/* * Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright 2016-2017 NXP * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_ftm.h" /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Gets the instance from the base address * * @param base FTM peripheral base address * * @return The FTM instance */ static uint32_t FTM_GetInstance(FTM_Type *base); /*! * @brief Sets the FTM register PWM synchronization method * * This function will set the necessary bits for the PWM synchronization mode that * user wishes to use. * * @param base FTM peripheral base address * @param syncMethod Syncronization methods to use to update buffered registers. This is a logical * OR of members of the enumeration ::ftm_pwm_sync_method_t */ static void FTM_SetPwmSync(FTM_Type *base, uint32_t syncMethod); /*! * @brief Sets the reload points used as loading points for register update * * This function will set the necessary bits based on what the user wishes to use as loading * points for FTM register update. When using this it is not required to use PWM synchnronization. * * @param base FTM peripheral base address * @param reloadPoints FTM reload points. This is a logical OR of members of the * enumeration ::ftm_reload_point_t */ static void FTM_SetReloadPoints(FTM_Type *base, uint32_t reloadPoints); /******************************************************************************* * Variables ******************************************************************************/ /*! @brief Pointers to FTM bases for each instance. */ static FTM_Type *const s_ftmBases[] = FTM_BASE_PTRS; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /*! @brief Pointers to FTM clocks for each instance. */ static const clock_ip_name_t s_ftmClocks[] = FTM_CLOCKS; #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /******************************************************************************* * Code ******************************************************************************/ static uint32_t FTM_GetInstance(FTM_Type *base) { uint32_t instance; uint32_t ftmArrayCount = (sizeof(s_ftmBases) / sizeof(s_ftmBases[0])); /* Find the instance index from base address mappings. */ for (instance = 0; instance < ftmArrayCount; instance++) { if (s_ftmBases[instance] == base) { break; } } assert(instance < ftmArrayCount); return instance; } static void FTM_SetPwmSync(FTM_Type *base, uint32_t syncMethod) { uint8_t chnlNumber = 0; uint32_t reg = 0, syncReg = 0; syncReg = base->SYNC; /* Enable PWM synchronization of output mask register */ syncReg |= FTM_SYNC_SYNCHOM_MASK; reg = base->COMBINE; for (chnlNumber = 0; chnlNumber < (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2); chnlNumber++) { /* Enable PWM synchronization of registers C(n)V and C(n+1)V */ reg |= (1U << (FTM_COMBINE_SYNCEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlNumber))); } base->COMBINE = reg; reg = base->SYNCONF; /* Use enhanced PWM synchronization method. Use PWM sync to update register values */ reg |= (FTM_SYNCONF_SYNCMODE_MASK | FTM_SYNCONF_CNTINC_MASK | FTM_SYNCONF_INVC_MASK | FTM_SYNCONF_SWOC_MASK); if (syncMethod & FTM_SYNC_SWSYNC_MASK) { /* Enable needed bits for software trigger to update registers with its buffer value */ reg |= (FTM_SYNCONF_SWRSTCNT_MASK | FTM_SYNCONF_SWWRBUF_MASK | FTM_SYNCONF_SWINVC_MASK | FTM_SYNCONF_SWSOC_MASK | FTM_SYNCONF_SWOM_MASK); } if (syncMethod & (FTM_SYNC_TRIG0_MASK | FTM_SYNC_TRIG1_MASK | FTM_SYNC_TRIG2_MASK)) { /* Enable