From 56e86c626df3dbf74c1021210636a7c5d92a49ce Mon Sep 17 00:00:00 2001 From: Dominik Sliwa Date: Tue, 30 Oct 2018 16:31:29 +0100 Subject: move to cmake Signed-off-by: Dominik Sliwa --- freertos/Source/include/semphr.h | 1171 -------------------------------------- 1 file changed, 1171 deletions(-) delete mode 100644 freertos/Source/include/semphr.h (limited to 'freertos/Source/include/semphr.h') diff --git a/freertos/Source/include/semphr.h b/freertos/Source/include/semphr.h deleted file mode 100644 index a674b02..0000000 --- a/freertos/Source/include/semphr.h +++ /dev/null @@ -1,1171 +0,0 @@ -/* - FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd. - All rights reserved - - VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION. - - This file is part of the FreeRTOS distribution. - - FreeRTOS is free software; you can redistribute it and/or modify it under - the terms of the GNU General Public License (version 2) as published by the - Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception. - - *************************************************************************** - >>! NOTE: The modification to the GPL is included to allow you to !<< - >>! distribute a combined work that includes FreeRTOS without being !<< - >>! obliged to provide the source code for proprietary components !<< - >>! outside of the FreeRTOS kernel. !<< - *************************************************************************** - - FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY - WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS - FOR A PARTICULAR PURPOSE. Full license text is available on the following - link: http://www.freertos.org/a00114.html - - *************************************************************************** - * * - * FreeRTOS provides completely free yet professionally developed, * - * robust, strictly quality controlled, supported, and cross * - * platform software that is more than just the market leader, it * - * is the industry's de facto standard. * - * * - * Help yourself get started quickly while simultaneously helping * - * to support the FreeRTOS project by purchasing a FreeRTOS * - * tutorial book, reference manual, or both: * - * http://www.FreeRTOS.org/Documentation * - * * - *************************************************************************** - - http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading - the FAQ page "My application does not run, what could be wrong?". Have you - defined configASSERT()? - - http://www.FreeRTOS.org/support - In return for receiving this top quality - embedded software for free we request you assist our global community by - participating in the support forum. - - http://www.FreeRTOS.org/training - Investing in training allows your team to - be as productive as possible as early as possible. Now you can receive - FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers - Ltd, and the world's leading authority on the world's leading RTOS. - - http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products, - including FreeRTOS+Trace - an indispensable productivity tool, a DOS - compatible FAT file system, and our tiny thread aware UDP/IP stack. - - http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate. - Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS. - - http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High - Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS - licenses offer ticketed support, indemnification and commercial middleware. - - http://www.SafeRTOS.com - High Integrity Systems also provide a safety - engineered and independently SIL3 certified version for use in safety and - mission critical applications that require provable dependability. - - 1 tab == 4 spaces! -*/ - -#ifndef SEMAPHORE_H -#define SEMAPHORE_H - -#ifndef INC_FREERTOS_H - #error "include FreeRTOS.h" must appear in source files before "include semphr.h" -#endif - -#include "queue.h" - -typedef QueueHandle_t SemaphoreHandle_t; - -#define semBINARY_SEMAPHORE_QUEUE_LENGTH ( ( uint8_t ) 1U ) -#define semSEMAPHORE_QUEUE_ITEM_LENGTH ( ( uint8_t ) 0U ) -#define semGIVE_BLOCK_TIME ( ( TickType_t ) 0U ) - - -/** - * semphr. h - *
vSemaphoreCreateBinary( SemaphoreHandle_t xSemaphore )
- * - * In many usage scenarios it is faster and more memory efficient to use a - * direct to task notification in place of a binary semaphore! - * http://www.freertos.org/RTOS-task-notifications.html - * - * This old vSemaphoreCreateBinary() macro is now deprecated in favour of the - * xSemaphoreCreateBinary() function. Note that binary semaphores created using - * the vSemaphoreCreateBinary() macro are created in a state such that the - * first call to 'take' the semaphore would pass, whereas binary semaphores - * created using xSemaphoreCreateBinary() are created in a state such that the - * the semaphore must first be 'given' before it can be 'taken'. - * - * Macro that implements a semaphore by using the existing queue mechanism. - * The queue length is 1 as this is a binary semaphore. The data size is 0 - * as we don't want to actually store any data - we just want to know if the - * queue is empty or full. - * - * This type of semaphore can be used for pure synchronisation between tasks or - * between an interrupt and a task. The semaphore need not be given back once - * obtained, so one task/interrupt can continuously 'give' the semaphore while - * another continuously 'takes' the semaphore. For this reason this type of - * semaphore does not use a priority inheritance mechanism. For an alternative - * that does use priority inheritance see xSemaphoreCreateMutex(). - * - * @param xSemaphore Handle to the created semaphore. Should be of type SemaphoreHandle_t. - * - * Example usage: -
- SemaphoreHandle_t xSemaphore = NULL;
-
- void vATask( void * pvParameters )
- {
-    // Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
-    // This is a macro so pass the variable in directly.
-    vSemaphoreCreateBinary( xSemaphore );
-
-    if( xSemaphore != NULL )
-    {
-        // The semaphore was created successfully.
-        // The semaphore can now be used.
