summaryrefslogtreecommitdiff
path: root/platform/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix8_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'platform/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix8_f32.c')
-rw-r--r--platform/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix8_f32.c384
1 files changed, 384 insertions, 0 deletions
diff --git a/platform/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix8_f32.c b/platform/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix8_f32.c
new file mode 100644
index 0000000..c6212c3
--- /dev/null
+++ b/platform/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix8_f32.c
@@ -0,0 +1,384 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
+*
+* $Date: 31. July 2014
+* $Revision: V1.4.4
+*
+* Project: CMSIS DSP Library
+* Title: arm_cfft_radix8_f32.c
+*
+* Description: Radix-8 Decimation in Frequency CFFT & CIFFT Floating point processing function
+*
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**
+* @ingroup groupTransforms
+*/
+
+/**
+* @defgroup Radix8_CFFT_CIFFT Radix-8 Complex FFT Functions
+*
+* \par
+* Complex Fast Fourier Transform(CFFT) and Complex Inverse Fast Fourier Transform(CIFFT) is an efficient algorithm to compute Discrete Fourier Transform(DFT) and Inverse Discrete Fourier Transform(IDFT).
+* Computational complexity of CFFT reduces drastically when compared to DFT.
+* \par
+* This set of functions implements CFFT/CIFFT
+* for floating-point data types. The functions operates on in-place buffer which uses same buffer for input and output.
+* Complex input is stored in input buffer in an interleaved fashion.
+*
+* \par
+* The functions operate on blocks of input and output data and each call to the function processes
+* <code>2*fftLen</code> samples through the transform. <code>pSrc</code> points to In-place arrays containing <code>2*fftLen</code> values.
+* \par
+* The <code>pSrc</code> points to the array of in-place buffer of size <code>2*fftLen</code> and inputs and outputs are stored in an interleaved fashion as shown below.
+* <pre> {real[0], imag[0], real[1], imag[1],..} </pre>
+*
+* \par Lengths supported by the transform:
+* \par
+* Internally, the function utilize a Radix-8 decimation in frequency(DIF) algorithm
+* and the size of the FFT supported are of the lengths [ 64, 512, 4096].
+*
+*
+* \par Algorithm:
+*
+* <b>Complex Fast Fourier Transform:</b>
+* \par
+* Input real and imaginary data:
+* <pre>
+* x(n) = xa + j * ya
+* x(n+N/4 ) = xb + j * yb
+* x(n+N/2 ) = xc + j * yc
+* x(n+3N 4) = xd + j * yd
+* </pre>
+* where N is length of FFT
+* \par
+* Output real and imaginary data:
+* <pre>
+* X(4r) = xa'+ j * ya'
+* X(4r+1) = xb'+ j * yb'
+* X(4r+2) = xc'+ j * yc'
+* X(4r+3) = xd'+ j * yd'
+* </pre>
+* \par
+* Twiddle factors for Radix-8 FFT:
+* <pre>
+* Wn = co1 + j * (- si1)
+* W2n = co2 + j * (- si2)
+* W3n = co3 + j * (- si3)
+* </pre>
+*
+* \par
+* \image html CFFT.gif "Radix-8 Decimation-in Frequency Complex Fast Fourier Transform"
+*
+* \par
+* Output from Radix-8 CFFT Results in Digit reversal order. Interchange middle two branches of every butterfly results in Bit reversed output.
+* \par
+* <b> Butterfly CFFT equations:</b>
+* <pre>
+* xa' = xa + xb + xc + xd
+* ya' = ya + yb + yc + yd
+* xc' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1)
+* yc' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1)
+* xb' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2)
+* yb' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2)
+* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3)
+* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3)
+* </pre>
+*
+* \par
+* where <code>fftLen</code> length of CFFT/CIFFT; <code>ifftFlag</code> Flag for selection of CFFT or CIFFT(Set ifftFlag to calculate CIFFT otherwise calculates CFFT);
+* <code>bitReverseFlag</code> Flag for selection of output order(Set bitReverseFlag to output in normal order otherwise output in bit reversed order);
+* <code>pTwiddle</code>points to array of twiddle coefficients; <code>pBitRevTable</code> points to the array of bit reversal table.
