summaryrefslogtreecommitdiff
path: root/freertos/include/queue.h
blob: 30be360136b7b9a96ec0edd78acb89819d52cf33 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
/*
    FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
    All rights reserved

    VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.

    This file is part of the FreeRTOS distribution.

    FreeRTOS is free software; you can redistribute it and/or modify it under
    the terms of the GNU General Public License (version 2) as published by the
    Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.

    ***************************************************************************
    >>!   NOTE: The modification to the GPL is included to allow you to     !<<
    >>!   distribute a combined work that includes FreeRTOS without being   !<<
    >>!   obliged to provide the source code for proprietary components     !<<
    >>!   outside of the FreeRTOS kernel.                                   !<<
    ***************************************************************************

    FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
    WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
    FOR A PARTICULAR PURPOSE.  Full license text is available on the following
    link: http://www.freertos.org/a00114.html

    ***************************************************************************
     *                                                                       *
     *    FreeRTOS provides completely free yet professionally developed,    *
     *    robust, strictly quality controlled, supported, and cross          *
     *    platform software that is more than just the market leader, it     *
     *    is the industry's de facto standard.                               *
     *                                                                       *
     *    Help yourself get started quickly while simultaneously helping     *
     *    to support the FreeRTOS project by purchasing a FreeRTOS           *
     *    tutorial book, reference manual, or both:                          *
     *    http://www.FreeRTOS.org/Documentation                              *
     *                                                                       *
    ***************************************************************************

    http://www.FreeRTOS.org/FAQHelp.html - Having a problem?  Start by reading
    the FAQ page "My application does not run, what could be wrong?".  Have you
    defined configASSERT()?

    http://www.FreeRTOS.org/support - In return for receiving this top quality
    embedded software for free we request you assist our global community by
    participating in the support forum.

    http://www.FreeRTOS.org/training - Investing in training allows your team to
    be as productive as possible as early as possible.  Now you can receive
    FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
    Ltd, and the world's leading authority on the world's leading RTOS.

    http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
    including FreeRTOS+Trace - an indispensable productivity tool, a DOS
    compatible FAT file system, and our tiny thread aware UDP/IP stack.

    http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
    Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.

    http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
    Integrity Systems ltd. to sell under the OpenRTOS brand.  Low cost OpenRTOS
    licenses offer ticketed support, indemnification and commercial middleware.

    http://www.SafeRTOS.com - High Integrity Systems also provide a safety
    engineered and independently SIL3 certified version for use in safety and
    mission critical applications that require provable dependability.

    1 tab == 4 spaces!
*/


#ifndef QUEUE_H
#define QUEUE_H

#ifndef INC_FREERTOS_H
	#error "include FreeRTOS.h" must appear in source files before "include queue.h"
#endif

#ifdef __cplusplus
extern "C" {
#endif


/**
 * Type by which queues are referenced.  For example, a call to xQueueCreate()
 * returns an QueueHandle_t variable that can then be used as a parameter to
 * xQueueSend(), xQueueReceive(), etc.
 */
typedef void * QueueHandle_t;

/**
 * Type by which queue sets are referenced.  For example, a call to
 * xQueueCreateSet() returns an xQueueSet variable that can then be used as a
 * parameter to xQueueSelectFromSet(), xQueueAddToSet(), etc.
 */
typedef void * QueueSetHandle_t;

/**
 * Queue sets can contain both queues and semaphores, so the
 * QueueSetMemberHandle_t is defined as a type to be used where a parameter or
 * return value can be either an QueueHandle_t or an SemaphoreHandle_t.
 */
typedef void * QueueSetMemberHandle_t;

/* For internal use only. */
#define	queueSEND_TO_BACK		( ( BaseType_t ) 0 )
#define	queueSEND_TO_FRONT		( ( BaseType_t ) 1 )
#define queueOVERWRITE			( ( BaseType_t ) 2 )

/* For internal use only.  These definitions *must* match those in queue.c. */
#define queueQUEUE_TYPE_BASE				( ( uint8_t ) 0U )
#define queueQUEUE_TYPE_SET					( ( uint8_t ) 0U )
#define queueQUEUE_TYPE_MUTEX 				( ( uint8_t ) 1U )
#define queueQUEUE_TYPE_COUNTING_SEMAPHORE	( ( uint8_t ) 2U )
#define queueQUEUE_TYPE_BINARY_SEMAPHORE	( ( uint8_t ) 3U )
#define queueQUEUE_TYPE_RECURSIVE_MUTEX		( ( uint8_t ) 4U )

/**
 * queue. h
 * <pre>
 QueueHandle_t xQueueCreate(
							  UBaseType_t uxQueueLength,
							  UBaseType_t uxItemSize
						  );
 * </pre>
 *
 * Creates a new queue instance, and returns a handle by which the new queue
 * can be referenced.
 *
 * Internally, within the FreeRTOS implementation, queues use two blocks of
 * memory.  The first block is used to hold the queue's data structures.  The
 * second block is used to hold items placed into the queue.  If a queue is
 * created using xQueueCreate() then both blocks of memory are automatically
 * dynamically allocated inside the xQueueCreate() function.  (see
 * http://www.freertos.org/a00111.html).  If a queue is created using
 * xQueueCreateStatic() then the application writer must provide the memory that
 * will get used by the queue.  xQueueCreateStatic() therefore allows a queue to
 * be created without using any dynamic memory allocation.
 *
 * http://www.FreeRTOS.org/Embedded-RTOS-Queues.html
 *
 * @param uxQueueLength The maximum number of items that the queue can contain.
 *
 * @param uxItemSize The number of bytes each item in the queue will require.
 * Items are queued by copy, not by reference, so this is the number of bytes
 * that will be copied for each posted item.  Each item on the queue must be
 * the same size.
 *
 * @return If the queue is successfully create then a handle to the newly
 * created queue is returned.  If the queue cannot be created then 0 is
 * returned.
 *
 * Example usage:
   <pre>
 struct AMessage
 {
	char ucMessageID;
	char ucData[ 20 ];
 };

 void vATask( void *pvParameters )
 {
 QueueHandle_t xQueue1, xQueue2;

	// Create a queue capable of containing 10 uint32_t values.
	xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
	if( xQueue1 == 0 )
	{
		// Queue was not created and must not be used.
	}