-    }
- }
- 
- * \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary - * \ingroup Semaphores - */ -#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) - #define vSemaphoreCreateBinary( xSemaphore ) \ - { \ - ( xSemaphore ) = xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE ); \ - if( ( xSemaphore ) != NULL ) \ - { \ - ( void ) xSemaphoreGive( ( xSemaphore ) ); \ - } \ - } -#endif - -/** - * semphr. h - *
SemaphoreHandle_t xSemaphoreCreateBinary( void )
- * - * Creates a new binary semaphore instance, and returns a handle by which the - * new semaphore can be referenced. - * - * In many usage scenarios it is faster and more memory efficient to use a - * direct to task notification in place of a binary semaphore! - * http://www.freertos.org/RTOS-task-notifications.html - * - * Internally, within the FreeRTOS implementation, binary semaphores use a block - * of memory, in which the semaphore structure is stored. If a binary semaphore - * is created using xSemaphoreCreateBinary() then the required memory is - * automatically dynamically allocated inside the xSemaphoreCreateBinary() - * function. (see http://www.freertos.org/a00111.html). If a binary semaphore - * is created using xSemaphoreCreateBinaryStatic() then the application writer - * must provide the memory. xSemaphoreCreateBinaryStatic() therefore allows a - * binary semaphore to be created without using any dynamic memory allocation. - * - * The old vSemaphoreCreateBinary() macro is now deprecated in favour of this - * xSemaphoreCreateBinary() function. Note that binary semaphores created using - * the vSemaphoreCreateBinary() macro are created in a state such that the - * first call to 'take' the semaphore would pass, whereas binary semaphores - * created using xSemaphoreCreateBinary() are created in a state such that the - * the semaphore must first be 'given' before it can be 'taken'. - * - * This type of semaphore can be used for pure synchronisation between tasks or - * between an interrupt and a task. The semaphore need not be given back once - * obtained, so one task/interrupt can continuously 'give' the semaphore while - * another continuously 'takes' the semaphore. For this reason this type of - * semaphore does not use a priority inheritance mechanism. For an alternative - * that does use priority inheritance see xSemaphoreCreateMutex(). - * - * @return Handle to the created semaphore, or NULL if the memory required to - * hold the semaphore's data structures could not be allocated. - * - * Example usage: -
- SemaphoreHandle_t xSemaphore = NULL;
-
- void vATask( void * pvParameters )
- {
-    // Semaphore cannot be used before a call to xSemaphoreCreateBinary().
-    // This is a macro so pass the variable in directly.
-    xSemaphore = xSemaphoreCreateBinary();
-
-    if( xSemaphore != NULL )
-    {
-        // The semaphore was created successfully.
-        // The semaphore can now be used.
-    }
- }
- 
- * \defgroup xSemaphoreCreateBinary xSemaphoreCreateBinary - * \ingroup Semaphores - */ -#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) - #define xSemaphoreCreateBinary() xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE ) -#endif - -/** - * semphr. h - *
SemaphoreHandle_t xSemaphoreCreateBinaryStatic( StaticSemaphore_t *pxSemaphoreBuffer )
- * - * Creates a new binary semaphore instance, and returns a handle by which the - * new semaphore can be referenced. - * - * NOTE: In many usage scenarios it is faster and more memory efficient to use a - * direct to task notification in place of a binary semaphore! - * http://www.freertos.org/RTOS-task-notifications.html - * - * Internally, within the FreeRTOS implementation, binary semaphores use a block - * of memory, in which the semaphore structure is stored. If a binary semaphore - * is created using xSemaphoreCreateBinary() then the required memory is - * automatically dynamically allocated inside the xSemaphoreCreateBinary() - * function. (see http://www.freertos.org/a00111.html). If a binary semaphore - * is created using xSemaphoreCreateBinaryStatic() then the application writer - * must provide the memory. xSemaphoreCreateBinaryStatic() therefore allows a - * binary semaphore to be created without using any dynamic memory allocation. - * - * This type of semaphore can be used for pure synchronisation between tasks or - * between an interrupt and a task. The semaphore need not be given back once - * obtained, so one task/interrupt can continuously 'give' the semaphore while - * another continuously 'takes' the semaphore. For this reason this type of - * semaphore does not use a priority inheritance mechanism. For an alternative - * that does use priority inheritance see xSemaphoreCreateMutex(). - * - * @param pxSemaphoreBuffer Must point to a variable of type StaticSemaphore_t, - * which will then be used to hold the semaphore's data structure, removing the - * need for the memory to be allocated dynamically. - * - * @return If the semaphore is created then a handle to the created semaphore is - * returned. If pxSemaphoreBuffer is NULL then NULL is returned. - * - * Example usage: -
- SemaphoreHandle_t xSemaphore = NULL;
- StaticSemaphore_t xSemaphoreBuffer;
-
- void vATask( void * pvParameters )
- {
-    // Semaphore cannot be used before a call to xSemaphoreCreateBinary().
-    // The semaphore's data structures will be placed in the xSemaphoreBuffer
-    // variable, the address of which is passed into the function.  The
-    // function's parameter is not NULL, so the function will not attempt any
-    // dynamic memory allocation, and therefore the function will not return
-    // return NULL.
-    xSemaphore = xSemaphoreCreateBinary( &xSemaphoreBuffer );
-
-    // Rest of task code goes here.
- }
- 
- * \defgroup xSemaphoreCreateBinaryStatic xSemaphoreCreateBinaryStatic - * \ingroup Semaphores - */ -#if( configSUPPORT_STATIC_ALLOCATION == 1 ) - #define xSemaphoreCreateBinaryStatic( pxStaticSemaphore ) xQueueGenericCreateStatic( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticSemaphore, queueQUEUE_TYPE_BINARY_SEMAPHORE ) -#endif /* configSUPPORT_STATIC_ALLOCATION */ - -/** - * semphr. h - *
xSemaphoreTake(
- *                   SemaphoreHandle_t xSemaphore,
- *                   TickType_t xBlockTime
- *               )
- * - * Macro to obtain a semaphore. The semaphore must have previously been - * created with a call to xSemaphoreCreateBinary(), xSemaphoreCreateMutex() or - * xSemaphoreCreateCounting(). - * - * @param xSemaphore A handle to the semaphore being taken - obtained when - * the semaphore was created. - * - * @param xBlockTime The time in ticks to wait for the semaphore to become - * available. The macro portTICK_PERIOD_MS can be used to convert this to a - * real time. A block time of zero can be used to poll the semaphore. A block - * time of portMAX_DELAY can be used to block indefinitely (provided - * INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h). - * - * @return pdTRUE if the semaphore was obtained. pdFALSE - * if xBlockTime expired without the semaphore becoming available. - * - * Example usage: -
- SemaphoreHandle_t xSemaphore = NULL;
-
- // A task that creates a semaphore.