+* <code>twidCoefModifier</code> modifier for twiddle factor table which supports all FFT lengths with same table;
+* <code>pBitRevTable</code> modifier for bit reversal table which supports all FFT lengths with same table.
+* <code>onebyfftLen</code> value of 1/fftLen to calculate CIFFT;
+*
+* \par Fixed-Point Behavior
+* Care must be taken when using the fixed-point versions of the CFFT/CIFFT function.
+* Refer to the function specific documentation below for usage guidelines.
+*/
+
+
+/*
+* @brief Core function for the floating-point CFFT butterfly process.
+* @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
+* @param[in] fftLen length of the FFT.
+* @param[in] *pCoef points to the twiddle coefficient buffer.
+* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+* @return none.
+*/
+
+void arm_radix8_butterfly_f32(
+float32_t * pSrc,
+uint16_t fftLen,
+const float32_t * pCoef,
+uint16_t twidCoefModifier)
+{
+ uint32_t ia1, ia2, ia3, ia4, ia5, ia6, ia7;
+ uint32_t i1, i2, i3, i4, i5, i6, i7, i8;
+ uint32_t id;
+ uint32_t n1, n2, j;
+
+ float32_t r1, r2, r3, r4, r5, r6, r7, r8;
+ float32_t t1, t2;
+ float32_t s1, s2, s3, s4, s5, s6, s7, s8;
+ float32_t p1, p2, p3, p4;
+ float32_t co2, co3, co4, co5, co6, co7, co8;
+ float32_t si2, si3, si4, si5, si6, si7, si8;
+ const float32_t C81 = 0.70710678118f;
+
+ n2 = fftLen;
+
+ do
+ {
+ n1 = n2;
+ n2 = n2 >> 3;
+ i1 = 0;
+
+ do
+ {
+ i2 = i1 + n2;
+ i3 = i2 + n2;
+ i4 = i3 + n2;
+ i5 = i4 + n2;
+ i6 = i5 + n2;
+ i7 = i6 + n2;
+ i8 = i7 + n2;
+ r1 = pSrc[2 * i1] + pSrc[2 * i5];
+ r5 = pSrc[2 * i1] - pSrc[2 * i5];
+ r2 = pSrc[2 * i2] + pSrc[2 * i6];
+ r6 = pSrc[2 * i2] - pSrc[2 * i6];
+ r3 = pSrc[2 * i3] + pSrc[2 * i7];
+ r7 = pSrc[2 * i3] - pSrc[2 * i7];
+ r4 = pSrc[2 * i4] + pSrc[2 * i8];
+ r8 = pSrc[2 * i4] - pSrc[2 * i8];
+ t1 = r1 - r3;
+ r1 = r1 + r3;
+ r3 = r2 - r4;
+ r2 = r2 + r4;
+ pSrc[2 * i1] = r1 + r2;
+ pSrc[2 * i5] = r1 - r2;
+ r1 = pSrc[2 * i1 + 1] + pSrc[2 * i5 + 1];
+ s5 = pSrc[2 * i1 + 1] - pSrc[2 * i5 + 1];