	// Create a queue capable of containing 10 pointers to AMessage structures.
	// These should be passed by pointer as they contain a lot of data.
	xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
	if( xQueue2 == 0 )
	{
		// Queue was not created and must not be used.
	}

	// ... Rest of task code.
 }
 </pre>
 * \defgroup xQueueCreate xQueueCreate
 * \ingroup QueueManagement
 */
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
	#define xQueueCreate( uxQueueLength, uxItemSize ) xQueueGenericCreate( ( uxQueueLength ), ( uxItemSize ), ( queueQUEUE_TYPE_BASE ) )
#endif

/**
 * queue. h
 * <pre>
 QueueHandle_t xQueueCreateStatic(
							  UBaseType_t uxQueueLength,
							  UBaseType_t uxItemSize,
							  uint8_t *pucQueueStorageBuffer,
							  StaticQueue_t *pxQueueBuffer
						  );
 * </pre>
 *
 * Creates a new queue instance, and returns a handle by which the new queue
 * can be referenced.
 *
 * Internally, within the FreeRTOS implementation, queues use two blocks of
 * memory.  The first block is used to hold the queue's data structures.  The
 * second block is used to hold items placed into the queue.  If a queue is
 * created using xQueueCreate() then both blocks of memory are automatically
 * dynamically allocated inside the xQueueCreate() function.  (see
 * http://www.freertos.org/a00111.html).  If a queue is created using
 * xQueueCreateStatic() then the application writer must provide the memory that
 * will get used by the queue.  xQueueCreateStatic() therefore allows a queue to
 * be created without using any dynamic memory allocation.
 *
 * http://www.FreeRTOS.org/Embedded-RTOS-Queues.html
 *
 * @param uxQueueLength The maximum number of items that the queue can contain.
 *
 * @param uxItemSize The number of bytes each item in the queue will require.
 * Items are queued by copy, not by reference, so this is the number of bytes
 * that will be copied for each posted item.  Each item on the queue must be
 * the same size.
 *
 * @param pucQueueStorageBuffer If uxItemSize is not zero then
 * pucQueueStorageBuffer must point to a uint8_t array that is at least large
 * enough to hold the maximum number of items that can be in the queue at any
 * one time - which is ( uxQueueLength * uxItemsSize ) bytes.  If uxItemSize is
 * zero then pucQueueStorageBuffer can be NULL.
 *
 * @param pxQueueBuffer Must point to a variable of type StaticQueue_t, which
 * will be used to hold the queue's data structure.
 *
 * @return If the queue is created then a handle to the created queue is
 * returned.  If pxQueueBuffer is NULL then NULL is returned.
 *
 * Example usage:
   <pre>
 struct AMessage
 {
	char ucMessageID;
	char ucData[ 20 ];
 };

 #define QUEUE_LENGTH 10
 #define ITEM_SIZE sizeof( uint32_t )

 // xQueueBuffer will hold the queue structure.
 StaticQueue_t xQueueBuffer;

 // ucQueueStorage will hold the items posted to the queue.  Must be at least
 // [(queue length) * ( queue item size)] bytes long.
 uint8_t ucQueueStorage[ QUEUE_LENGTH * ITEM_SIZE ];

 void vATask( void *pvParameters )
 {
 QueueHandle_t xQueue1;

	// Create a queue capable of containing 10 uint32_t values.
	xQueue1 = xQueueCreate( QUEUE_LENGTH, // The number of items the queue can hold.
							ITEM_SIZE	  // The size of each item in the queue
							&( ucQueueStorage[ 0 ] ), // The buffer that will hold the items in the queue.
							&xQueueBuffer ); // The buffer that will hold the queue structure.

	// The queue is guaranteed to be created successfully as no dynamic memory
	// allocation is used.  Therefore xQueue1 is now a handle to a valid queue.

	// ... Rest of task code.
 }
 </pre>
 * \defgroup xQueueCreateStatic xQueueCreateStatic
 * \ingroup QueueManagement
 */
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
	#define xQueueCreateStatic( uxQueueLength, uxItemSize, pucQueueStorage, pxQueueBuffer ) xQueueGenericCreateStatic( ( uxQueueLength ), ( uxItemSize ), ( pucQueueStorage ), ( pxQueueBuffer ), ( queueQUEUE_TYPE_BASE ) )
#endif /* configSUPPORT_STATIC_ALLOCATION */

/**
 * queue. h
 * <pre>
 BaseType_t xQueueSendToToFront(
								   QueueHandle_t	xQueue,
								   const void		*pvItemToQueue,
								   TickType_t		xTicksToWait
							   );
 * </pre>
 *
 * This is a macro that calls xQueueGenericSend().
 *
 * Post an item to the front of a queue.  The item is queued by copy, not by
 * reference.  This function must not be called from an interrupt service
 * routine.  See xQueueSendFromISR () for an alternative which may be used
 * in an ISR.
 *
 * @param xQueue The handle to the queue on which the item is to be posted.
 *
 * @param pvItemToQueue A pointer to the item that is to be placed on the
 * queue.  The size of the items the queue will hold was defined when the
 * queue was created, so this many bytes will be copied from pvItemToQueue
 * into the queue storage area.
 *
 * @param xTicksToWait The maximum amount of time the task should block
 * waiting for space to become available on the queue, should it already
 * be full.  The call will return immediately if this is set to 0 and the
 * queue is full.  The time is defined in tick periods so the constant
 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
 *
 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
 *
 * Example usage:
   <pre>
 struct AMessage
 {
	char ucMessageID;
	char ucData[ 20 ];
 } xMessage;

 uint32_t ulVar = 10UL;

 void vATask( void *pvParameters )
 {
 QueueHandle_t xQueue1, xQueue2;
 struct AMessage *pxMessage;

	// Create a queue capable of containing 10 uint32_t values.
	xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );

	// Create a queue capable of containing 10 pointers to AMessage structures.
	// These should be passed by pointer as they contain a lot of data.
	xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );

	// ...

	if( xQueue1 != 0 )
	{
		// Send an uint32_t.  Wait for 10 ticks for space to become
		// available if necessary.
		if( xQueueSendToFront( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
		{
			// Failed to post the message, even after 10 ticks.
		}
	}

	if( xQueue2 != 0 )
	{
		// Send a pointer to a struct AMessage object.  Don't block if the
		// queue is already full.
		pxMessage = & xMessage;
		xQueueSendToFront( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
	}

