
RPMsg RTOS Layer User’s Guide

NXP Semiconductors

Document Number: RPMSGRTOSLAYERUG
Rev. 1

Jul 2016

Contents
Chapter 1

RPMsg Component

1.1 Motivation to create RTOS aware API . 1

1.2 Implementation . 2

1.3 Usage . 2

1.4 RPMsg porting sub-layers . 5

Chapter 2
RPMsg Zero-copy Layer

2.1 Overview . 7

2.2 Function Documentation . 7
2.2.1 rpmsg_hold_rx_buffer . 7
2.2.2 rpmsg_release_rx_buffer . 7
2.2.3 rpmsg_alloc_tx_buffer . 9
2.2.4 rpmsg_send_offchannel_nocopy . 9
2.2.5 rpmsg_sendto_nocopy . 10
2.2.6 rpmsg_send_nocopy . 11

Chapter 3
RPMsg RTOS Layer

3.1 Overview . 13

3.2 Function Documentation . 13
3.2.1 rpmsg_rtos_init . 13
3.2.2 rpmsg_rtos_deinit . 14
3.2.3 rpmsg_rtos_create_ept . 14
3.2.4 rpmsg_rtos_destroy_ept . 15
3.2.5 rpmsg_rtos_recv . 15

NXP Semiconductors
RPMsg RTOS Layer User’s Guide

iii

Section number Title Page
3.2.6 rpmsg_rtos_recv_nocopy . 16
3.2.7 rpmsg_rtos_recv_nocopy_free . 16
3.2.8 rpmsg_rtos_alloc_tx_buffer . 17
3.2.9 rpmsg_rtos_send . 17
3.2.10 rpmsg_rtos_send_nocopy . 18

Chapter 4
Revision History

iv
RPMsg RTOS Layer User’s Guide

NXP Semiconductors

Chapter 1
RPMsg Component
The Remote Processor Messaging (RPMsg) is a virtio-based messaging bus that allows Inter Processor
Communications (IPC) between independent software contexts running on homogeneous or heteroge-
neous cores present in an Asymmetric Multi Processing (AMP) system. The RPMsg component source
code has been recently published as a part of the Open Asymmetric Multi Processing (OpenAMP) Frame-
work. The RPMsg API is compliant with the RPMsg bus infrastructure present in upstream Linux 3.4.x
kernel onward.

This document describes the extension of the RPMsg API designed and implemented by NXP. It discusses
the motivation for these changes in the RPMsg as well as the advantages of the extension. This document
also serves as the API reference, covering all newly added API functions that can be use in an RPMsg-
based application.

The RPMsg extension is based on the OpenAMP repository code. See https://github.com/Open-
AMP/open-amp.git / SHA1 ID 44b5f3c0a6458f3cf80. The documentation for the legacy RPMsg core
code can be found in the docs folder of this repository.

1.1 Motivation to create RTOS aware API
The original RPMsg API is based on processing the transmitted data (messages) in the interrupt context
via a registered receive callback, which is called when a message is received. The inconvenience of this
approach is that either all the processing of received data must be done in the interrupt context, or that
the message must be copied in a temporary application buffer for later processing. Both usages of the
available API are not compatible with the concept of a Real-Time Operating System (RTOS), since the
interrupt always preempts the running task, whatever its current priority, and this interruption can occur at
a random date and can take a random amount of time to execute. This can introduce additional jitter in the
real-time system timing. Additionally, the practice in application development using an RTOS is to have
multiple independent sequential contexts. It is more natural and convenient to have a blocking sequential
API, which was not available in the original RPMsg API. A good example of a blocking API is a socket
interface or any POSIX-like interface. Therefore, the natural trend is to provide this a kind of interface to
the application programmer. To summarize, the advantages of the RTOS-aware extension of RPMsg API
are the following:

• No data processing in the interrupt context
• Blocking receive API
• Zero-copy send and receive API
• Receive with timeout provided by RTOS
• Compatible with Linux OS upstream

NXP Semiconductors
RPMsg RTOS Layer User’s Guide

1

https://github.com/OpenAMP/open-amp.git
https://github.com/OpenAMP/open-amp.git

Usage

1.2 Implementation
The NXP contribution to the RPMsg consists of two additional layers that are created above the origin
base RPMsg layer.