+ r2 = pSrc[2 * i2 + 1] + pSrc[2 * i6 + 1];
+ s6 = pSrc[2 * i2 + 1] - pSrc[2 * i6 + 1];
+ s3 = pSrc[2 * i3 + 1] + pSrc[2 * i7 + 1];
+ s7 = pSrc[2 * i3 + 1] - pSrc[2 * i7 + 1];
+ r4 = pSrc[2 * i4 + 1] + pSrc[2 * i8 + 1];
+ s8 = pSrc[2 * i4 + 1] - pSrc[2 * i8 + 1];
+ t2 = r1 - s3;
+ r1 = r1 + s3;
+ s3 = r2 - r4;
+ r2 = r2 + r4;
+ pSrc[2 * i1 + 1] = r1 + r2;
+ pSrc[2 * i5 + 1] = r1 - r2;
+ pSrc[2 * i3] = t1 + s3;
+ pSrc[2 * i7] = t1 - s3;
+ pSrc[2 * i3 + 1] = t2 - r3;
+ pSrc[2 * i7 + 1] = t2 + r3;
+ r1 = (r6 - r8) * C81;
+ r6 = (r6 + r8) * C81;
+ r2 = (s6 - s8) * C81;
+ s6 = (s6 + s8) * C81;
+ t1 = r5 - r1;
+ r5 = r5 + r1;
+ r8 = r7 - r6;
+ r7 = r7 + r6;
+ t2 = s5 - r2;
+ s5 = s5 + r2;
+ s8 = s7 - s6;
+ s7 = s7 + s6;
+ pSrc[2 * i2] = r5 + s7;
+ pSrc[2 * i8] = r5 - s7;
+ pSrc[2 * i6] = t1 + s8;
+ pSrc[2 * i4] = t1 - s8;
+ pSrc[2 * i2 + 1] = s5 - r7;
+ pSrc[2 * i8 + 1] = s5 + r7;
+ pSrc[2 * i6 + 1] = t2 - r8;
+ pSrc[2 * i4 + 1] = t2 + r8;
+
+ i1 += n1;
+ } while(i1 < fftLen);
+
+ if(n2 < 8)
+ break;
+
+ ia1 = 0;
+ j = 1;
+
+ do
+ {
+ /* index calculation for the coefficients */
+ id = ia1 + twidCoefModifier;
+ ia1 = id;
+ ia2 = ia1 + id;
+ ia3 = ia2 + id;
+ ia4 = ia3 + id;
+ ia5 = ia4 + id;
+ ia6 = ia5 + id;
+ ia7 = ia6 + id;
+
+ co2 = pCoef[2 * ia1];
+ co3 = pCoef[2 * ia2];
+ co4 = pCoef[2 * ia3];
+ co5 = pCoef[2 * ia4];
+ co6 = pCoef[2 * ia5];
+ co7 = pCoef[2 * ia6];
+ co8 = pCoef[2 * ia7];
+ si2 = pCoef[2 * ia1 + 1];
+ si3 = pCoef[2 * ia2 + 1];
+ si4 = pCoef[2 * ia3 + 1];
+ si5 = pCoef[2 * ia4 + 1];
+ si6 = pCoef[2 * ia5 + 1];
+ si7 = pCoef[2 * ia6 + 1];
+ si8 = pCoef[2 * ia7 + 1];
+
+ i1 = j;
+
+ do
+ {
+ /* index calculation for the input */
+ i2 = i1 + n2;
+ i3 = i2 + n2;
+ i4 = i3 + n2;
+ i5 = i4 + n2;
+ i6 = i5 + n2;
+ i7 = i6 + n2;
+ i8 = i7 + n2;
+ r1 = pSrc[2 * i1] + pSrc[2 * i5];
+ r5 = pSrc[2 * i1] - pSrc[2 * i5];
+ r2 = pSrc[2 * i2] + pSrc[2 * i6];
+ r6 = pSrc[2 * i2] - pSrc[2 * i6];
+ r3 = pSrc[2 * i3] + pSrc[2 * i7];
+ r7 = pSrc[2 * i3] - pSrc[2 * i7];
+ r4 = pSrc[2 * i4] + pSrc[2 * i8];
+ r8 = pSrc[2 * i4] - pSrc[2 * i8];