needed bits for hardware trigger to update registers with its buffer value */ reg |= (FTM_SYNCONF_HWRSTCNT_MASK | FTM_SYNCONF_HWWRBUF_MASK | FTM_SYNCONF_HWINVC_MASK | FTM_SYNCONF_HWSOC_MASK | FTM_SYNCONF_HWOM_MASK); /* Enable the appropriate hardware trigger that is used for PWM sync */ if (syncMethod & FTM_SYNC_TRIG0_MASK) { syncReg |= FTM_SYNC_TRIG0_MASK; } if (syncMethod & FTM_SYNC_TRIG1_MASK) { syncReg |= FTM_SYNC_TRIG1_MASK; } if (syncMethod & FTM_SYNC_TRIG2_MASK) { syncReg |= FTM_SYNC_TRIG2_MASK; } } /* Write back values to the SYNC register */ base->SYNC = syncReg; /* Write the PWM synch values to the SYNCONF register */ base->SYNCONF = reg; } static void FTM_SetReloadPoints(FTM_Type *base, uint32_t reloadPoints) { uint32_t chnlNumber = 0; uint32_t reg = 0; /* Need CNTINC bit to be 1 for CNTIN register to update with its buffer value on reload */ base->SYNCONF |= FTM_SYNCONF_CNTINC_MASK; reg = base->COMBINE; for (chnlNumber = 0; chnlNumber < (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2); chnlNumber++) { /* Need SYNCEN bit to be 1 for CnV reg to update with its buffer value on reload */ reg |= (1U << (FTM_COMBINE_SYNCEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlNumber))); } base->COMBINE = reg; /* Set the reload points */ reg = base->PWMLOAD; /* Enable the selected channel match reload points */ reg &= ~((1U << FSL_FEATURE_FTM_CHANNEL_COUNTn(base)) - 1); reg |= (reloadPoints & ((1U << FSL_FEATURE_FTM_CHANNEL_COUNTn(base)) - 1)); #if defined(FSL_FEATURE_FTM_HAS_HALFCYCLE_RELOAD) && (FSL_FEATURE_FTM_HAS_HALFCYCLE_RELOAD) /* Enable half cycle match as a reload point */ if (reloadPoints & kFTM_HalfCycMatch) { reg |= FTM_PWMLOAD_HCSEL_MASK; } else { reg &= ~FTM_PWMLOAD_HCSEL_MASK; } #endif /* FSL_FEATURE_FTM_HAS_HALFCYCLE_RELOAD */ base->PWMLOAD = reg; /* These reload points are used when counter is in up-down counting mode */ reg = base->SYNC; if (reloadPoints & kFTM_CntMax) { /* Reload when counter turns from up to down */ reg |= FTM_SYNC_CNTMAX_MASK; } else { reg &= ~FTM_SYNC_CNTMAX_MASK; } if (reloadPoints & kFTM_CntMin) { /* Reload when counter turns from down to up */ reg |= FTM_SYNC_CNTMIN_MASK; } else { reg &= ~FTM_SYNC_CNTMIN_MASK; } base->SYNC = reg; } status_t FTM_Init(FTM_Type *base, const ftm_config_t *config) { assert(config); uint32_t reg; if (!(config->pwmSyncMode & (FTM_SYNC_TRIG0_MASK | FTM_SYNC_TRIG1_MASK | FTM_SYNC_TRIG2_MASK | FTM_SYNC_SWSYNC_MASK))) { /* Invalid PWM sync mode */ return kStatus_Fail; } #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Ungate the FTM clock*/ CLOCK_EnableClock(s_ftmClocks[FTM_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /* Configure the fault mode, enable FTM mode and disable write protection */ base->MODE = FTM_MODE_FAULTM(config->faultMode) | FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK; /* Configure the update mechanism for buffered registers */ FTM_SetPwmSync(base, config->pwmSyncMode); /* Setup intermediate register reload points */ FTM_SetReloadPoints(base, config->reloadPoints); /* Set the clock prescale factor */ base->SC = FTM_SC_PS(config->prescale); /* Setup the counter operation */ base->CONF = (FTM_CONF_BDMMODE(config->bdmMode) | FTM_CONF_GTBEEN(config->useGlobalTimeBase)); /* Initial state of channel output */ base->OUTINIT = config->chnlInitState; /* Channel polarity */ base->POL = config->chnlPolarity; /* Set the external trigger sources */ base->EXTTRIG = config->extTriggers; #if defined(FSL_FEATURE_FTM_HAS_RELOAD_INITIALIZATION_TRIGGER) && (FSL_FEATURE_FTM_HAS_RELOAD_INITIALIZATION_TRIGGER) if (config->extTriggers & kFTM_ReloadInitTrigger) { base->CONF |= FTM_CONF_ITRIGR_MASK; } else { base->CONF &= ~FTM_CONF_ITRIGR_MASK; } #endif /* FSL_FEATURE_FTM_HAS_RELOAD_INITIALIZATION_TRIGGER */ /* FTM deadtime insertion control */ base->DEADTIME = (0u | #if defined(FSL_FEATURE_FTM_HAS_EXTENDED_DEADTIME_VALUE) && (FSL_FEATURE_FTM_HAS_EXTENDED_DEADTIME_VALUE) /* Has extended deadtime value register) */ FTM_DEADTIME_DTVALEX(config->deadTimeValue >> 6) | #endif /* FSL_FEATURE_FTM_HAS_EXTENDED_DEADTIME_VALUE */ FTM_DEADTIME_DTPS(config->deadTimePrescale) | FTM_DEADTIME_DTVAL(config->deadTimeValue)); /* FTM fault filter value */ reg = base->FLTCTRL; reg &= ~FTM_FLTCTRL_FFVAL_MASK; reg |= FTM_FLTCTRL_FFVAL(config->faultFilterValue); base->FLTCTRL = reg; return kStatus_Success; } void FTM_Deinit(FTM_Type *base) { /* Set clock source to none to disable counter */ base->SC &= ~(FTM_SC_CLKS_MASK); #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Gate the FTM clock */ CLOCK_DisableClock(s_ftmClocks[FTM_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ } void FTM_GetDefaultConfig(ftm_config_t *config) { assert(config); /* Divide FTM clock by 1 */ config->prescale = kFTM_Prescale_Divide_1; /* FTM behavior in BDM mode */ config->bdmMode = kFTM_BdmMode_0; /* Software trigger will be used to update registers */ config->pwmSyncMode = kFTM_SoftwareTrigger; /* No intermediate register load */ config->reloadPoints = 0; /* Fault control disabled for all channels */ config->faultMode = kFTM_Fault_Disable; /* Disable the fault filter */ config->faultFilterValue = 0; /* Divide the system clock by 1 */ config->deadTimePrescale = kFTM_Deadtime_Prescale_1; /* No counts are inserted */ config->deadTimeValue = 0; /* No external trigger */ config->extTriggers = 0; /* Initialization value is 0 for all channels */ config->chnlInitState = 0; /* Active high polarity for all channels */ config->chnlPolarity = 0; /* Use internal FTM counter as timebase */ config->useGlobalTimeBase = false; } status_t FTM_SetupPwm(FTM_Type *base, const ftm_chnl_pwm_signal_param_t *chnlParams, uint8_t numOfChnls, ftm_pwm_mode_t mode, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz) { assert(chnlParams); assert(srcClock_Hz); assert(pwmFreq_Hz); assert(numOfChnls); uint32_t mod, reg; uint32_t ftmClock = (srcClock_Hz / (1U << (base->SC & FTM_SC_PS_MASK))); uint16_t cnv, cnvFirstEdge; uint8_t i; switch (mode) { case kFTM_EdgeAlignedPwm: case kFTM_CombinedPwm: base->SC &= ~FTM_SC_CPWMS_MASK; mod = (ftmClock / pwmFreq_Hz) - 1; break; case kFTM_CenterAlignedPwm: base->SC |= FTM_SC_CPWMS_MASK; mod = ftmClock / (pwmFreq_Hz * 2); break; default: return kStatus_Fail; } /* Return an error in case we overflow the registers, probably would require changing * clock source to get the desired frequency */ if (mod > 65535U) { return kStatus_Fail; } /* Set the PWM period */ base->MOD = mod; /* Setup each FTM channel */ for (i = 0; i < numOfChnls; i++) { /* Return error if requested dutycycle is greater than the max allowed */ if (chnlParams->dutyCyclePercent > 100) { return kStatus_Fail; } if ((mode == kFTM_EdgeAlignedPwm) || (mode == kFTM_CenterAlignedPwm)) { /* Clear the current mode and edge level bits */ reg = base->CONTROLS[chnlParams->chnlNumber].CnSC; reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK); /* Setup