	// ... Rest of task code.
 }
 </pre>
 * \defgroup xQueueSend xQueueSend
 * \ingroup QueueManagement
 */
#define xQueueSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_FRONT )

/**
 * queue. h
 * <pre>
 BaseType_t xQueueSendToBack(
								   QueueHandle_t	xQueue,
								   const void		*pvItemToQueue,
								   TickType_t		xTicksToWait
							   );
 * </pre>
 *
 * This is a macro that calls xQueueGenericSend().
 *
 * Post an item to the back of a queue.  The item is queued by copy, not by
 * reference.  This function must not be called from an interrupt service
 * routine.  See xQueueSendFromISR () for an alternative which may be used
 * in an ISR.
 *
 * @param xQueue The handle to the queue on which the item is to be posted.
 *
 * @param pvItemToQueue A pointer to the item that is to be placed on the
 * queue.  The size of the items the queue will hold was defined when the
 * queue was created, so this many bytes will be copied from pvItemToQueue
 * into the queue storage area.
 *
 * @param xTicksToWait The maximum amount of time the task should block
 * waiting for space to become available on the queue, should it already
 * be full.  The call will return immediately if this is set to 0 and the queue
 * is full.  The  time is defined in tick periods so the constant
 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
 *
 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
 *
 * Example usage:
   <pre>
 struct AMessage
 {
	char ucMessageID;
	char ucData[ 20 ];
 } xMessage;

 uint32_t ulVar = 10UL;

 void vATask( void *pvParameters )
 {
 QueueHandle_t xQueue1, xQueue2;
 struct AMessage *pxMessage;

	// Create a queue capable of containing 10 uint32_t values.
	xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );

	// Create a queue capable of containing 10 pointers to AMessage structures.
	// These should be passed by pointer as they contain a lot of data.
	xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );

	// ...

	if( xQueue1 != 0 )
	{
		// Send an uint32_t.  Wait for 10 ticks for space to become
		// available if necessary.
		if( xQueueSendToBack( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
		{
			// Failed to post the message, even after 10 ticks.
		}
	}

	if( xQueue2 != 0 )
	{
		// Send a pointer to a struct AMessage object.  Don't block if the
		// queue is already full.
		pxMessage = & xMessage;
		xQueueSendToBack( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
	}

	// ... Rest of task code.
 }
 </pre>
 * \defgroup xQueueSend xQueueSend
 * \ingroup QueueManagement
 */
#define xQueueSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )

/**
 * queue. h
 * <pre>
 BaseType_t xQueueSend(
							  QueueHandle_t xQueue,
							  const void * pvItemToQueue,
							  TickType_t xTicksToWait
						 );
 * </pre>
 *
 * This is a macro that calls xQueueGenericSend().  It is included for
 * backward compatibility with versions of FreeRTOS.org that did not
 * include the xQueueSendToFront() and xQueueSendToBack() macros.  It is
 * equivalent to xQueueSendToBack().
 *
 * Post an item on a queue.  The item is queued by copy, not by reference.
 * This function must not be called from an interrupt service routine.
 * See xQueueSendFromISR () for an alternative which may be used in an ISR.
 *
 * @param xQueue The handle to the queue on which the item is to be posted.
 *
 * @param pvItemToQueue A pointer to the item that is to be placed on the
 * queue.  The size of the items the queue will hold was defined when the
 * queue was created, so this many bytes will be copied from pvItemToQueue
 * into the queue storage area.
 *
 * @param xTicksToWait The maximum amount of time the task should block
 * waiting for space to become available on the queue, should it already
 * be full.  The call will return immediately if this is set to 0 and the
 * queue is full.  The time is defined in tick periods so the constant
 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
 *
 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
 *
 * Example usage:
   <pre>
 struct AMessage
 {
	char ucMessageID;
	char ucData[ 20 ];
 } xMessage;

 uint32_t ulVar = 10UL;

 void vATask( void *pvParameters )
 {
 QueueHandle_t xQueue1, xQueue2;
 struct AMessage *pxMessage;

	// Create a queue capable of containing 10 uint32_t values.
	xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );

	// Create a queue capable of containing 10 pointers to AMessage structures.
	// These should be passed by pointer as they contain a lot of data.
	xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );

	// ...

	if( xQueue1 != 0 )
	{
		// Send an uint32_t.  Wait for 10 ticks for space to become
		// available if necessary.
		if( xQueueSend( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
		{
			// Failed to post the message, even after 10 ticks.
		}
	}

	if( xQueue2 != 0 )
	{
		// Send a pointer to a struct AMessage object.  Don't block if the
		// queue is already full.
		pxMessage = & xMessage;
		xQueueSend( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
	}

	// ... Rest of task code.
 }
 </pre>
 * \defgroup xQueueSend xQueueSend
 * \ingroup QueueManagement
 */
#define xQueueSend( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )

/**
 * queue. h
 * <pre>
 BaseType_t xQueueOverwrite(
							  QueueHandle_t xQueue,
							  const void * pvItemToQueue
						 );
 * </pre>
 *
 * Only for use with queues that have a length of one - so the queue is either
 * empty or full.
 *
 * Post an item on a queue.  If the queue is already full then overwrite the
 * value held in the queue.  The item is queued by copy, not by reference.
 *
 * This function must not be called from an interrupt service routine.
 * See xQueueOverwriteFromISR () for an alternative which may be used in an ISR.
 *
 * @param xQueue The handle of the queue to which the data is being sent.
 *
 * @param pvItemToQueue A pointer to the item that is to be placed on the
 * queue.  The size of the items the queue will hold was defined when the
 * queue was created, so this many bytes will be copied from pvItemToQueue
 * into the queue storage area.
 *
 * @return xQueueOverwrite() is a macro that calls xQueueGenericSend(), and
 * therefore has the same return values as xQueueSendToFront().  However, pdPASS
 * is the only value that can be returned because xQueueOverwrite() will write
 * to the queue even when the queue is already full.
 *
 * Example usage:
   <pre>

 void vFunction( void *pvParameters )
 {
 QueueHandle_t xQueue;
 uint32_t ulVarToSend, ulValReceived;