+ t1 = r1 - r3;
+ r1 = r1 + r3;
+ r3 = r2 - r4;
+ r2 = r2 + r4;
+ pSrc[2 * i1] = r1 + r2;
+ r2 = r1 - r2;
+ s1 = pSrc[2 * i1 + 1] + pSrc[2 * i5 + 1];
+ s5 = pSrc[2 * i1 + 1] - pSrc[2 * i5 + 1];
+ s2 = pSrc[2 * i2 + 1] + pSrc[2 * i6 + 1];
+ s6 = pSrc[2 * i2 + 1] - pSrc[2 * i6 + 1];
+ s3 = pSrc[2 * i3 + 1] + pSrc[2 * i7 + 1];
+ s7 = pSrc[2 * i3 + 1] - pSrc[2 * i7 + 1];
+ s4 = pSrc[2 * i4 + 1] + pSrc[2 * i8 + 1];
+ s8 = pSrc[2 * i4 + 1] - pSrc[2 * i8 + 1];
+ t2 = s1 - s3;
+ s1 = s1 + s3;
+ s3 = s2 - s4;
+ s2 = s2 + s4;
+ r1 = t1 + s3;
+ t1 = t1 - s3;
+ pSrc[2 * i1 + 1] = s1 + s2;
+ s2 = s1 - s2;
+ s1 = t2 - r3;
+ t2 = t2 + r3;
+ p1 = co5 * r2;
+ p2 = si5 * s2;
+ p3 = co5 * s2;
+ p4 = si5 * r2;
+ pSrc[2 * i5] = p1 + p2;
+ pSrc[2 * i5 + 1] = p3 - p4;
+ p1 = co3 * r1;
+ p2 = si3 * s1;
+ p3 = co3 * s1;
+ p4 = si3 * r1;
+ pSrc[2 * i3] = p1 + p2;
+ pSrc[2 * i3 + 1] = p3 - p4;
+ p1 = co7 * t1;
+ p2 = si7 * t2;
+ p3 = co7 * t2;
+ p4 = si7 * t1;
+ pSrc[2 * i7] = p1 + p2;
+ pSrc[2 * i7 + 1] = p3 - p4;
+ r1 = (r6 - r8) * C81;
+ r6 = (r6 + r8) * C81;
+ s1 = (s6 - s8) * C81;
+ s6 = (s6 + s8) * C81;
+ t1 = r5 - r1;
+ r5 = r5 + r1;
+ r8 = r7 - r6;
+ r7 = r7 + r6;
+ t2 = s5 - s1;
+ s5 = s5 + s1;
+ s8 = s7 - s6;
+ s7 = s7 + s6;
+ r1 = r5 + s7;
+ r5 = r5 - s7;
+ r6 = t1 + s8;
+ t1 = t1 - s8;
+ s1 = s5 - r7;
+ s5 = s5 + r7;
+ s6 = t2 - r8;
+ t2 = t2 + r8;
+ p1 = co2 * r1;
+ p2 = si2 * s1;
+ p3 = co2 * s1;
+ p4 = si2 * r1;
+ pSrc[2 * i2] = p1 + p2;
+ pSrc[2 * i2 + 1] = p3 - p4;
+ p1 = co8 * r5;
+ p2 = si8 * s5;
+ p3 = co8 * s5;
+ p4 = si8 * r5;
+ pSrc[2 * i8] = p1 + p2;
+ pSrc[2 * i8 + 1] = p3 - p4;
+ p1 = co6 * r6;
+ p2 = si6 * s6;
+ p3 = co6 * s6;
+ p4 = si6 * r6;
+ pSrc[2 * i6] = p1 + p2;
+ pSrc[2 * i6 + 1] = p3 - p4;
+ p1 = co4 * t1;
+ p2 = si4 * t2;
+ p3 = co4 * t2;
+ p4 = si4 * t1;
+ pSrc[2 * i4] = p1 + p2;
+ pSrc[2 * i4 + 1] = p3 - p4;
+
+ i1 += n1;
+ } while(i1 < fftLen);
+
+ j++;
+ } while(j < n2);
+
+ twidCoefModifier <<= 3;
+ } while(n2 > 7);
+}
+
+/**
+* @} end of Radix8_CFFT_CIFFT group
+*/