the active level */ reg |= (uint32_t)(chnlParams->level << FTM_CnSC_ELSA_SHIFT); /* Edge-aligned mode needs MSB to be 1, don't care for Center-aligned mode */ reg |= FTM_CnSC_MSB(1U); /* Update the mode and edge level */ base->CONTROLS[chnlParams->chnlNumber].CnSC = reg; if (chnlParams->dutyCyclePercent == 0) { /* Signal stays low */ cnv = 0; } else { cnv = (mod * chnlParams->dutyCyclePercent) / 100; /* For 100% duty cycle */ if (cnv >= mod) { cnv = mod + 1; } } base->CONTROLS[chnlParams->chnlNumber].CnV = cnv; #if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) /* Set to output mode */ FTM_SetPwmOutputEnable(base, chnlParams->chnlNumber, true); #endif } else { /* This check is added for combined mode as the channel number should be the pair number */ if (chnlParams->chnlNumber >= (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2)) { return kStatus_Fail; } /* Return error if requested value is greater than the max allowed */ if (chnlParams->firstEdgeDelayPercent > 100) { return kStatus_Fail; } /* Configure delay of the first edge */ if (chnlParams->firstEdgeDelayPercent == 0) { /* No delay for the first edge */ cnvFirstEdge = 0; } else { cnvFirstEdge = (mod * chnlParams->firstEdgeDelayPercent) / 100; } /* Configure dutycycle */ if (chnlParams->dutyCyclePercent == 0) { /* Signal stays low */ cnv = 0; cnvFirstEdge = 0; } else { cnv = (mod * chnlParams->dutyCyclePercent) / 100; /* For 100% duty cycle */ if (cnv >= mod) { cnv = mod + 1; } } /* Clear the current mode and edge level bits for channel n */ reg = base->CONTROLS[chnlParams->chnlNumber * 2].CnSC; reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK); /* Setup the active level for channel n */ reg |= (uint32_t)(chnlParams->level << FTM_CnSC_ELSA_SHIFT); /* Update the mode and edge level for channel n */ base->CONTROLS[chnlParams->chnlNumber * 2].CnSC = reg; /* Clear the current mode and edge level bits for channel n + 1 */ reg = base->CONTROLS[(chnlParams->chnlNumber * 2) + 1].CnSC; reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK); /* Setup the active level for channel n + 1 */ reg |= (uint32_t)(chnlParams->level << FTM_CnSC_ELSA_SHIFT); /* Update the mode and edge level for channel n + 1*/ base->CONTROLS[(chnlParams->chnlNumber * 2) + 1].CnSC = reg; /* Set the combine bit for the channel pair */ base->COMBINE |= (1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlParams->chnlNumber))); /* Set the channel pair values */ base->CONTROLS[chnlParams->chnlNumber * 2].CnV = cnvFirstEdge; base->CONTROLS[(chnlParams->chnlNumber * 2) + 1].CnV = cnvFirstEdge + cnv; #if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) /* Set to output mode */ FTM_SetPwmOutputEnable(base, (ftm_chnl_t)((uint8_t)chnlParams->chnlNumber * 2), true); FTM_SetPwmOutputEnable(base, (ftm_chnl_t)((uint8_t)chnlParams->chnlNumber * 2 + 1), true); #endif } chnlParams++; } return kStatus_Success; } void FTM_UpdatePwmDutycycle(FTM_Type *base, ftm_chnl_t chnlNumber, ftm_pwm_mode_t currentPwmMode, uint8_t dutyCyclePercent) { uint16_t cnv, cnvFirstEdge = 0, mod; mod = base->MOD; if ((currentPwmMode == kFTM_EdgeAlignedPwm) || (currentPwmMode == kFTM_CenterAlignedPwm)) { cnv = (mod * dutyCyclePercent) / 100; /* For 100% duty cycle */ if (cnv >= mod) { cnv = mod + 1; } base->CONTROLS[chnlNumber].CnV = cnv; } else { /* This check is added for combined mode as the channel number should be the pair number */ if (chnlNumber >= (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2)) { return; } cnv = (mod * dutyCyclePercent) / 100; cnvFirstEdge = base->CONTROLS[chnlNumber * 2].CnV; /* For 100% duty cycle */ if (cnv >= mod) { cnv = mod + 1; } base->CONTROLS[(chnlNumber * 2) + 1].CnV = cnvFirstEdge + cnv; } } void FTM_UpdateChnlEdgeLevelSelect(FTM_Type *base, ftm_chnl_t chnlNumber, uint8_t level) { uint32_t reg = base->CONTROLS[chnlNumber].CnSC; /* Clear the field and write the new level value */ reg &= ~(FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK); reg |= ((uint32_t)level << FTM_CnSC_ELSA_SHIFT) & (FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK); base->CONTROLS[chnlNumber].CnSC = reg; } void FTM_SetupInputCapture(FTM_Type *base, ftm_chnl_t chnlNumber, ftm_input_capture_edge_t captureMode, uint32_t filterValue) { uint32_t reg; /* Clear the combine bit for the channel pair */ base->COMBINE &= ~(1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1)))); /* Clear the dual edge capture mode because it's it's higher priority */ base->COMBINE &= ~(1U << (FTM_COMBINE_DECAPEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1)))); /* Clear the quadrature decoder mode beacause it's higher priority */ base->QDCTRL &= ~FTM_QDCTRL_QUADEN_MASK; reg = base->CONTROLS[chnlNumber].CnSC; reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK); reg |= captureMode; /* Set the requested input capture mode */ base->CONTROLS[chnlNumber].CnSC = reg; /* Input filter available only for channels 0, 1, 2, 3 */ if (chnlNumber < kFTM_Chnl_4) { reg = base->FILTER; reg &= ~(FTM_FILTER_CH0FVAL_MASK << (FTM_FILTER_CH1FVAL_SHIFT * chnlNumber)); reg |= (filterValue << (FTM_FILTER_CH1FVAL_SHIFT * chnlNumber)); base->FILTER = reg; } #if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) /* Set to input mode */ FTM_SetPwmOutputEnable(base, chnlNumber, false); #endif } void FTM_SetupOutputCompare(FTM_Type *base, ftm_chnl_t chnlNumber, ftm_output_compare_mode_t compareMode, uint32_t compareValue) { uint32_t reg; /* Clear the combine bit for the channel pair */ base->COMBINE &= ~(1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1)))); /* Clear the dual edge capture mode because it's it's higher priority */ base->COMBINE &= ~(1U << (FTM_COMBINE_DECAPEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1)))); /* Clear the quadrature decoder mode beacause it's higher priority */ base->QDCTRL &= ~FTM_QDCTRL_QUADEN_MASK; reg = base->CONTROLS[chnlNumber].CnSC; reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK); reg |= compareMode; /* Setup the channel output behaviour when a match occurs with the compare value */ base->CONTROLS[chnlNumber].CnSC = reg; /* Set output on match to the requested level */ base->CONTROLS[chnlNumber].CnV = compareValue; #if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) /* Set to output mode */ FTM_SetPwmOutputEnable(base, chnlNumber, true); #endif } void FTM_SetupDualEdgeCapture(FTM_Type *base, ftm_chnl_t chnlPairNumber, const ftm_dual_edge_capture_param_t *edgeParam, uint32_t filterValue) { assert(edgeParam); uint32_t reg; reg = base->COMBINE; /* Clear the combine bit for the channel pair */ reg &= ~(1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlPairNumber))); /* Enable the DECAPEN bit */ reg |= (1U << (FTM_COMBINE_DECAPEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlPairNumber))); reg |= (1U << (FTM_COMBINE_DECAP0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlPairNumber))); base->COMBINE = reg; /* Setup the edge detection from channel n and n + 1 */ reg = base->CONTROLS[chnlPairNumber * 2].CnSC; reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK); reg |= ((uint32_t)edgeParam->mode | (uint32_t)edgeParam->currChanEdgeMode); base->CONTROLS[chnlPairNumber * 2].CnSC = reg; reg = base->CONTROLS[(chnlPairNumber * 2) + 1].CnSC; reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK); reg |= ((uint32_t)edgeParam->mode | (uint32_t)edgeParam->nextChanEdgeMode); base->CONTROLS[(chnlPairNumber * 2) + 1].CnSC = reg; /* Input filter available only for channels 0, 1, 2, 3 */ if (chnlPairNumber < kFTM_Chnl_4) { reg = base->FILTER; reg &= ~(FTM_FILTER_CH0FVAL_MASK << (FTM_FILTER_CH1FVAL_SHIFT * chnlPairNumber)); reg |= (filterValue << (FTM_FILTER_CH1FVAL_SHIFT * chnlPairNumber)); base->FILTER = reg; } #if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) /* Set to input mode */ FTM_SetPwmOutputEnable(base, chnlPairNumber, false); #endif } void FTM_SetupQuadDecode(FTM_Type *base, const ftm_phase_params_t *phaseAParams, const ftm_phase_params_t *phaseBParams, ftm_quad_decode_mode_t quadMode) { assert(phaseAParams); assert(phaseBParams); uint32_t reg; /* Set Phase A filter value if phase filter is enabled */ if (phaseAParams->enablePhaseFilter) { reg = base->FILTER; reg &= ~(FTM_FILTER_CH0FVAL_MASK); reg |= FTM_FILTER_CH0FVAL(phaseAParams->phaseFilterVal); base->FILTER = reg; } /* Set Phase B filter value if phase filter is enabled */ if (phaseBParams->enablePhaseFilter) { reg = base->FILTER; reg &= ~(FTM_FILTER_CH1FVAL_MASK); reg |= FTM_FILTER_CH1FVAL(phaseBParams->phaseFilterVal); base->FILTER = reg; } /* Set Quadrature decode properties */ reg = base->QDCTRL; reg &= ~(FTM_QDCTRL_QUADMODE_MASK | FTM_QDCTRL_PHAFLTREN_MASK | FTM_QDCTRL_PHBFLTREN_MASK | FTM_QDCTRL_PHAPOL_MASK | FTM_QDCTRL_PHBPOL_MASK); reg |= (FTM_QDCTRL_QUADMODE(quadMode) | FTM_QDCTRL_PHAFLTREN(phaseAParams->enablePhaseFilter) | FTM_QDCTRL_PHBFLTREN(phaseBParams->enablePhaseFilter) | FTM_QDCTRL_PHAPOL(phaseAParams->phasePolarity) | FTM_QDCTRL_PHBPOL(phaseBParams->phasePolarity)); base->QDCTRL = reg; /* Enable Quad decode */ base->QDCTRL |= FTM_QDCTRL_QUADEN_MASK; } void FTM_SetupFault(FTM_Type *base, ftm_fault_input_t faultNumber, const ftm_fault_param_t *faultParams) { assert(faultParams); uint32_t reg; reg = base->FLTCTRL; if (faultParams->enableFaultInput) { /* Enable the fault input */ reg |= (FTM_FLTCTRL_FAULT0EN_MASK << faultNumber); } else { /* Disable the fault input */ reg &= ~(FTM_FLTCTRL_FAULT0EN_MASK << faultNumber); } if (faultParams->useFaultFilter) { /* Enable the fault filter */ reg |= (FTM_FLTCTRL_FFLTR0EN_MASK << (FTM_FLTCTRL_FFLTR0EN_SHIFT + faultNumber)); } else { /* Disable the fault filter */ reg &= ~(FTM_FLTCTRL_FFLTR0EN_MASK << (FTM_FLTCTRL_FFLTR0EN_SHIFT + faultNumber)); } base->FLTCTRL = reg; if (faultParams->faultLevel) { /* Active low polarity for the fault input pin */ base->FLTPOL |= (1U << faultNumber); } else { /* Active high polarity for the fault input pin */ base->FLTPOL &= ~(1U << faultNumber); } } void FTM_EnableInterrupts(FTM_Type *base, uint32_t mask) { uint32_t chnlInts = (mask & 0xFFU); uint8_t chnlNumber = 0; /* Enable the timer overflow interrupt */ if (mask & kFTM_TimeOverflowInterruptEnable) { base->SC |= FTM_SC_TOIE_MASK; } /* Enable the fault interrupt */ if (mask & kFTM_FaultInterruptEnable) { base->MODE |= FTM_MODE_FAULTIE_MASK; } #if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) /* Enable the reload interrupt available only on certain SoC's */ if (mask & kFTM_ReloadInterruptEnable) { base->SC |= FTM_SC_RIE_MASK; } #endif /* Enable the channel interrupts */ while (chnlInts) { if (chnlInts & 0x1) { base->CONTROLS[chnlNumber].CnSC |= FTM_CnSC_CHIE_MASK; } chnlNumber++; chnlInts = chnlInts >> 1U; } } void FTM_DisableInterrupts(FTM_Type *base, uint32_t mask) { uint32_t chnlInts = (mask & 0xFF); uint8_t chnlNumber = 0; /* Disable the timer overflow interrupt */ if (mask & kFTM_TimeOverflowInterruptEnable) { base->SC &= ~FTM_SC_TOIE_MASK; } /* Disable the fault interrupt */ if (mask & kFTM_FaultInterruptEnable) { base->MODE &= ~FTM_MODE_FAULTIE_MASK; } #if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) /* Disable the reload interrupt available only on certain SoC's */ if (mask & kFTM_ReloadInterruptEnable) { base->SC &= ~FTM_SC_RIE_MASK; } #endif /* Disable the channel interrupts */ while (chnlInts) { if (chnlInts & 0x1) { base->CONTROLS[chnlNumber].CnSC &= ~FTM_CnSC_CHIE_MASK; } chnlNumber++; chnlInts = chnlInts >> 1U; } } uint32_t FTM_GetEnabledInterrupts(FTM_Type *base) { uint32_t enabledInterrupts = 0; int8_t chnlCount = FSL_FEATURE_FTM_CHANNEL_COUNTn(base); /* The CHANNEL_COUNT macro returns -1 if it cannot match the FTM instance */ assert(chnlCount != -1); /* Check if timer overflow interrupt is enabled */ if (base->SC & FTM_SC_TOIE_MASK) { enabledInterrupts |= kFTM_TimeOverflowInterruptEnable; } /* Check if fault interrupt is enabled */ if (base->MODE & FTM_MODE_FAULTIE_MASK) { enabledInterrupts |= kFTM_FaultInterruptEnable; } #if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) /* Check if the reload interrupt is enabled */ if (base->SC & FTM_SC_RIE_MASK) { enabledInterrupts |= kFTM_ReloadInterruptEnable; } #endif /* Check if the channel interrupts are enabled */ while (chnlCount > 0) { chnlCount--; if (base->CONTROLS[chnlCount].CnSC & FTM_CnSC_CHIE_MASK) { enabledInterrupts |= (1U << chnlCount); } } return enabledInterrupts; } uint32_t FTM_GetStatusFlags(FTM_Type *base) { uint32_t statusFlags = 0; /* Check the timer flag */ if (base->SC & FTM_SC_TOF_MASK) { statusFlags |= kFTM_TimeOverflowFlag; } /* Check fault flag */ if (base->FMS & FTM_FMS_FAULTF_MASK) { statusFlags |= kFTM_FaultFlag; } /* Check channel trigger flag */ if (base->EXTTRIG & FTM_EXTTRIG_TRIGF_MASK) { statusFlags |= kFTM_ChnlTriggerFlag; } #if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) /* Check reload flag */ if (base->SC & FTM_SC_RF_MASK) { statusFlags |= kFTM_ReloadFlag; } #endif /* Lower 8 bits contain the channel status flags */ statusFlags |= (base->STATUS & 0xFFU); return statusFlags; } void FTM_ClearStatusFlags(FTM_Type *base, uint32_t mask) { /* Clear the timer overflow flag by writing a 0 to the bit while it is set */ if (mask & kFTM_TimeOverflowFlag) { base->SC &= ~FTM_SC_TOF_MASK; } /* Clear fault flag by writing a 0 to the bit while it is set */ if (mask & kFTM_FaultFlag) { base->FMS &= ~FTM_FMS_FAULTF_MASK; } /* Clear channel trigger flag */ if (mask & kFTM_ChnlTriggerFlag) { base->EXTTRIG &= ~FTM_EXTTRIG_TRIGF_MASK; } #if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) /* Check reload flag by writing a 0 to the bit while it is set */ if (mask & kFTM_ReloadFlag) { base->SC &= ~FTM_SC_RF_MASK; } #endif /* Clear the channel status flags by writing a 0 to the bit */ base->STATUS &= ~(mask & 0xFFU); }