- void vATask( void * pvParameters )
- {
-    // Create the semaphore to guard a shared resource.
-    xSemaphore = xSemaphoreCreateBinary();
- }
-
- // A task that uses the semaphore.
- void vAnotherTask( void * pvParameters )
- {
-    // ... Do other things.
-
-    if( xSemaphore != NULL )
-    {
-        // See if we can obtain the semaphore.  If the semaphore is not available
-        // wait 10 ticks to see if it becomes free.
-        if( xSemaphoreTake( xSemaphore, ( TickType_t ) 10 ) == pdTRUE )
-        {
-            // We were able to obtain the semaphore and can now access the
-            // shared resource.
-
-            // ...
-
-            // We have finished accessing the shared resource.  Release the
-            // semaphore.
-            xSemaphoreGive( xSemaphore );
-        }
-        else
-        {
-            // We could not obtain the semaphore and can therefore not access
-            // the shared resource safely.
-        }
-    }
- }
- 
- * \defgroup xSemaphoreTake xSemaphoreTake - * \ingroup Semaphores - */ -#define xSemaphoreTake( xSemaphore, xBlockTime ) xQueueGenericReceive( ( QueueHandle_t ) ( xSemaphore ), NULL, ( xBlockTime ), pdFALSE ) - -/** - * semphr. h - * xSemaphoreTakeRecursive( - * SemaphoreHandle_t xMutex, - * TickType_t xBlockTime - * ) - * - * Macro to recursively obtain, or 'take', a mutex type semaphore. - * The mutex must have previously been created using a call to - * xSemaphoreCreateRecursiveMutex(); - * - * configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this - * macro to be available. - * - * This macro must not be used on mutexes created using xSemaphoreCreateMutex(). - * - * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex - * doesn't become available again until the owner has called - * xSemaphoreGiveRecursive() for each successful 'take' request. For example, - * if a task successfully 'takes' the same mutex 5 times then the mutex will - * not be available to any other task until it has also 'given' the mutex back - * exactly five times. - * - * @param xMutex A handle to the mutex being obtained. This is the - * handle returned by xSemaphoreCreateRecursiveMutex(); - * - * @param xBlockTime The time in ticks to wait for the semaphore to become - * available. The macro portTICK_PERIOD_MS can be used to convert this to a - * real time. A block time of zero can be used to poll the semaphore. If - * the task already owns the semaphore then xSemaphoreTakeRecursive() will - * return immediately no matter what the value of xBlockTime. - * - * @return pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime - * expired without the semaphore becoming available. - * - * Example usage: -
- SemaphoreHandle_t xMutex = NULL;
-
- // A task that creates a mutex.
- void vATask( void * pvParameters )
- {
-    // Create the mutex to guard a shared resource.
-    xMutex = xSemaphoreCreateRecursiveMutex();
- }
-
- // A task that uses the mutex.
- void vAnotherTask( void * pvParameters )
- {
-    // ... Do other things.
-
-    if( xMutex != NULL )
-    {
-        // See if we can obtain the mutex.  If the mutex is not available
-        // wait 10 ticks to see if it becomes free.
-        if( xSemaphoreTakeRecursive( xSemaphore, ( TickType_t ) 10 ) == pdTRUE )
-        {
-            // We were able to obtain the mutex and can now access the
-            // shared resource.
-
-            // ...
-            // For some reason due to the nature of the code further calls to
-			// xSemaphoreTakeRecursive() are made on the same mutex.  In real
-			// code these would not be just sequential calls as this would make
-			// no sense.  Instead the calls are likely to be buried inside
-			// a more complex call structure.
-            xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
-            xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
-
-            // The mutex has now been 'taken' three times, so will not be
-			// available to another task until it has also been given back
-			// three times.  Again it is unlikely that real code would have
-			// these calls sequentially, but instead buried in a more complex
-			// call structure.  This is just for illustrative purposes.
-            xSemaphoreGiveRecursive( xMutex );
-			xSemaphoreGiveRecursive( xMutex );
-			xSemaphoreGiveRecursive( xMutex );
-
-			// Now the mutex can be taken by other tasks.
-        }
-        else
-        {
-            // We could not obtain the mutex and can therefore not access
-            // the shared resource safely.
-        }
-    }
- }
- 
- * \defgroup xSemaphoreTakeRecursive xSemaphoreTakeRecursive - * \ingroup Semaphores - */ -#if( configUSE_RECURSIVE_MUTEXES == 1 ) - #define xSemaphoreTakeRecursive( xMutex, xBlockTime ) xQueueTakeMutexRecursive( ( xMutex ), ( xBlockTime ) ) -#endif - -/** - * semphr. h - *
xSemaphoreGive( SemaphoreHandle_t xSemaphore )
- * - * Macro to release a semaphore. The semaphore must have previously been - * created with a call to xSemaphoreCreateBinary(), xSemaphoreCreateMutex() or - * xSemaphoreCreateCounting(). and obtained using sSemaphoreTake(). - * - * This macro must not be used from an ISR. See xSemaphoreGiveFromISR () for - * an alternative which can be used from an ISR. - * - * This macro must also not be used on semaphores created using - * xSemaphoreCreateRecursiveMutex(). - * - * @param xSemaphore A handle to the semaphore being released. This is the - * handle returned when the semaphore was created. - * - * @return pdTRUE if the semaphore was released. pdFALSE if an error occurred. - * Semaphores are implemented using queues. An error can occur if there is - * no space on the queue to post a message - indicating that the - * semaphore was not first obtained correctly. - * - * Example usage: -
- SemaphoreHandle_t xSemaphore = NULL;
-
- void vATask( void * pvParameters )
- {
-    // Create the semaphore to guard a shared resource.