	// Create a queue to hold one uint32_t value.  It is strongly
	// recommended *not* to use xQueueOverwrite() on queues that can
	// contain more than one value, and doing so will trigger an assertion
	// if configASSERT() is defined.
	xQueue = xQueueCreate( 1, sizeof( uint32_t ) );

	// Write the value 10 to the queue using xQueueOverwrite().
	ulVarToSend = 10;
	xQueueOverwrite( xQueue, &ulVarToSend );

	// Peeking the queue should now return 10, but leave the value 10 in
	// the queue.  A block time of zero is used as it is known that the
	// queue holds a value.
	ulValReceived = 0;
	xQueuePeek( xQueue, &ulValReceived, 0 );

	if( ulValReceived != 10 )
	{
		// Error unless the item was removed by a different task.
	}

	// The queue is still full.  Use xQueueOverwrite() to overwrite the
	// value held in the queue with 100.
	ulVarToSend = 100;
	xQueueOverwrite( xQueue, &ulVarToSend );

	// This time read from the queue, leaving the queue empty once more.
	// A block time of 0 is used again.
	xQueueReceive( xQueue, &ulValReceived, 0 );

	// The value read should be the last value written, even though the
	// queue was already full when the value was written.
	if( ulValReceived != 100 )
	{
		// Error!
	}

	// ...
}
 </pre>
 * \defgroup xQueueOverwrite xQueueOverwrite
 * \ingroup QueueManagement
 */
#define xQueueOverwrite( xQueue, pvItemToQueue ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), 0, queueOVERWRITE )


/**
 * queue. h
 * <pre>
 BaseType_t xQueueGenericSend(
									QueueHandle_t xQueue,
									const void * pvItemToQueue,
									TickType_t xTicksToWait
									BaseType_t xCopyPosition
								);
 * </pre>
 *
 * It is preferred that the macros xQueueSend(), xQueueSendToFront() and
 * xQueueSendToBack() are used in place of calling this function directly.
 *
 * Post an item on a queue.  The item is queued by copy, not by reference.
 * This function must not be called from an interrupt service routine.
 * See xQueueSendFromISR () for an alternative which may be used in an ISR.
 *
 * @param xQueue The handle to the queue on which the item is to be posted.
 *
 * @param pvItemToQueue A pointer to the item that is to be placed on the
 * queue.  The size of the items the queue will hold was defined when the
 * queue was created, so this many bytes will be copied from pvItemToQueue
 * into the queue storage area.
 *
 * @param xTicksToWait The maximum amount of time the task should block
 * waiting for space to become available on the queue, should it already
 * be full.  The call will return immediately if this is set to 0 and the
 * queue is full.  The time is defined in tick periods so the constant
 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
 *
 * @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
 * item at the back of the queue, or queueSEND_TO_FRONT to place the item
 * at the front of the queue (for high priority messages).
 *
 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
 *
 * Example usage:
   <pre>
 struct AMessage
 {
	char ucMessageID;
	char ucData[ 20 ];
 } xMessage;

 uint32_t ulVar = 10UL;

 void vATask( void *pvParameters )
 {
 QueueHandle_t xQueue1, xQueue2;
 struct AMessage *pxMessage;

	// Create a queue capable of containing 10 uint32_t values.
	xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );

	// Create a queue capable of containing 10 pointers to AMessage structures.
	// These should be passed by pointer as they contain a lot of data.
	xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );

	// ...

	if( xQueue1 != 0 )
	{
		// Send an uint32_t.  Wait for 10 ticks for space to become
		// available if necessary.
		if( xQueueGenericSend( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10, queueSEND_TO_BACK ) != pdPASS )
		{
			// Failed to post the message, even after 10 ticks.
		}
	}

	if( xQueue2 != 0 )
	{
		// Send a pointer to a struct AMessage object.  Don't block if the
		// queue is already full.
		pxMessage = & xMessage;
		xQueueGenericSend( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0, queueSEND_TO_BACK );
	}

	// ... Rest of task code.
 }
 </pre>
 * \defgroup xQueueSend xQueueSend
 * \ingroup QueueManagement
 */
BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;

/**
 * queue. h
 * <pre>
 BaseType_t xQueuePeek(
							 QueueHandle_t xQueue,
							 void *pvBuffer,
							 TickType_t xTicksToWait
						 );</pre>
 *
 * This is a macro that calls the xQueueGenericReceive() function.
 *
 * Receive an item from a queue without removing the item from the queue.
 * The item is received by copy so a buffer of adequate size must be
 * provided.  The number of bytes copied into the buffer was defined when
 * the queue was created.
 *
 * Successfully received items remain on the queue so will be returned again
 * by the next call, or a call to xQueueReceive().
 *
 * This macro must not be used in an interrupt service routine.  See
 * xQueuePeekFromISR() for an alternative that can be called from an interrupt
 * service routine.
 *
 * @param xQueue The handle to the queue from which the item is to be
 * received.
 *
 * @param pvBuffer Pointer to the buffer into which the received item will
 * be copied.
 *
 * @param xTicksToWait The maximum amount of time the task should block
 * waiting for an item to receive should the queue be empty at the time
 * of the call.	 The time is defined in tick periods so the constant
 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
 * xQueuePeek() will return immediately if xTicksToWait is 0 and the queue
 * is empty.
 *
 * @return pdTRUE if an item was successfully received from the queue,
 * otherwise pdFALSE.
 *
 * Example usage:
   <pre>
 struct AMessage
 {
	char ucMessageID;
	char ucData[ 20 ];
 } xMessage;

 QueueHandle_t xQueue;

 // Task to create a queue and post a value.
 void vATask( void *pvParameters )
 {
 struct AMessage *pxMessage;

	// Create a queue capable of containing 10 pointers to AMessage structures.
	// These should be passed by pointer as they contain a lot of data.
	xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
	if( xQueue == 0 )
	{
		// Failed to create the queue.
	}

	// ...