• The RPMsg Extension layer allows users to allocate and release virtio tx buffers, as well as imple-
ments the zero-copy send functionality. The RPMsg Extension layer API is intended to be used in
Bare Metal applications.

• The RPMsg RTOS layer addresses RTOS-based application needs discussed above (handling re-
ceived data outside the interrupt context, blocking receive API implementation, zero-copy mecha-
nisms). See RPMsg RTOS layer API. This RTOS aware RPMsg API layer is split into multiple C
modules. The module rpmsg_rtos.c/.h contains a generic implementation, which does not depend
on the used RTOS nor on the used platform. In /porting/<device>/platform.c/.h and platform_info.-
c, there are platform (SoC) dependent functions. In /porting/env/<rtos name>/rpmsg_porting.c/.h,
the RTOS abstraction is implemented using functions from the platform.h to make connection with
the hardware. However, the rpmsg_porting.c/.h module itself is hardware-independent.

Figure 1.2.1: RPMsg layers

1.3 Usage
To access the RPMsg RTOS layer API, it is necessary to include the rpmsg_rtos.h file in the application
C module (i.e., main.c). After the RTOS startup, the user should call the rpmsg_rtos_init() function
to initialize the RPMsg and to synchronize with the opposite side (other core). After this, application
endpoints can be created in any RTOS threads by calling rpmsg_rtos_create_ept(). Consequently, the
rpmsg_rtos_send() function is used to send data from an endpoint to a remote endpoint, whose address is
specified in the function call. The rpmsg_rtos_recv() is then used to receive data on an endpoint or to wait
for data to be received with a certain timeout (or the timeout can be set to wait forever).

If the application is low on memory or needs to be more memory efficient and faster, the no-copy mech-
anism can be used. The RPMsg RTOS layer implements no-copy mechanisms for both sending and

2
RPMsg RTOS Layer User’s Guide

NXP Semiconductors

Usage

receiving operations. These methods require specifics that have to be considered when used in an applica-
tion.

no-copy-send mechanism: This mechanism allows sending messages without the cost for copying data
from the application buffer to the RPMsg/virtio buffer in the shared memory. The sequence of no-copy
sending steps to be performed is as follows:

• Call the rpmsg_rtos_alloc_tx_buffer() function to get the virtio buffer and provide the buffer pointer
to the application.

• Fill the data to be sent into the pre-allocated virtio buffer. Ensure that the filled data does not exceed
the buffer size (provided as the rpmsg_rtos_alloc_tx_buffer() size output parameter).

• Call the rpmsg_rtos_send_nocopy() function to send the message to the destination endpoint. Con-
sider the cache functionality and the virtio buffer alignment. See the rpmsg_rtos_send_nocopy()
function description below.

no-copy-receive mechanism: This mechanism allows reading messages without the cost for copying data
from the virtio buffer in the shared memory to the application buffer. The sequence of no-copy receiving
steps to be performed is as follows:

• Call the rpmsg_rtos_recv_nocopy() function to get the virtio buffer pointer to the received data.
• Read received data directly from the shared memory.
• Call the rpmsg_rtos_recv_nocopy_free() function to release the virtio buffer and to make it available

for the next data transfer.

NXP Semiconductors
RPMsg RTOS Layer User’s Guide

3

Usage

Figure 1.3.1: RPMsg send/receive mechanisms

4
RPMsg RTOS Layer User’s Guide

NXP Semiconductors

RPMsg porting sub-layers

When deinitializating the RPMsg communication, the master side calls the rpmsg_rtos_deinit() function
that deinitializes all on the master side, and also triggers the Name Service (NS) destroy callback on the
remote side, which destroys the default channel and the default endpoint. From that time onwards, any
call of send or receive API on the remote side returns an error. It is up to the user application to gracefully
stop the RPMsg, i.e., to destroy all application-created endpoints (rpmsg_rtos_destroy_ept()) first, then
destroy the RPMsg component (rpmsg_rtos_deinit()).