-    xSemaphore = vSemaphoreCreateBinary();
-
-    if( xSemaphore != NULL )
-    {
-        if( xSemaphoreGive( xSemaphore ) != pdTRUE )
-        {
-            // We would expect this call to fail because we cannot give
-            // a semaphore without first "taking" it!
-        }
-
-        // Obtain the semaphore - don't block if the semaphore is not
-        // immediately available.
-        if( xSemaphoreTake( xSemaphore, ( TickType_t ) 0 ) )
-        {
-            // We now have the semaphore and can access the shared resource.
-
-            // ...
-
-            // We have finished accessing the shared resource so can free the
-            // semaphore.
-            if( xSemaphoreGive( xSemaphore ) != pdTRUE )
-            {
-                // We would not expect this call to fail because we must have
-                // obtained the semaphore to get here.
-            }
-        }
-    }
- }
- 
- * \defgroup xSemaphoreGive xSemaphoreGive - * \ingroup Semaphores - */ -#define xSemaphoreGive( xSemaphore ) xQueueGenericSend( ( QueueHandle_t ) ( xSemaphore ), NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK ) - -/** - * semphr. h - *
xSemaphoreGiveRecursive( SemaphoreHandle_t xMutex )
- * - * Macro to recursively release, or 'give', a mutex type semaphore. - * The mutex must have previously been created using a call to - * xSemaphoreCreateRecursiveMutex(); - * - * configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this - * macro to be available. - * - * This macro must not be used on mutexes created using xSemaphoreCreateMutex(). - * - * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex - * doesn't become available again until the owner has called - * xSemaphoreGiveRecursive() for each successful 'take' request. For example, - * if a task successfully 'takes' the same mutex 5 times then the mutex will - * not be available to any other task until it has also 'given' the mutex back - * exactly five times. - * - * @param xMutex A handle to the mutex being released, or 'given'. This is the - * handle returned by xSemaphoreCreateMutex(); - * - * @return pdTRUE if the semaphore was given. - * - * Example usage: -
- SemaphoreHandle_t xMutex = NULL;
-
- // A task that creates a mutex.
- void vATask( void * pvParameters )
- {
-    // Create the mutex to guard a shared resource.
-    xMutex = xSemaphoreCreateRecursiveMutex();
- }
-
- // A task that uses the mutex.
- void vAnotherTask( void * pvParameters )
- {
-    // ... Do other things.
-
-    if( xMutex != NULL )
-    {
-        // See if we can obtain the mutex.  If the mutex is not available
-        // wait 10 ticks to see if it becomes free.
-        if( xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 ) == pdTRUE )
-        {
-            // We were able to obtain the mutex and can now access the
-            // shared resource.
-
-            // ...
-            // For some reason due to the nature of the code further calls to
-			// xSemaphoreTakeRecursive() are made on the same mutex.  In real
-			// code these would not be just sequential calls as this would make
-			// no sense.  Instead the calls are likely to be buried inside
-			// a more complex call structure.
-            xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
-            xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
-
-            // The mutex has now been 'taken' three times, so will not be
-			// available to another task until it has also been given back
-			// three times.  Again it is unlikely that real code would have
-			// these calls sequentially, it would be more likely that the calls
-			// to xSemaphoreGiveRecursive() would be called as a call stack
-			// unwound.  This is just for demonstrative purposes.
-            xSemaphoreGiveRecursive( xMutex );
-			xSemaphoreGiveRecursive( xMutex );
-			xSemaphoreGiveRecursive( xMutex );
-
-			// Now the mutex can be taken by other tasks.
-        }
-        else
-        {
-            // We could not obtain the mutex and can therefore not access
-            // the shared resource safely.
-        }
-    }
- }
- 
- * \defgroup xSemaphoreGiveRecursive xSemaphoreGiveRecursive - * \ingroup Semaphores - */ -#if( configUSE_RECURSIVE_MUTEXES == 1 ) - #define xSemaphoreGiveRecursive( xMutex ) xQueueGiveMutexRecursive( ( xMutex ) ) -#endif - -/** - * semphr. h - *
- xSemaphoreGiveFromISR(
-                          SemaphoreHandle_t xSemaphore,
-                          BaseType_t *pxHigherPriorityTaskWoken
-                      )
- * - * Macro to release a semaphore. The semaphore must have previously been - * created with a call to xSemaphoreCreateBinary() or xSemaphoreCreateCounting(). - * - * Mutex type semaphores (those created using a call to xSemaphoreCreateMutex()) - * must not be used with this macro. - * - * This macro can be used from an ISR. - * - * @param xSemaphore A handle to the semaphore being released. This is the - * handle returned when the semaphore was created. - * - * @param pxHigherPriorityTaskWoken xSemaphoreGiveFromISR() will set - * *pxHigherPriorityTaskWoken to pdTRUE if giving the semaphore caused a task - * to unblock, and the unblocked task has a priority higher than the currently - * running task. If xSemaphoreGiveFromISR() sets this value to pdTRUE then - * a context switch should be requested before the interrupt is exited. - * - * @return pdTRUE if the semaphore was successfully given, otherwise errQUEUE_FULL. - * - * Example usage: -
- \#define LONG_TIME 0xffff
- \#define TICKS_TO_WAIT	10
- SemaphoreHandle_t xSemaphore = NULL;
-
- // Repetitive task.
- void vATask( void * pvParameters )
- {
-    for( ;; )
-    {
-        // We want this task to run every 10 ticks of a timer.  The semaphore
-        // was created before this task was started.