	// Send a pointer to a struct AMessage object.  Don't block if the
	// queue is already full.
	pxMessage = & xMessage;
	xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );

	// ... Rest of task code.
 }

 // Task to peek the data from the queue.
 void vADifferentTask( void *pvParameters )
 {
 struct AMessage *pxRxedMessage;

	if( xQueue != 0 )
	{
		// Peek a message on the created queue.  Block for 10 ticks if a
		// message is not immediately available.
		if( xQueuePeek( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
		{
			// pcRxedMessage now points to the struct AMessage variable posted
			// by vATask, but the item still remains on the queue.
		}
	}

	// ... Rest of task code.
 }
 </pre>
 * \defgroup xQueueReceive xQueueReceive
 * \ingroup QueueManagement
 */
#define xQueuePeek( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdTRUE )

/**
 * queue. h
 * <pre>
 BaseType_t xQueuePeekFromISR(
									QueueHandle_t xQueue,
									void *pvBuffer,
								);</pre>
 *
 * A version of xQueuePeek() that can be called from an interrupt service
 * routine (ISR).
 *
 * Receive an item from a queue without removing the item from the queue.
 * The item is received by copy so a buffer of adequate size must be
 * provided.  The number of bytes copied into the buffer was defined when
 * the queue was created.
 *
 * Successfully received items remain on the queue so will be returned again
 * by the next call, or a call to xQueueReceive().
 *
 * @param xQueue The handle to the queue from which the item is to be
 * received.
 *
 * @param pvBuffer Pointer to the buffer into which the received item will
 * be copied.
 *
 * @return pdTRUE if an item was successfully received from the queue,
 * otherwise pdFALSE.
 *
 * \defgroup xQueuePeekFromISR xQueuePeekFromISR
 * \ingroup QueueManagement
 */
BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer ) PRIVILEGED_FUNCTION;

/**
 * queue. h
 * <pre>
 BaseType_t xQueueReceive(
								 QueueHandle_t xQueue,
								 void *pvBuffer,
								 TickType_t xTicksToWait
							);</pre>
 *
 * This is a macro that calls the xQueueGenericReceive() function.
 *
 * Receive an item from a queue.  The item is received by copy so a buffer of
 * adequate size must be provided.  The number of bytes copied into the buffer
 * was defined when the queue was created.
 *
 * Successfully received items are removed from the queue.
 *
 * This function must not be used in an interrupt service routine.  See
 * xQueueReceiveFromISR for an alternative that can.
 *
 * @param xQueue The handle to the queue from which the item is to be
 * received.
 *
 * @param pvBuffer Pointer to the buffer into which the received item will
 * be copied.
 *
 * @param xTicksToWait The maximum amount of time the task should block
 * waiting for an item to receive should the queue be empty at the time
 * of the call.	 xQueueReceive() will return immediately if xTicksToWait
 * is zero and the queue is empty.  The time is defined in tick periods so the
 * constant portTICK_PERIOD_MS should be used to convert to real time if this is
 * required.
 *
 * @return pdTRUE if an item was successfully received from the queue,
 * otherwise pdFALSE.
 *
 * Example usage:
   <pre>
 struct AMessage
 {
	char ucMessageID;
	char ucData[ 20 ];
 } xMessage;

 QueueHandle_t xQueue;

 // Task to create a queue and post a value.
 void vATask( void *pvParameters )
 {
 struct AMessage *pxMessage;

	// Create a queue capable of containing 10 pointers to AMessage structures.
	// These should be passed by pointer as they contain a lot of data.
	xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
	if( xQueue == 0 )
	{
		// Failed to create the queue.
	}

	// ...

	// Send a pointer to a struct AMessage object.  Don't block if the
	// queue is already full.
	pxMessage = & xMessage;
	xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );

	// ... Rest of task code.
 }

 // Task to receive from the queue.
 void vADifferentTask( void *pvParameters )
 {
 struct AMessage *pxRxedMessage;

	if( xQueue != 0 )
	{
		// Receive a message on the created queue.  Block for 10 ticks if a
		// message is not immediately available.
		if( xQueueReceive( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
		{
			// pcRxedMessage now points to the struct AMessage variable posted
			// by vATask.
		}
	}

	// ... Rest of task code.
 }
 </pre>
 * \defgroup xQueueReceive xQueueReceive
 * \ingroup QueueManagement
 */
#define xQueueReceive( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdFALSE )


/**
 * queue. h
 * <pre>
 BaseType_t xQueueGenericReceive(
									   QueueHandle_t	xQueue,
									   void	*pvBuffer,
									   TickType_t	xTicksToWait
									   BaseType_t	xJustPeek
									);</pre>
 *
 * It is preferred that the macro xQueueReceive() be used rather than calling
 * this function directly.
 *
 * Receive an item from a queue.  The item is received by copy so a buffer of
 * adequate size must be provided.  The number of bytes copied into the buffer
 * was defined when the queue was created.
 *
 * This function must not be used in an interrupt service routine.  See
 * xQueueReceiveFromISR for an alternative that can.
 *
 * @param xQueue The handle to the queue from which the item is to be
 * received.
 *
 * @param pvBuffer Pointer to the buffer into which the received item will
 * be copied.
 *
 * @param xTicksToWait The maximum amount of time the task should block
 * waiting for an item to receive should the queue be empty at the time
 * of the call.	 The time is defined in tick periods so the constant
 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
 * xQueueGenericReceive() will return immediately if the queue is empty and
 * xTicksToWait is 0.
 *
 * @param xJustPeek When set to true, the item received from the queue is not
 * actually removed from the queue - meaning a subsequent call to
 * xQueueReceive() will return the same item.  When set to false, the item
 * being received from the queue is also removed from the queue.
 *
 * @return pdTRUE if an item was successfully received from the queue,
 * otherwise pdFALSE.
 *
 * Example usage:
   <pre>
 struct AMessage
 {
	char ucMessageID;
	char ucData[ 20 ];
 } xMessage;

 QueueHandle_t xQueue;

 // Task to create a queue and post a value.
 void vATask( void *pvParameters )
 {
 struct AMessage *pxMessage;

	// Create a queue capable of containing 10 pointers to AMessage structures.
	// These should be passed by pointer as they contain a lot of data.
	xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
	if( xQueue == 0 )
	{
		// Failed to create the queue.
	}

	// ...