Figure 1.3.2: RPMsg init and deinit process in RTOS environment

1.4 RPMsg porting sub-layers
The RPMsg porting layers have been also modified and consolidated in order to

NXP Semiconductors
RPMsg RTOS Layer User’s Guide

5

RPMsg porting sub-layers

• Strictly separate platform-related (multicore device) and environment-related (Bare Metal, RTOS)
layers.

• Update the environment layer API by functions requested by the RTOS layer. The following env
functions have been introduced:

– int env_create_queue(void∗∗ queue, int length, int element_size)
– void env_delete_queue(void∗ queue)
– int env_put_queue(void∗ queue, void∗ msg, int timeout_ms)
– int env_get_queue(void∗ queue, void∗ msg, int timeout_ms)

Currently, the environment layer is implemented for Bare Metal and FreeRTOS. To support other RTO-
Ses, it is necessary to create (clone) the rpmsg_porting.c/.h sub-layer using the desired RTOS API, put this
code into the /porting/env/<rtos name> folder, and to include this path into the list of the project include
paths.

Figure 1.4.1: Rewrite rpmsg_porting.c/.h sub-layer

6
RPMsg RTOS Layer User’s Guide

NXP Semiconductors

Chapter 2
RPMsg Zero-copy Layer
2.1 Overview
This part describes the RPMsg extension layer that allows:

• Allocation/release of the virtio tx buffer.
• Zero-copy send functionality.

Functions
• void rpmsg_hold_rx_buffer (struct rpmsg_channel ∗rpdev, void ∗rxbuf)
• void rpmsg_release_rx_buffer (struct rpmsg_channel ∗rpdev, void ∗rxbuf)
• void ∗ rpmsg_alloc_tx_buffer (struct rpmsg_channel ∗rpdev, unsigned long ∗size, int wait)
• int rpmsg_send_offchannel_nocopy (struct rpmsg_channel ∗rpdev, unsigned long src, unsigned long

dst, void ∗txbuf, int len)
• static int rpmsg_sendto_nocopy (struct rpmsg_channel ∗rpdev, void ∗txbuf, int len, unsigned long

dst)
• static int rpmsg_send_nocopy (struct rpmsg_channel ∗rpdev, void ∗txbuf, int len)

2.2 Function Documentation
2.2.1 void rpmsg_hold_rx_buffer (struct rpmsg_channel ∗ rpdev, void ∗ rxbuf)

Holds the rx buffer for usage outside the receive callback.

Calling this function prevents the RPMsg receive buffer from being released back to the pool of shmem
buffers. This API can only be called at rx callback context (rpmsg_rx_cb_t). With this API, the application
doesn’t need to copy the message in rx callback. Instead, the rx buffer base address is saved in application
context and further processed in application process. After the message is processed, the application can
release the rx buffer for future reuse in vring by calling the rpmsg_release_rx_buffer() function.

Parameters

in rpdev The RPMsg channel
in rxbuf RX buffer with message payload

See Also

rpmsg_release_rx_buffer

2.2.2 void rpmsg_release_rx_buffer (struct rpmsg_channel ∗ rpdev, void ∗ rxbuf)

Releases the rx buffer for future reuse in vring.

NXP Semiconductors
RPMsg RTOS Layer User’s Guide

7

Function Documentation

This API can be called at process context when the message in rx buffer is processed.

8
RPMsg RTOS Layer User’s Guide

NXP Semiconductors

Function Documentation

Parameters

rpdev - the RPMsg channel
rxbuf - rx buffer with message payload

See Also

rpmsg_hold_rx_buffer

2.2.3 void∗ rpmsg_alloc_tx_buffer (struct rpmsg_channel ∗ rpdev, unsigned long
∗ size, int wait)

Allocates the tx buffer for message payload.

This API can only be called at process context to get the tx buffer in vring. By this way, the application
can directly put its message into the vring tx buffer without copy from an application buffer. It is the
application responsibility to correctly fill the allocated tx buffer by data and passing correct parameters to
the rpmsg_send_nocopy() or rpmsg_sendto_nocopy() function to perform data no-copy-send mechanism.