-
-        // Block waiting for the semaphore to become available.
-        if( xSemaphoreTake( xSemaphore, LONG_TIME ) == pdTRUE )
-        {
-            // It is time to execute.
-
-            // ...
-
-            // We have finished our task.  Return to the top of the loop where
-            // we will block on the semaphore until it is time to execute
-            // again.  Note when using the semaphore for synchronisation with an
-			// ISR in this manner there is no need to 'give' the semaphore back.
-        }
-    }
- }
-
- // Timer ISR
- void vTimerISR( void * pvParameters )
- {
- static uint8_t ucLocalTickCount = 0;
- static BaseType_t xHigherPriorityTaskWoken;
-
-    // A timer tick has occurred.
-
-    // ... Do other time functions.
-
-    // Is it time for vATask () to run?
-	xHigherPriorityTaskWoken = pdFALSE;
-    ucLocalTickCount++;
-    if( ucLocalTickCount >= TICKS_TO_WAIT )
-    {
-        // Unblock the task by releasing the semaphore.
-        xSemaphoreGiveFromISR( xSemaphore, &xHigherPriorityTaskWoken );
-
-        // Reset the count so we release the semaphore again in 10 ticks time.
-        ucLocalTickCount = 0;
-    }
-
-    if( xHigherPriorityTaskWoken != pdFALSE )
-    {
-        // We can force a context switch here.  Context switching from an
-        // ISR uses port specific syntax.  Check the demo task for your port
-        // to find the syntax required.
-    }
- }
- 
- * \defgroup xSemaphoreGiveFromISR xSemaphoreGiveFromISR - * \ingroup Semaphores - */ -#define xSemaphoreGiveFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueGiveFromISR( ( QueueHandle_t ) ( xSemaphore ), ( pxHigherPriorityTaskWoken ) ) - -/** - * semphr. h - *
- xSemaphoreTakeFromISR(
-                          SemaphoreHandle_t xSemaphore,
-                          BaseType_t *pxHigherPriorityTaskWoken
-                      )
- * - * Macro to take a semaphore from an ISR. The semaphore must have - * previously been created with a call to xSemaphoreCreateBinary() or - * xSemaphoreCreateCounting(). - * - * Mutex type semaphores (those created using a call to xSemaphoreCreateMutex()) - * must not be used with this macro. - * - * This macro can be used from an ISR, however taking a semaphore from an ISR - * is not a common operation. It is likely to only be useful when taking a - * counting semaphore when an interrupt is obtaining an object from a resource - * pool (when the semaphore count indicates the number of resources available). - * - * @param xSemaphore A handle to the semaphore being taken. This is the - * handle returned when the semaphore was created. - * - * @param pxHigherPriorityTaskWoken xSemaphoreTakeFromISR() will set - * *pxHigherPriorityTaskWoken to pdTRUE if taking the semaphore caused a task - * to unblock, and the unblocked task has a priority higher than the currently - * running task. If xSemaphoreTakeFromISR() sets this value to pdTRUE then - * a context switch should be requested before the interrupt is exited. - * - * @return pdTRUE if the semaphore was successfully taken, otherwise - * pdFALSE - */ -#define xSemaphoreTakeFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueReceiveFromISR( ( QueueHandle_t ) ( xSemaphore ), NULL, ( pxHigherPriorityTaskWoken ) ) - -/** - * semphr. h - *
SemaphoreHandle_t xSemaphoreCreateMutex( void )
- * - * Creates a new mutex type semaphore instance, and returns a handle by which - * the new mutex can be referenced. - * - * Internally, within the FreeRTOS implementation, mutex semaphores use a block - * of memory, in which the mutex structure is stored. If a mutex is created - * using xSemaphoreCreateMutex() then the required memory is automatically - * dynamically allocated inside the xSemaphoreCreateMutex() function. (see - * http://www.freertos.org/a00111.html). If a mutex is created using - * xSemaphoreCreateMutexStatic() then the application writer must provided the - * memory. xSemaphoreCreateMutexStatic() therefore allows a mutex to be created - * without using any dynamic memory allocation. - * - * Mutexes created using this function can be accessed using the xSemaphoreTake() - * and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and - * xSemaphoreGiveRecursive() macros must not be used. - * - * This type of semaphore uses a priority inheritance mechanism so a task - * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the - * semaphore it is no longer required. - * - * Mutex type semaphores cannot be used from within interrupt service routines. - * - * See xSemaphoreCreateBinary() for an alternative implementation that can be - * used for pure synchronisation (where one task or interrupt always 'gives' the - * semaphore and another always 'takes' the semaphore) and from within interrupt - * service routines. - * - * @return If the mutex was successfully created then a handle to the created - * semaphore is returned. If there was not enough heap to allocate the mutex - * data structures then NULL is returned. - * - * Example usage: -
- SemaphoreHandle_t xSemaphore;
-
- void vATask( void * pvParameters )
- {
-    // Semaphore cannot be used before a call to xSemaphoreCreateMutex().
-    // This is a macro so pass the variable in directly.
-    xSemaphore = xSemaphoreCreateMutex();
-
-    if( xSemaphore != NULL )
-    {
-        // The semaphore was created successfully.
-        // The semaphore can now be used.