	// Send a pointer to a struct AMessage object.  Don't block if the
	// queue is already full.
	pxMessage = & xMessage;
	xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );

	// ... Rest of task code.
 }

 // Task to receive from the queue.
 void vADifferentTask( void *pvParameters )
 {
 struct AMessage *pxRxedMessage;

	if( xQueue != 0 )
	{
		// Receive a message on the created queue.  Block for 10 ticks if a
		// message is not immediately available.
		if( xQueueGenericReceive( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
		{
			// pcRxedMessage now points to the struct AMessage variable posted
			// by vATask.
		}
	}

	// ... Rest of task code.
 }
 </pre>
 * \defgroup xQueueReceive xQueueReceive
 * \ingroup QueueManagement
 */
BaseType_t xQueueGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, const BaseType_t xJustPeek ) PRIVILEGED_FUNCTION;

/**
 * queue. h
 * <pre>UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue );</pre>
 *
 * Return the number of messages stored in a queue.
 *
 * @param xQueue A handle to the queue being queried.
 *
 * @return The number of messages available in the queue.
 *
 * \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
 * \ingroup QueueManagement
 */
UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;

/**
 * queue. h
 * <pre>UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue );</pre>
 *
 * Return the number of free spaces available in a queue.  This is equal to the
 * number of items that can be sent to the queue before the queue becomes full
 * if no items are removed.
 *
 * @param xQueue A handle to the queue being queried.
 *
 * @return The number of spaces available in the queue.
 *
 * \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
 * \ingroup QueueManagement
 */
UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;

/**
 * queue. h
 * <pre>void vQueueDelete( QueueHandle_t xQueue );</pre>
 *
 * Delete a queue - freeing all the memory allocated for storing of items
 * placed on the queue.
 *
 * @param xQueue A handle to the queue to be deleted.
 *
 * \defgroup vQueueDelete vQueueDelete
 * \ingroup QueueManagement
 */
void vQueueDelete( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;

/**
 * queue. h
 * <pre>
 BaseType_t xQueueSendToFrontFromISR(
										 QueueHandle_t xQueue,
										 const void *pvItemToQueue,
										 BaseType_t *pxHigherPriorityTaskWoken
									  );
 </pre>
 *
 * This is a macro that calls xQueueGenericSendFromISR().
 *
 * Post an item to the front of a queue.  It is safe to use this macro from
 * within an interrupt service routine.
 *
 * Items are queued by copy not reference so it is preferable to only
 * queue small items, especially when called from an ISR.  In most cases
 * it would be preferable to store a pointer to the item being queued.
 *
 * @param xQueue The handle to the queue on which the item is to be posted.
 *
 * @param pvItemToQueue A pointer to the item that is to be placed on the
 * queue.  The size of the items the queue will hold was defined when the
 * queue was created, so this many bytes will be copied from pvItemToQueue
 * into the queue storage area.
 *
 * @param pxHigherPriorityTaskWoken xQueueSendToFrontFromISR() will set
 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
 * to unblock, and the unblocked task has a priority higher than the currently
 * running task.  If xQueueSendToFromFromISR() sets this value to pdTRUE then
 * a context switch should be requested before the interrupt is exited.
 *
 * @return pdTRUE if the data was successfully sent to the queue, otherwise
 * errQUEUE_FULL.
 *
 * Example usage for buffered IO (where the ISR can obtain more than one value
 * per call):
   <pre>
 void vBufferISR( void )
 {
 char cIn;
 BaseType_t xHigherPrioritTaskWoken;

	// We have not woken a task at the start of the ISR.
	xHigherPriorityTaskWoken = pdFALSE;

	// Loop until the buffer is empty.
	do
	{
		// Obtain a byte from the buffer.
		cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );

		// Post the byte.
		xQueueSendToFrontFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );

	} while( portINPUT_BYTE( BUFFER_COUNT ) );

	// Now the buffer is empty we can switch context if necessary.
	if( xHigherPriorityTaskWoken )
	{
		taskYIELD ();
	}
 }
 </pre>
 *
 * \defgroup xQueueSendFromISR xQueueSendFromISR
 * \ingroup QueueManagement
 */
#define xQueueSendToFrontFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_FRONT )


/**
 * queue. h
 * <pre>
 BaseType_t xQueueSendToBackFromISR(
										 QueueHandle_t xQueue,
										 const void *pvItemToQueue,
										 BaseType_t *pxHigherPriorityTaskWoken
									  );
 </pre>
 *
 * This is a macro that calls xQueueGenericSendFromISR().
 *
 * Post an item to the back of a queue.  It is safe to use this macro from
 * within an interrupt service routine.
 *
 * Items are queued by copy not reference so it is preferable to only
 * queue small items, especially when called from an ISR.  In most cases
 * it would be preferable to store a pointer to the item being queued.
 *
 * @param xQueue The handle to the queue on which the item is to be posted.
 *
 * @param pvItemToQueue A pointer to the item that is to be placed on the
 * queue.  The size of the items the queue will hold was defined when the
 * queue was created, so this many bytes will be copied from pvItemToQueue
 * into the queue storage area.
 *
 * @param pxHigherPriorityTaskWoken xQueueSendToBackFromISR() will set
 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
 * to unblock, and the unblocked task has a priority higher than the currently
 * running task.  If xQueueSendToBackFromISR() sets this value to pdTRUE then
 * a context switch should be requested before the interrupt is exited.
 *
 * @return pdTRUE if the data was successfully sent to the queue, otherwise
 * errQUEUE_FULL.
 *
 * Example usage for buffered IO (where the ISR can obtain more than one value
 * per call):
   <pre>
 void vBufferISR( void )
 {
 char cIn;
 BaseType_t xHigherPriorityTaskWoken;

	// We have not woken a task at the start of the ISR.
	xHigherPriorityTaskWoken = pdFALSE;

	// Loop until the buffer is empty.
	do
	{
		// Obtain a byte from the buffer.
		cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );

		// Post the byte.
		xQueueSendToBackFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );

	} while( portINPUT_BYTE( BUFFER_COUNT ) );

	// Now the buffer is empty we can switch context if necessary.
	if( xHigherPriorityTaskWoken )
	{
		taskYIELD ();
	}
 }
 </pre>
 *
 * \defgroup xQueueSendFromISR xQueueSendFromISR
 * \ingroup QueueManagement
 */
#define xQueueSendToBackFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )

/**
 * queue. h
 * <pre>
 BaseType_t xQueueOverwriteFromISR(
							  QueueHandle_t xQueue,
							  const void * pvItemToQueue,
							  BaseType_t *pxHigherPriorityTaskWoken
						 );
 * </pre>
 *
 * A version of xQueueOverwrite() that can be used in an interrupt service
 * routine (ISR).
 *
 * Only for use with queues that can hold a single item - so the queue is either
 * empty or full.
 *
 * Post an item on a queue.  If the queue is already full then overwrite the
 * value held in the queue.  The item is queued by copy, not by reference.
 *
 * @param xQueue The handle to the queue on which the item is to be posted.
 *
 * @param pvItemToQueue A pointer to the item that is to be placed on the
 * queue.  The size of the items the queue will hold was defined when the
 * queue was created, so this many bytes will be copied from pvItemToQueue
 * into the queue storage area.
 *
 * @param pxHigherPriorityTaskWoken xQueueOverwriteFromISR() will set
 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
 * to unblock, and the unblocked task has a priority higher than the currently
 * running task.  If xQueueOverwriteFromISR() sets this value to pdTRUE then
 * a context switch should be requested before the interrupt is exited.
 *
 * @return xQueueOverwriteFromISR() is a macro that calls
 * xQueueGenericSendFromISR(), and therefore has the same return values as
 * xQueueSendToFrontFromISR().  However, pdPASS is the only value that can be
 * returned because xQueueOverwriteFromISR() will write to the queue even when
 * the queue is already full.
 *
 * Example usage:
   <pre>

 QueueHandle_t xQueue;

 void vFunction( void *pvParameters )
 {
 	// Create a queue to hold one uint32_t value.  It is strongly
	// recommended *not* to use xQueueOverwriteFromISR() on queues that can
	// contain more than one value, and doing so will trigger an assertion
	// if configASSERT() is defined.
	xQueue = xQueueCreate( 1, sizeof( uint32_t ) );
}

void vAnInterruptHandler( void )
{
// xHigherPriorityTaskWoken must be set to pdFALSE before it is used.
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
uint32_t ulVarToSend, ulValReceived;

	// Write the value 10 to the queue using xQueueOverwriteFromISR().
	ulVarToSend = 10;
	xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );

	// The queue is full, but calling xQueueOverwriteFromISR() again will still
	// pass because the value held in the queue will be overwritten with the
	// new value.
	ulVarToSend = 100;
	xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );

	// Reading from the queue will now return 100.

	// ...

	if( xHigherPrioritytaskWoken == pdTRUE )
	{
		// Writing to the queue caused a task to unblock and the unblocked task
		// has a priority higher than or equal to the priority of the currently
		// executing task (the task this interrupt interrupted).  Perform a context
		// switch so this interrupt returns directly to the unblocked task.
		portYIELD_FROM_ISR(); // or portEND_SWITCHING_ISR() depending on the port.
	}
}
 </pre>
 * \defgroup xQueueOverwriteFromISR xQueueOverwriteFromISR
 * \ingroup QueueManagement
 */
#define xQueueOverwriteFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueOVERWRITE )

/**
 * queue. h
 * <pre>
 BaseType_t xQueueSendFromISR(
									 QueueHandle_t xQueue,
									 const void *pvItemToQueue,
									 BaseType_t *pxHigherPriorityTaskWoken
								);
 </pre>
 *
 * This is a macro that calls xQueueGenericSendFromISR().  It is included
 * for backward compatibility with versions of FreeRTOS.org that did not
 * include the xQueueSendToBackFromISR() and xQueueSendToFrontFromISR()
 * macros.
 *
 * Post an item to the back of a queue.  It is safe to use this function from
 * within an interrupt service routine.
 *
 * Items are queued by copy not reference so it is preferable to only
 * queue small items, especially when called from an ISR.  In most cases
 * it would be preferable to store a pointer to the item being queued.
 *
 * @param xQueue The handle to the queue on which the item is to be posted.
 *
 * @param pvItemToQueue A pointer to the item that is to be placed on the
 * queue.  The size of the items the queue will hold was defined when the
 * queue was created, so this many bytes will be copied from pvItemToQueue
 * into the queue storage area.
 *
 * @param pxHigherPriorityTaskWoken xQueueSendFromISR() will set
 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
 * to unblock, and the unblocked task has a priority higher than the currently
 * running task.  If xQueueSendFromISR() sets this value to pdTRUE then
 * a context switch should be requested before the interrupt is exited.
 *
 * @return pdTRUE if the data was successfully sent to the queue, otherwise
 * errQUEUE_FULL.
 *
 * Example usage for buffered IO (where the ISR can obtain more than one value
 * per call):
   <pre>
 void vBufferISR( void )
 {
 char cIn;
 BaseType_t xHigherPriorityTaskWoken;

	// We have not woken a task at the start of the ISR.
	xHigherPriorityTaskWoken = pdFALSE;

	// Loop until the buffer is empty.
	do
	{
		// Obtain a byte from the buffer.
		cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );

		// Post the byte.
		xQueueSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );

	} while( portINPUT_BYTE( BUFFER_COUNT ) );

	// Now the buffer is empty we can switch context if necessary.
	if( xHigherPriorityTaskWoken )
	{
		// Actual macro used here is port specific.
		portYIELD_FROM_ISR ();
	}
 }
 </pre>
 *
 * \defgroup xQueueSendFromISR xQueueSendFromISR
 * \ingroup QueueManagement
 */
#define xQueueSendFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )

/**
 * queue. h
 * <pre>
 BaseType_t xQueueGenericSendFromISR(
										   QueueHandle_t		xQueue,
										   const	void	*pvItemToQueue,
										   BaseType_t	*pxHigherPriorityTaskWoken,
										   BaseType_t	xCopyPosition
									   );
 </pre>
 *
 * It is preferred that the macros xQueueSendFromISR(),
 * xQueueSendToFrontFromISR() and xQueueSendToBackFromISR() be used in place
 * of calling this function directly.  xQueueGiveFromISR() is an
 * equivalent for use by semaphores that don't actually copy any data.
 *
 * Post an item on a queue.  It is safe to use this function from within an
 * interrupt service routine.
 *
 * Items are queued by copy not reference so it is preferable to only
 * queue small items, especially when called from an ISR.  In most cases
 * it would be preferable to store a pointer to the item being queued.
 *
 * @param xQueue The handle to the queue on which the item is to be posted.
 *
 * @param pvItemToQueue A pointer to the item that is to be placed on the
 * queue.  The size of the items the queue will hold was defined when the
 * queue was created, so this many bytes will be copied from pvItemToQueue
 * into the queue storage area.
 *
 * @param pxHigherPriorityTaskWoken xQueueGenericSendFromISR() will set
 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
 * to unblock, and the unblocked task has a priority higher than the currently
 * running task.  If xQueueGenericSendFromISR() sets this value to pdTRUE then
 * a context switch should be requested before the interrupt is exited.
 *
 * @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
 * item at the back of the queue, or queueSEND_TO_FRONT to place the item
 * at the front of the queue (for high priority messages).
 *
 * @return pdTRUE if the data was successfully sent to the queue, otherwise
 * errQUEUE_FULL.
 *
 * Example usage for buffered IO (where the ISR can obtain more than one value
 * per call):
   <pre>
 void vBufferISR( void )
 {
 char cIn;
 BaseType_t xHigherPriorityTaskWokenByPost;