Parameters

in rpdev Pointer to RPMsg channel
in size Pointer to store tx buffer size
in wait Boolean, wait or not for buffer to become available

Returns

The tx buffer address on success and NULL on failure

See Also

rpmsg_send_offchannel_nocopy
rpmsg_sendto_nocopy
rpmsg_send_nocopy

2.2.4 int rpmsg_send_offchannel_nocopy (struct rpmsg_channel ∗ rpdev,
unsigned long src, unsigned long dst, void ∗ txbuf, int len)

Sends a message in tx buffer allocated by rpmsg_alloc_tx_buffer() using explicit src/dst addresses.

This function sends txbuf of length len to the remote dst address, and uses src as the source address. The
message will be sent to the remote processor which the rpdev channel belongs to. The application has to
take the responsibility for:

NXP Semiconductors
RPMsg RTOS Layer User’s Guide

9

Function Documentation

1. tx buffer allocation (rpmsg_alloc_tx_buffer())
2. filling the data to be sent into the pre-allocated tx buffer
3. not exceeding the buffer size when filling the data
4. data cache coherency

After the rpmsg_send_offchannel_nocopy() function is issued the tx buffer is no more owned by the send-
ing task and must not be touched anymore unless the rpmsg_send_offchannel_nocopy() function fails and
returns an error. In that case the application should try to re-issue the rpmsg_send_offchannel_nocopy()
again and if it is still not possible to send the message and the application wants to give it up from whatever
reasons the rpmsg_release_rx_buffer function could be called, passing the pointer to the tx buffer to be
released as a parameter.

Parameters

in rpdev The RPMsg channel
in src Source address
in dst Destination address
in txbuf TX buffer with message filled
in len Length of payload

Returns

0 on success and an appropriate error value on failure

See Also

rpmsg_alloc_tx_buffer
rpmsg_sendto_nocopy
rpmsg_send_nocopy

2.2.5 static int rpmsg_sendto_nocopy (struct rpmsg_channel ∗ rpdev, void ∗
txbuf, int len, unsigned long dst) [static]

Sends a message in tx buffer allocated by rpmsg_alloc_tx_buffer() across to the remote processor, specify
dst.

This function sends txbuf of length len to the remote dst address. The message will be sent to the remote
processor which the rpdev channel belongs to, using rpdev’s source address. The application has to take
the responsibility for:

1. tx buffer allocation (rpmsg_alloc_tx_buffer())
2. filling the data to be sent into the pre-allocated tx buffer
3. not exceeding the buffer size when filling the data
4. data cache coherency

10
RPMsg RTOS Layer User’s Guide

NXP Semiconductors

Function Documentation

After the rpmsg_sendto_nocopy() function is issued the tx buffer is no more owned by the sending task and
must not be touched anymore unless the rpmsg_sendto_nocopy() function fails and returns an error. In that
case the application should try to re-issue the rpmsg_sendto_nocopy() again and if it is still not possible
to send the message and the application wants to give it up from whatever reasons the rpmsg_release_rx-
_buffer function could be called, passing the pointer to the tx buffer to be released as a parameter.

Parameters

in rpdev The RPMsg channel
in txbuf TX buffer with message filled
in len Length of payload
in dst Destination address

Returns

0 on success and an appropriate error value on failure

See Also

rpmsg_alloc_tx_buffer
rpmsg_send_offchannel_nocopy
rpmsg_send_nocopy

2.2.6 static int rpmsg_send_nocopy (struct rpmsg_channel ∗ rpdev, void ∗ txbuf,
int len) [static]

Sends a message in tx buffer allocated by rpmsg_alloc_tx_buffer() across to the remote processor.

This function sends txbuf of length len on the rpdev channel. The message will be sent to the remote pro-
cessor which the rpdev channel belongs to, using rpdev’s source and destination addresses. The application
has to take the responsibility for:

1. tx buffer allocation (rpmsg_alloc_tx_buffer())
2. filling the data to be sent into the pre-allocated tx buffer
3. not exceeding the buffer size when filling the data
4. data cache coherency

After the rpmsg_send_nocopy() function is issued the tx buffer is no more owned by the sending task and
must not be touched anymore unless the rpmsg_send_nocopy() function fails and returns an error. In that
case the application should try to re-issue the rpmsg_send_nocopy() again and if it is still not possible to
send the message and the application wants to give it up from whatever reasons the rpmsg_release_rx_-
buffer function could be called, passing the pointer to the tx buffer to be released as a parameter.