-    }
- }
- 
- * \defgroup xSemaphoreCreateMutex xSemaphoreCreateMutex - * \ingroup Semaphores - */ -#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) - #define xSemaphoreCreateMutex() xQueueCreateMutex( queueQUEUE_TYPE_MUTEX ) -#endif - -/** - * semphr. h - *
SemaphoreHandle_t xSemaphoreCreateMutexStatic( StaticSemaphore_t *pxMutexBuffer )
- * - * Creates a new mutex type semaphore instance, and returns a handle by which - * the new mutex can be referenced. - * - * Internally, within the FreeRTOS implementation, mutex semaphores use a block - * of memory, in which the mutex structure is stored. If a mutex is created - * using xSemaphoreCreateMutex() then the required memory is automatically - * dynamically allocated inside the xSemaphoreCreateMutex() function. (see - * http://www.freertos.org/a00111.html). If a mutex is created using - * xSemaphoreCreateMutexStatic() then the application writer must provided the - * memory. xSemaphoreCreateMutexStatic() therefore allows a mutex to be created - * without using any dynamic memory allocation. - * - * Mutexes created using this function can be accessed using the xSemaphoreTake() - * and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and - * xSemaphoreGiveRecursive() macros must not be used. - * - * This type of semaphore uses a priority inheritance mechanism so a task - * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the - * semaphore it is no longer required. - * - * Mutex type semaphores cannot be used from within interrupt service routines. - * - * See xSemaphoreCreateBinary() for an alternative implementation that can be - * used for pure synchronisation (where one task or interrupt always 'gives' the - * semaphore and another always 'takes' the semaphore) and from within interrupt - * service routines. - * - * @param pxMutexBuffer Must point to a variable of type StaticSemaphore_t, - * which will be used to hold the mutex's data structure, removing the need for - * the memory to be allocated dynamically. - * - * @return If the mutex was successfully created then a handle to the created - * mutex is returned. If pxMutexBuffer was NULL then NULL is returned. - * - * Example usage: -
- SemaphoreHandle_t xSemaphore;
- StaticSemaphore_t xMutexBuffer;
-
- void vATask( void * pvParameters )
- {
-    // A mutex cannot be used before it has been created.  xMutexBuffer is
-    // into xSemaphoreCreateMutexStatic() so no dynamic memory allocation is
-    // attempted.
-    xSemaphore = xSemaphoreCreateMutexStatic( &xMutexBuffer );
-
-    // As no dynamic memory allocation was performed, xSemaphore cannot be NULL,
-    // so there is no need to check it.
- }
- 
- * \defgroup xSemaphoreCreateMutexStatic xSemaphoreCreateMutexStatic - * \ingroup Semaphores - */ - #if( configSUPPORT_STATIC_ALLOCATION == 1 ) - #define xSemaphoreCreateMutexStatic( pxMutexBuffer ) xQueueCreateMutexStatic( queueQUEUE_TYPE_MUTEX, ( pxMutexBuffer ) ) -#endif /* configSUPPORT_STATIC_ALLOCATION */ - - -/** - * semphr. h - *
SemaphoreHandle_t xSemaphoreCreateRecursiveMutex( void )
- * - * Creates a new recursive mutex type semaphore instance, and returns a handle - * by which the new recursive mutex can be referenced. - * - * Internally, within the FreeRTOS implementation, recursive mutexs use a block - * of memory, in which the mutex structure is stored. If a recursive mutex is - * created using xSemaphoreCreateRecursiveMutex() then the required memory is - * automatically dynamically allocated inside the - * xSemaphoreCreateRecursiveMutex() function. (see - * http://www.freertos.org/a00111.html). If a recursive mutex is created using - * xSemaphoreCreateRecursiveMutexStatic() then the application writer must - * provide the memory that will get used by the mutex. - * xSemaphoreCreateRecursiveMutexStatic() therefore allows a recursive mutex to - * be created without using any dynamic memory allocation. - * - * Mutexes created using this macro can be accessed using the - * xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The - * xSemaphoreTake() and xSemaphoreGive() macros must not be used. - * - * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex - * doesn't become available again until the owner has called - * xSemaphoreGiveRecursive() for each successful 'take' request. For example, - * if a task successfully 'takes' the same mutex 5 times then the mutex will - * not be available to any other task until it has also 'given' the mutex back - * exactly five times. - * - * This type of semaphore uses a priority inheritance mechanism so a task - * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the - * semaphore it is no longer required. - * - * Mutex type semaphores cannot be used from within interrupt service routines. - * - * See xSemaphoreCreateBinary() for an alternative implementation that can be - * used for pure synchronisation (where one task or interrupt always 'gives' the - * semaphore and another always 'takes' the semaphore) and from within interrupt - * service routines. - * - * @return xSemaphore Handle to the created mutex semaphore. Should be of type - * SemaphoreHandle_t. - * - * Example usage: -
- SemaphoreHandle_t xSemaphore;
-
- void vATask( void * pvParameters )
- {
-    // Semaphore cannot be used before a call to xSemaphoreCreateMutex().
-    // This is a macro so pass the variable in directly.
-    xSemaphore = xSemaphoreCreateRecursiveMutex();
-
-    if( xSemaphore != NULL )
-    {
-        // The semaphore was created successfully.
-        // The semaphore can now be used.
