_ALIGN_MAX; static cyg_handle_t thread[THREADS_N]; static cyg_thread thread_struct[THREADS_N]; static unsigned long iter_n[THREADS_N]; //========================================================================== // Alarm parameters. static cyg_alarm alarm_struct; static cyg_handle_t alarm; static cyg_count8 cur_thread = 0; static cyg_count32 alarm_ticks = 0; static cyg_count32 run_ticks = RUN_TICKS; //========================================================================== static int errors = 0; //========================================================================== // Random number generator. Ripped out of the C library. static int CYGBLD_ATTRIB_NO_INLINE rand( unsigned int *seed ) { // This is the code supplied in Knuth Vol 2 section 3.6 p.185 bottom #define RAND_MAX 0x7fffffff #define MM 2147483647 // a Mersenne prime #define AA 48271 // this does well in the spectral test #define QQ 44488 // (long)(MM/AA) #define RR 3399 // MM % AA; it is important that RR\n",name,j*count); #endif } #if 0 if(thread_i < 3) diag_printf("INFO:<%s [%d]: %2d calculations done>\n",name,thread_i,j*count); #endif if(thread_i < 3) iter_n[thread_i] = iter; } //========================================================================== // Test calculation. // // Generates an array of random integer values and then repeatedly applies // a calculation to them and checks that the same result is reached // each time. static void do_int_test( int *values, int count, int loops, int test, const char *name) { unsigned int i, j; // volatiles necessary to force // values to 32 bits for comparison volatile int sum = 1; volatile int last_sum; unsigned int seed; #if 0 cyg_uint32 ctrlreg; #endif cyg_uint32 iter = 0; int thread_i = name[__builtin_strlen(name)-1]-'1'; #define VI(__i) (values[(__i)%count]) #define CALCI ((VI(i-1)*VI(i+1))*(VI(i-2)*VI(i+2))*(VI(i-3)*sum)) seed = ((unsigned int)&i)*count; // Set up an array of values... for( i = 0; i < count; i++ ) values[i] = rand( &seed ); // Now calculate something from them... for( i = 0; i < count; i++ ) sum += CALC; last_sum = sum; // Now recalculate the sum in a loop and look for errors for( j = 0; j < loops ; j++ ) { iter++; if(thread_i < 8) iter_n[thread_i]++; sum = 1; for( i = 0; i < count; i++ ) sum += CALC; if( sum != last_sum ) { errors++; diag_printf("%s: Sum mismatch! %d sum=[%08x] last_sum=[%08x]\n", name,j, sum, last_sum ); } #if 0 CYGARC_MRS(ctrlreg, control); if(ctrlreg & 0x04){ diag_printf("%s: control = 0x%08x\n", name, ctrlreg); } #endif #if 0 if( ((j*count)%1000000) == 0 ) diag_printf("INFO:<%s: %2d calculations done>\n",name,j*count); #endif } } //========================================================================== // Alarm handler // // This is called every tick. It lowers the priority of the currently // running thread and raises the priority of the next. Thus we // implement a form of timelslicing between the threads at one tick // granularity. static void alarm_fn(cyg_handle_t alarm, cyg_addrword_t data) { alarm_ticks++; unsigned long iter_sum; if( alarm_ticks >= run_ticks ) { if( errors ) CYG_TEST_FAIL("Errors detected"); else CYG_TEST_PASS("OK"); iter_sum = + iter_n[0] + iter_n[1] + iter_n[2] + iter_n[3]+ iter_n[4] + iter_n[5]+ iter_n[6] + iter_n[7]; diag_printf("Iterations = %lu+%lu+%lu+%lu+%lu+%lu+%lu+%lu", iter_n[0], iter_n[1], iter_n[2], iter_n[3], iter_n[4], iter_n[5], iter_n[6], iter_n[7]); diag_printf("=%lu\n", iter_sum); CYG_TEST_FINISH("FP Test done"); } else { cyg_thread_set_priority( thread[cur_thread], BASE_PRI ); cur_thread = (cur_thread+1)%8; cyg_thread_set_priority( thread[cur_thread], BASE_PRI-1 ); } } //========================================================================== // Floating point threads // #define FP1_COUNT 1000 static float fpt1_values[FP1_COUNT]; void fptest1( CYG_ADDRWORD id ) { while(1) do_test( fpt1_values, FP1_COUNT, 2000000000, id, "fptest1" ); } //========================================================================== #if (CYGMEM_REGION_ram_SIZE / 8 / 2) < 10000 #define FP2_COUNT (CYGMEM_REGION_ram_SIZE / 8 / 2) #else #define FP2_COUNT 10000 #endif static float fpt2_values[FP2_COUNT]; void fptest2( CYG_ADDRWORD id ) { while(1) do_test( fpt2_values, FP2_COUNT, 2000000000, id, "fptest2" ); } //========================================================================== #define FP3_COUNT 100 static float fpt3_values[FP3_COUNT]; void fptest3( CYG_ADDRWORD id ) { while(1) do_test( fpt3_values, FP3_COUNT, 2000000000, id, "fptest3" ); } //========================================================================== // Integral threads // #define INT1_COUNT 1000 static int int1_values[INT1_COUNT]; void inttest4( CYG_ADDRWORD id ) { while(1) do_int_test( int1_values, INT1_COUNT, 2000000000, id, "inttest4" ); } #define INT2_COUNT 1000 static int int2_values[INT2_COUNT]; void inttest5( CYG_ADDRWORD id ) { while(1) do_int_test( int2_values, INT2_COUNT, 2000000000, id, "inttest5" ); } #define INT3_COUNT 1000 static int int3_values[INT3_COUNT]; void inttest6( CYG_ADDRWORD id ) { while(1) do_int_test( int3_values, INT3_COUNT, 2000000000, id, "inttest6" ); } #define INT4_COUNT 1000 static int int4_values[INT4_COUNT]; void inttest7( CYG_ADDRWORD id ) { while(1) do_int_test( int4_values, INT4_COUNT, 2000000000, id, "inttest7" ); } #define INT5_COUNT 1000 static int int5_values[INT5_COUNT]; void inttest8( CYG_ADDRWORD id ) { while(1) do_int_test( int5_values, INT5_COUNT, 2000000000, id, "inttest8" ); } //====================================================================================== // Main void fptest_main( void ) { CYG_TEST_INIT(); if( cyg_test_is_simulator ) { run_ticks = RUN_TICKS_SIM; } CYG_TEST_INFO("Run fptest in cyg_start"); do_test( fpt3_values, FP3_COUNT, 1000, 0, "start" ); CYG_TEST_INFO( "cyg_start run done"); cyg_thread_create( BASE_PRI-1, fptest1, 0, "fptest1", &stacks[0][0], STACK_SIZE, &thread[0], &thread_struct[0]); #if FP_THREADS_N > 0 cyg_thread_resume( thread[0] ); #endif cyg_thread_create( BASE_PRI, fptest2, 1, "fptest2", &stacks[1][0], STACK_SIZE, &thread[1], &thread_struct[1]); #if FP_THREADS_N > 1 cyg_thread_resume( thread[1] ); #endif cyg_thread_create( BASE_PRI, fptest3, 2, "fptest3", &stacks[2][0], STACK_SIZE, &thread[2], &thread_struct[2]); #if FP_THREADS_N > 2 cyg_thread_resume( thread[2] ); #endif cyg_thread_create( BASE_PRI, inttest4, 3, "inttest4", &stacks[3][0], STACK_SIZE, &thread[3], &thread_struct[3]); cyg_thread_resume( thread[3] ); cyg_thread_create( BASE_PRI, inttest5, 4, "inttest5", &stacks[4][0], STACK_SIZE, &thread[4], &thread_struct[4]); cyg_thread_resume( thread[4] ); cyg_thread_create( BASE_PRI, inttest6, 5, "inttest6", &stacks[5][0], STACK_SIZE, &thread[5], &thread_struct[5]); cyg_thread_resume( thread[5] ); cyg_thread_create( BASE_PRI, inttest7, 6, "inttest7", &stacks[6][0], STACK_SIZE, &thread[6], &thread_struct[6]); cyg_thread_resume( thread[6] ); cyg_thread_create( BASE_PRI, inttest8, 7, "inttest8", &stacks[7][0], STACK_SIZE, &thread[7], &thread_struct[7]); cyg_thread_resume( thread[7] ); cyg_alarm_create( cyg_real_time_clock(), alarm_fn, 0, &alarm, &alarm_struct ); cyg_alarm_initialize( alarm, cyg_current_time()+1, 1 ); cyg_scheduler_start(); } //========================================================================== #ifdef CYGSEM_HAL_STOP_CONSTRUCTORS_ON_FLAG externC void cyg_hal_invoke_constructors(); #endif externC void cyg_start( void ) { #ifdef CYGSEM_HAL_STOP_CONSTRUCTORS_ON_FLAG cyg_hal_invoke_constructors(); #endif fptest_main(); } //========================================================================== #else // CYGFUN_KERNEL_API_C... externC void cyg_start( void ) { CYG_TEST_INIT(); CYG_TEST_INFO(FP_TEST_NAME " requires:\n" "CYGFUN_KERNEL_API_C && \n" "CYGSEM_KERNEL_SCHED_MLQUEUE && \n" "(CYGNUM_KERNEL_SCHED_PRIORITIES > 12) &&\n" "(CYGMEM_REGION_ram_SIZE >= (49152-4096)) &&\n" "(!defined(CYGHWR_HAL_CORTEXM_FPU_SWITCH_NONE) || (FP_THREADS_N == 1))" ); CYG_TEST_NA("FP test requirements"); } #endif // CYGFUN_KERNEL_API_C, etc. //========================================================================== // EOF fpinttestf.c