NXP Semiconductors
RPMsg RTOS Layer User’s Guide

11

Function Documentation

Parameters

in rpdev The RPMsg channel
in txbuf TX buffer with message filled
in len Length of payload

Returns

0 on success and an appropriate error value on failure

See Also

rpmsg_alloc_tx_buffer
rpmsg_send_offchannel_nocopy
rpmsg_sendto_nocopy

12
RPMsg RTOS Layer User’s Guide

NXP Semiconductors

Chapter 3
RPMsg RTOS Layer
3.1 Overview
This part describes the RPMsg RTOS adaptation layer that allows:

• Handling of received messages outside the interrupt context.
• Implementation of blocking API for the RPMsg receive side.
• Provides zero-copy receive functionality.
• Provides zero-copy send functionality.

Functions
• int rpmsg_rtos_init (int dev_id, struct remote_device ∗∗rdev, int role, struct rpmsg_channel ∗∗def_-

chnl)
• void rpmsg_rtos_deinit (struct remote_device ∗rdev)
• struct rpmsg_endpoint ∗ rpmsg_rtos_create_ept (struct rpmsg_channel ∗rp_chnl, unsigned long

addr)
• void rpmsg_rtos_destroy_ept (struct rpmsg_endpoint ∗rp_ept)
• int rpmsg_rtos_recv (struct rpmsg_endpoint ∗ept, void ∗data, int ∗len, int maxlen, unsigned long
∗src, int timeout_ms)

• int rpmsg_rtos_recv_nocopy (struct rpmsg_endpoint ∗ept, void ∗∗data, int ∗len, unsigned long ∗src,
int timeout_ms)

• int rpmsg_rtos_recv_nocopy_free (struct rpmsg_endpoint ∗ept, void ∗data)
• void ∗ rpmsg_rtos_alloc_tx_buffer (struct rpmsg_endpoint ∗ept, unsigned long ∗size)
• int rpmsg_rtos_send (struct rpmsg_endpoint ∗ept, void ∗data, int len, unsigned long dst)
• int rpmsg_rtos_send_nocopy (struct rpmsg_endpoint ∗ept, void ∗txbuf, int len, unsigned long dst)

3.2 Function Documentation

3.2.1 int rpmsg_rtos_init (int dev_id, struct remote_device ∗∗ rdev, int role,
struct rpmsg_channel ∗∗ def_chnl)

This function allocates and initializes the RPMsg driver resources for given device ID (cpu id).

The successful return from this function leaves fully enabled IPC link. RTOS aware version.

Parameters

in dev_id Remote device for which driver is to be initialized
out rdev Pointer to newly created remote device

NXP Semiconductors
RPMsg RTOS Layer User’s Guide

13

Function Documentation

in role Role of the other device, Master or Remote
out def_chnl Pointer to RPMsg channel

Returns

Status of function execution

See Also

rpmsg_rtos_deinit

3.2.2 void rpmsg_rtos_deinit (struct remote_device ∗ rdev)

This function frees RPMsg driver resources for given remote device.

RTOS aware version.
Parameters

in rdev Pointer to device to de-init

See Also

rpmsg_rtos_init

3.2.3 struct rpmsg_endpoint∗ rpmsg_rtos_create_ept (struct rpmsg_channel ∗
rp_chnl, unsigned long addr)

This function creates RPMsg endpoint for the RPMsg channel.

RTOS aware version.
Parameters

in rp_chnl Pointer to RPMsg channel
in addr Endpoint src address

Returns

Pointer to endpoint control block

See Also

rpmsg_rtos_destroy_ept

14
RPMsg RTOS Layer User’s Guide

NXP Semiconductors

Function Documentation

3.2.4 void rpmsg_rtos_destroy_ept (struct rpmsg_endpoint ∗ rp_ept)

This function deletes RPMsg endpoint and performs cleanup.