-    }
- }
- 
- * \defgroup xSemaphoreCreateRecursiveMutex xSemaphoreCreateRecursiveMutex - * \ingroup Semaphores - */ -#if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configUSE_RECURSIVE_MUTEXES == 1 ) ) - #define xSemaphoreCreateRecursiveMutex() xQueueCreateMutex( queueQUEUE_TYPE_RECURSIVE_MUTEX ) -#endif - -/** - * semphr. h - *
SemaphoreHandle_t xSemaphoreCreateRecursiveMutexStatic( StaticSemaphore_t *pxMutexBuffer )
- * - * Creates a new recursive mutex type semaphore instance, and returns a handle - * by which the new recursive mutex can be referenced. - * - * Internally, within the FreeRTOS implementation, recursive mutexs use a block - * of memory, in which the mutex structure is stored. If a recursive mutex is - * created using xSemaphoreCreateRecursiveMutex() then the required memory is - * automatically dynamically allocated inside the - * xSemaphoreCreateRecursiveMutex() function. (see - * http://www.freertos.org/a00111.html). If a recursive mutex is created using - * xSemaphoreCreateRecursiveMutexStatic() then the application writer must - * provide the memory that will get used by the mutex. - * xSemaphoreCreateRecursiveMutexStatic() therefore allows a recursive mutex to - * be created without using any dynamic memory allocation. - * - * Mutexes created using this macro can be accessed using the - * xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The - * xSemaphoreTake() and xSemaphoreGive() macros must not be used. - * - * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex - * doesn't become available again until the owner has called - * xSemaphoreGiveRecursive() for each successful 'take' request. For example, - * if a task successfully 'takes' the same mutex 5 times then the mutex will - * not be available to any other task until it has also 'given' the mutex back - * exactly five times. - * - * This type of semaphore uses a priority inheritance mechanism so a task - * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the - * semaphore it is no longer required. - * - * Mutex type semaphores cannot be used from within interrupt service routines. - * - * See xSemaphoreCreateBinary() for an alternative implementation that can be - * used for pure synchronisation (where one task or interrupt always 'gives' the - * semaphore and another always 'takes' the semaphore) and from within interrupt - * service routines. - * - * @param pxMutexBuffer Must point to a variable of type StaticSemaphore_t, - * which will then be used to hold the recursive mutex's data structure, - * removing the need for the memory to be allocated dynamically. - * - * @return If the recursive mutex was successfully created then a handle to the - * created recursive mutex is returned. If pxMutexBuffer was NULL then NULL is - * returned. - * - * Example usage: -
- SemaphoreHandle_t xSemaphore;
- StaticSemaphore_t xMutexBuffer;
-
- void vATask( void * pvParameters )
- {
-    // A recursive semaphore cannot be used before it is created.  Here a
-    // recursive mutex is created using xSemaphoreCreateRecursiveMutexStatic().
-    // The address of xMutexBuffer is passed into the function, and will hold
-    // the mutexes data structures - so no dynamic memory allocation will be
-    // attempted.
-    xSemaphore = xSemaphoreCreateRecursiveMutexStatic( &xMutexBuffer );
-
-    // As no dynamic memory allocation was performed, xSemaphore cannot be NULL,
-    // so there is no need to check it.
- }
- 
- * \defgroup xSemaphoreCreateRecursiveMutexStatic xSemaphoreCreateRecursiveMutexStatic - * \ingroup Semaphores - */ -#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configUSE_RECURSIVE_MUTEXES == 1 ) ) - #define xSemaphoreCreateRecursiveMutexStatic( pxStaticSemaphore ) xQueueCreateMutexStatic( queueQUEUE_TYPE_RECURSIVE_MUTEX, pxStaticSemaphore ) -#endif /* configSUPPORT_STATIC_ALLOCATION */ - -/** - * semphr. h - *
SemaphoreHandle_t xSemaphoreCreateCounting( UBaseType_t uxMaxCount, UBaseType_t uxInitialCount )
- * - * Creates a new counting semaphore instance, and returns a handle by which the - * new counting semaphore can be referenced. - * - * In many usage scenarios it is faster and more memory efficient to use a - * direct to task notification in place of a counting semaphore! - * http://www.freertos.org/RTOS-task-notifications.html - * - * Internally, within the FreeRTOS implementation, counting semaphores use a - * block of memory, in which the counting semaphore structure is stored. If a - * counting semaphore is created using xSemaphoreCreateCounting() then the - * required memory is automatically dynamically allocated inside the - * xSemaphoreCreateCounting() function. (see - * http://www.freertos.org/a00111.html). If a counting semaphore is created - * using xSemaphoreCreateCountingStatic() then the application writer can - * instead optionally provide the memory that will get used by the counting - * semaphore. xSemaphoreCreateCountingStatic() therefore allows a counting - * semaphore to be created without using any dynamic memory allocation. - * - * Counting semaphores are typically used for two things: - * - * 1) Counting events. - * - * In this usage scenario an event handler will 'give' a semaphore each time - * an event occurs (incrementing the semaphore count value), and a handler - * task will 'take' a semaphore each time it processes an event - * (decrementing the semaphore count value). The count value is therefore - * the difference between the number of events that have occurred and the - * number that have been processed. In this case it is desirable for the - * initial count value to be zero. - * - * 2) Resource management. - * - * In this usage scenario the count value indicates the number of resources - * available. To obtain control of a resource a task must first obtain a - * semaphore - decrementing the semaphore count value. When the count value - * reaches zero there are no free resources. When a task finishes with the - * resource it 'gives' the semaphore back - incrementing the semaphore count - * value. In this case it is desirable for the initial count value to be - * equal to the maximum count value, indicating that all resources are free. - * - * @param uxMaxCount The maximum count value that can be reached. When the - * semaphore reaches this value it can no longer be 'given'. - * - * @param uxInitialCount The count value assigned to the semaphore when it is - * created. - * - * @return Handle to the created semaphore. Null if the semaphore could not be - * created. - * - * Example usage: -
- SemaphoreHandle_t xSemaphore;
-
- void vATask( void * pvParameters )
- {
- SemaphoreHandle_t xSemaphore = NULL;
-
-    // Semaphore cannot be used before a call to xSemaphoreCreateCounting().
-    // The max value to which the semaphore can count should be 10, and the
-    // initial value assigned to the count should be 0.
-    xSemaphore = xSemaphoreCreateCounting( 10, 0 );
-
-    if( xSemaphore != NULL )
-    {
-        // The semaphore was created successfully.
-        // The semaphore can now be used.