RTOS aware version.
Parameters

in rp_ept Pointer to endpoint to destroy

See Also

rpmsg_rtos_create_ept

3.2.5 int rpmsg_rtos_recv (struct rpmsg_endpoint ∗ ept, void ∗ data, int ∗ len, int
maxlen, unsigned long ∗ src, int timeout_ms)

RTOS receive function - blocking version of the received function that can be called from an RTOS task.

The data is copied from the receive buffer into the user supplied buffer.

This is the "receive with copy" version of the RPMsg receive function. This version is simple to use but
it requires copying data from shared memory into the user space buffer. The user has no obligation or
burden to manage the shared memory buffers.

Parameters

in ept Pointer to the RPMsg endpoint on which data is received
in data Pointer to the user buffer the received data are copied to
out len Pointer to an int variable that will contain the number of bytes actually

copied into the buffer
in maxlen Maximum number of bytes to copy (received buffer size)
out src Pointer to address of the endpoint from which data is received
in timeout_ms Timeout, in milliseconds, to wait for a message. A value of 0 means

don’t wait (non-blocking call). A value of 0xffffffff means wait forever
(blocking call).

Returns

Status of function execution

See Also

rpmsg_rtos_recv_nocopy

NXP Semiconductors
RPMsg RTOS Layer User’s Guide

15

Function Documentation

3.2.6 int rpmsg_rtos_recv_nocopy (struct rpmsg_endpoint ∗ ept, void ∗∗ data, int
∗ len, unsigned long ∗ src, int timeout_ms)

RTOS receive function - blocking version of the received function that can be called from an RTOS task.

The data is NOT copied into the user-app. buffer.

This is the "zero-copy receive" version of the RPMsg receive function. No data is copied. Only the pointer
to the data is returned. This version is fast, but it requires the user to manage buffer allocation. Specifically,
the user must decide when a buffer is no longer in use and make the appropriate API call to free it, see
rpmsg_rtos_recv_nocopy_free().

Parameters

in ept Pointer to the RPMsg endpoint on which data is received
out data Pointer to the RPMsg buffer of the shared memory where the received

data is stored
out len Pointer to an int variable that that will contain the number of valid bytes

in the RPMsg buffer
out src Pointer to address of the endpoint from which data is received
in timeout_ms Timeout, in milliseconds, to wait for a message. A value of 0 means

don’t wait (non-blocking call). A value of 0xffffffff means wait forever
(blocking call).

Returns

Status of function execution

See Also

rpmsg_rtos_recv_nocopy_free
rpmsg_rtos_recv

3.2.7 int rpmsg_rtos_recv_nocopy_free (struct rpmsg_endpoint ∗ ept, void ∗ data
)

This function frees a buffer previously returned by rpmsg_rtos_recv_nocopy().

Once the zero-copy mechanism of receiving data is used, this function has to be called to free a buffer and
to make it available for the next data transfer.

16
RPMsg RTOS Layer User’s Guide

NXP Semiconductors

Function Documentation

Parameters

in ept Pointer to the RPMsg endpoint that has consumed received data
in data Pointer to the RPMsg buffer of the shared memory that has to be freed

Returns

Status of function execution

See Also

rpmsg_rtos_recv_nocopy

3.2.8 void∗ rpmsg_rtos_alloc_tx_buffer (struct rpmsg_endpoint ∗ ept, unsigned
long ∗ size)

Allocates the tx buffer for message payload.

This API can only be called at process context to get the tx buffer in vring. By this way, the application
can directly put its message into the vring tx buffer without copy from an application buffer. It is the
application responsibility to correctly fill the allocated tx buffer by data and passing correct parameters to
the rpmsg_rtos_send_nocopy() function to perform data no-copy-send mechanism.

Parameters

in ept Pointer to the RPMsg endpoint that requests tx buffer allocation
out size Pointer to store tx buffer size

Returns

The tx buffer address on success and NULL on failure

See Also

rpmsg_rtos_send_nocopy

3.2.9 int rpmsg_rtos_send (struct rpmsg_endpoint ∗ ept, void ∗ data, int len,
unsigned long dst)

Sends a message across to the remote processor.