-    }
- }
- 
- * \defgroup xSemaphoreCreateCounting xSemaphoreCreateCounting - * \ingroup Semaphores - */ -#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) - #define xSemaphoreCreateCounting( uxMaxCount, uxInitialCount ) xQueueCreateCountingSemaphore( ( uxMaxCount ), ( uxInitialCount ) ) -#endif - -/** - * semphr. h - *
SemaphoreHandle_t xSemaphoreCreateCountingStatic( UBaseType_t uxMaxCount, UBaseType_t uxInitialCount, StaticSemaphore_t *pxSemaphoreBuffer )
- * - * Creates a new counting semaphore instance, and returns a handle by which the - * new counting semaphore can be referenced. - * - * In many usage scenarios it is faster and more memory efficient to use a - * direct to task notification in place of a counting semaphore! - * http://www.freertos.org/RTOS-task-notifications.html - * - * Internally, within the FreeRTOS implementation, counting semaphores use a - * block of memory, in which the counting semaphore structure is stored. If a - * counting semaphore is created using xSemaphoreCreateCounting() then the - * required memory is automatically dynamically allocated inside the - * xSemaphoreCreateCounting() function. (see - * http://www.freertos.org/a00111.html). If a counting semaphore is created - * using xSemaphoreCreateCountingStatic() then the application writer must - * provide the memory. xSemaphoreCreateCountingStatic() therefore allows a - * counting semaphore to be created without using any dynamic memory allocation. - * - * Counting semaphores are typically used for two things: - * - * 1) Counting events. - * - * In this usage scenario an event handler will 'give' a semaphore each time - * an event occurs (incrementing the semaphore count value), and a handler - * task will 'take' a semaphore each time it processes an event - * (decrementing the semaphore count value). The count value is therefore - * the difference between the number of events that have occurred and the - * number that have been processed. In this case it is desirable for the - * initial count value to be zero. - * - * 2) Resource management. - * - * In this usage scenario the count value indicates the number of resources - * available. To obtain control of a resource a task must first obtain a - * semaphore - decrementing the semaphore count value. When the count value - * reaches zero there are no free resources. When a task finishes with the - * resource it 'gives' the semaphore back - incrementing the semaphore count - * value. In this case it is desirable for the initial count value to be - * equal to the maximum count value, indicating that all resources are free. - * - * @param uxMaxCount The maximum count value that can be reached. When the - * semaphore reaches this value it can no longer be 'given'. - * - * @param uxInitialCount The count value assigned to the semaphore when it is - * created. - * - * @param pxSemaphoreBuffer Must point to a variable of type StaticSemaphore_t, - * which will then be used to hold the semaphore's data structure, removing the - * need for the memory to be allocated dynamically. - * - * @return If the counting semaphore was successfully created then a handle to - * the created counting semaphore is returned. If pxSemaphoreBuffer was NULL - * then NULL is returned. - * - * Example usage: -
- SemaphoreHandle_t xSemaphore;
- StaticSemaphore_t xSemaphoreBuffer;
-
- void vATask( void * pvParameters )
- {
- SemaphoreHandle_t xSemaphore = NULL;
-
-    // Counting semaphore cannot be used before they have been created.  Create
-    // a counting semaphore using xSemaphoreCreateCountingStatic().  The max
-    // value to which the semaphore can count is 10, and the initial value
-    // assigned to the count will be 0.  The address of xSemaphoreBuffer is
-    // passed in and will be used to hold the semaphore structure, so no dynamic
-    // memory allocation will be used.
-    xSemaphore = xSemaphoreCreateCounting( 10, 0, &xSemaphoreBuffer );
-
-    // No memory allocation was attempted so xSemaphore cannot be NULL, so there
-    // is no need to check its value.
- }
- 
- * \defgroup xSemaphoreCreateCountingStatic xSemaphoreCreateCountingStatic - * \ingroup Semaphores - */ -#if( configSUPPORT_STATIC_ALLOCATION == 1 ) - #define xSemaphoreCreateCountingStatic( uxMaxCount, uxInitialCount, pxSemaphoreBuffer ) xQueueCreateCountingSemaphoreStatic( ( uxMaxCount ), ( uxInitialCount ), ( pxSemaphoreBuffer ) ) -#endif /* configSUPPORT_STATIC_ALLOCATION */ - -/** - * semphr. h - *
void vSemaphoreDelete( SemaphoreHandle_t xSemaphore );
- * - * Delete a semaphore. This function must be used with care. For example, - * do not delete a mutex type semaphore if the mutex is held by a task. - * - * @param xSemaphore A handle to the semaphore to be deleted. - * - * \defgroup vSemaphoreDelete vSemaphoreDelete - * \ingroup Semaphores - */ -#define vSemaphoreDelete( xSemaphore ) vQueueDelete( ( QueueHandle_t ) ( xSemaphore ) ) - -/** - * semphr.h - *
TaskHandle_t xSemaphoreGetMutexHolder( SemaphoreHandle_t xMutex );
- * - * If xMutex is indeed a mutex type semaphore, return the current mutex holder. - * If xMutex is not a mutex type semaphore, or the mutex is available (not held - * by a task), return NULL. - * - * Note: This is a good way of determining if the calling task is the mutex - * holder, but not a good way of determining the identity of the mutex holder as - * the holder may change between the function exiting and the returned value - * being tested. - */ -#define xSemaphoreGetMutexHolder( xSemaphore ) xQueueGetMutexHolder( ( xSemaphore ) ) - -/** - * semphr.h - *
UBaseType_t uxSemaphoreGetCount( SemaphoreHandle_t xSemaphore );
- * - * If the semaphore is a counting semaphore then uxSemaphoreGetCount() returns - * its current count value. If the semaphore is a binary semaphore then - * uxSemaphoreGetCount() returns 1 if the semaphore is available, and 0 if the - * semaphore is not available. - * - */ -#define uxSemaphoreGetCount( xSemaphore ) uxQueueMessagesWaiting( ( QueueHandle_t ) ( xSemaphore ) ) - -#endif /* SEMAPHORE_H */ - - -- cgit v1.2.3