This function sends data of length len to the remote dst address. In case there are no TX buffers available,
the function will block until one becomes available, or a timeout of 15 seconds elapses. When the latter
happens, -ERESTARTSYS is returned.

NXP Semiconductors
RPMsg RTOS Layer User’s Guide

17

Function Documentation

Parameters

in ept Pointer to the RPMsg endpoint
in data Pointer to the application buffer containing data to be sent
in len Size of the data, in bytes, to transmit
in dst Destination address of the message

Returns

0 on success and an appropriate error value on failure

See Also

rpmsg_rtos_send_nocopy

3.2.10 int rpmsg_rtos_send_nocopy (struct rpmsg_endpoint ∗ ept, void ∗ txbuf,
int len, unsigned long dst)

Sends a message in tx buffer allocated by rpmsg_rtos_alloc_tx_buffer() to the remote processor.

This function sends txbuf of length len to the remote dst address. The application has to take the respon-
sibility for:

1. tx buffer allocation (rpmsg_rtos_alloc_tx_buffer())
2. filling the data to be sent into the pre-allocated tx buffer
3. not exceeding the buffer size when filling the data
4. data cache coherency

After the rpmsg_rtos_send_nocopy() function is issued the tx buffer is no more owned by the sending
task and must not be touched any more unless the rpmsg_rtos_send_nocopy() function fails and returns
an error. In that case the application should try to re-issue the rpmsg_rtos_send_nocopy() again and if it
is still not possible to send the message and the application wants to give it up from whatever reasons the
rpmsg_rtos_recv_nocopy_free function could be called, passing the pointer to the tx buffer to be released
as a parameter.

Parameters

in ept Pointer to the RPMsg endpoint
in txbuf Tx buffer with message filled
in len Size of the data, in bytes, to transmit
in dst Destination address of the message

Returns

0 on success and an appropriate error value on failure

18
RPMsg RTOS Layer User’s Guide

NXP Semiconductors

Function Documentation

See Also

rpmsg_rtos_alloc_tx_buffer
rpmsg_rtos_send

NXP Semiconductors
RPMsg RTOS Layer User’s Guide

19

Function Documentation

20
RPMsg RTOS Layer User’s Guide

NXP Semiconductors

Chapter 4
Revision History
This table summarizes revisions to this document.

Revision number Date Substantive changes
0 09/2015 Initial release
0.1 11/2015 Update for Extension layer
1 07/2016 Updates for release

NXP Semiconductors
RPMsg RTOS Layer User’s Guide

21

Document Number: RPMSGRTOSLAYERUG
Rev. 1
07/2016

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: nxp.com/SalesTermsandConditions.

How to Reach Us:
Home Page:
nxp.com

Web Support:
nxp.com/support

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are

the property of their respective owners. ARM, ARM Powered Logo, and Cortex are

registered trademarks of ARM limited (or its subsidiaries) in the EU and/or elsewhere.

All rights reserved.

© 2016 Freescale Semiconductor, Inc.

	RPMsg RTOS Layer User’s Guide
	Chapter 1 RPMsg Component
	Motivation to create RTOS aware API
	Implementation
	Usage
	RPMsg porting sub-layers

	Chapter 2 RPMsg Zero-copy Layer
	Overview
	Function Documentation
	rpmsg_hold_rx_buffer
	rpmsg_release_rx_buffer
	rpmsg_alloc_tx_buffer
	rpmsg_send_offchannel_nocopy
	rpmsg_sendto_nocopy
	rpmsg_send_nocopy

	Chapter 3 RPMsg RTOS Layer
	Overview
	Function Documentation
	rpmsg_rtos_init
	rpmsg_rtos_deinit
	rpmsg_rtos_create_ept
	rpmsg_rtos_destroy_ept
	rpmsg_rtos_recv
	rpmsg_rtos_recv_nocopy
	rpmsg_rtos_recv_nocopy_free
	rpmsg_rtos_alloc_tx_buffer
	rpmsg_rtos_send
	rpmsg_rtos_send_nocopy

	Chapter 4 Revision History