	// We have not woken a task at the start of the ISR.
	xHigherPriorityTaskWokenByPost = pdFALSE;

	// Loop until the buffer is empty.
	do
	{
		// Obtain a byte from the buffer.
		cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );

		// Post each byte.
		xQueueGenericSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWokenByPost, queueSEND_TO_BACK );

	} while( portINPUT_BYTE( BUFFER_COUNT ) );

	// Now the buffer is empty we can switch context if necessary.  Note that the
	// name of the yield function required is port specific.
	if( xHigherPriorityTaskWokenByPost )
	{
		taskYIELD_YIELD_FROM_ISR();
	}
 }
 </pre>
 *
 * \defgroup xQueueSendFromISR xQueueSendFromISR
 * \ingroup QueueManagement
 */
BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue, const void * const pvItemToQueue, BaseType_t * const pxHigherPriorityTaskWoken, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue, BaseType_t * const pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;

/**
 * queue. h
 * <pre>
 BaseType_t xQueueReceiveFromISR(
									   QueueHandle_t	xQueue,
									   void	*pvBuffer,
									   BaseType_t *pxTaskWoken
								   );
 * </pre>
 *
 * Receive an item from a queue.  It is safe to use this function from within an
 * interrupt service routine.
 *
 * @param xQueue The handle to the queue from which the item is to be
 * received.
 *
 * @param pvBuffer Pointer to the buffer into which the received item will
 * be copied.
 *
 * @param pxTaskWoken A task may be blocked waiting for space to become
 * available on the queue.  If xQueueReceiveFromISR causes such a task to
 * unblock *pxTaskWoken will get set to pdTRUE, otherwise *pxTaskWoken will
 * remain unchanged.
 *
 * @return pdTRUE if an item was successfully received from the queue,
 * otherwise pdFALSE.
 *
 * Example usage:
   <pre>

 QueueHandle_t xQueue;

 // Function to create a queue and post some values.
 void vAFunction( void *pvParameters )
 {
 char cValueToPost;
 const TickType_t xTicksToWait = ( TickType_t )0xff;

	// Create a queue capable of containing 10 characters.
	xQueue = xQueueCreate( 10, sizeof( char ) );
	if( xQueue == 0 )
	{
		// Failed to create the queue.
	}

	// ...

	// Post some characters that will be used within an ISR.  If the queue
	// is full then this task will block for xTicksToWait ticks.
	cValueToPost = 'a';
	xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
	cValueToPost = 'b';
	xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );

	// ... keep posting characters ... this task may block when the queue
	// becomes full.

	cValueToPost = 'c';
	xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
 }

 // ISR that outputs all the characters received on the queue.
 void vISR_Routine( void )
 {
 BaseType_t xTaskWokenByReceive = pdFALSE;
 char cRxedChar;

	while( xQueueReceiveFromISR( xQueue, ( void * ) &cRxedChar, &xTaskWokenByReceive) )
	{
		// A character was received.  Output the character now.
		vOutputCharacter( cRxedChar );

		// If removing the character from the queue woke the task that was
		// posting onto the queue cTaskWokenByReceive will have been set to
		// pdTRUE.  No matter how many times this loop iterates only one
		// task will be woken.
	}

	if( cTaskWokenByPost != ( char ) pdFALSE;
	{
		taskYIELD ();
	}
 }
 </pre>
 * \defgroup xQueueReceiveFromISR xQueueReceiveFromISR
 * \ingroup QueueManagement
 */
BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue, void * const pvBuffer, BaseType_t * const pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;

/*
 * Utilities to query queues that are safe to use from an ISR.  These utilities
 * should be used only from witin an ISR, or within a critical section.
 */
BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;

/*
 * The functions defined above are for passing data to and from tasks.  The
 * functions below are the equivalents for passing data to and from
 * co-routines.
 *
 * These functions are called from the co-routine macro implementation and
 * should not be called directly from application code.  Instead use the macro
 * wrappers defined within croutine.h.
 */
BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken );
BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxTaskWoken );
BaseType_t xQueueCRSend( QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait );
BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait );

/*
 * For internal use only.  Use xSemaphoreCreateMutex(),
 * xSemaphoreCreateCounting() or xSemaphoreGetMutexHolder() instead of calling
 * these functions directly.
 */
QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType, StaticQueue_t *pxStaticQueue ) PRIVILEGED_FUNCTION;
QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount ) PRIVILEGED_FUNCTION;
QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount, StaticQueue_t *pxStaticQueue ) PRIVILEGED_FUNCTION;
void* xQueueGetMutexHolder( QueueHandle_t xSemaphore ) PRIVILEGED_FUNCTION;

/*
 * For internal use only.  Use xSemaphoreTakeMutexRecursive() or
 * xSemaphoreGiveMutexRecursive() instead of calling these functions directly.
 */
BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
BaseType_t xQueueGiveMutexRecursive( QueueHandle_t pxMutex ) PRIVILEGED_FUNCTION;

/*
 * Reset a queue back to its original empty state.  The return value is now
 * obsolete and is always set to pdPASS.
 */
#define xQueueReset( xQueue ) xQueueGenericReset( xQueue, pdFALSE )

/*
 * The registry is provided as a means for kernel aware debuggers to
 * locate queues, semaphores and mutexes.  Call vQueueAddToRegistry() add
 * a queue, semaphore or mutex handle to the registry if you want the handle
 * to be available to a kernel aware debugger.  If you are not using a kernel
 * aware debugger then this function can be ignored.
 *
 * configQUEUE_REGISTRY_SIZE defines the maximum number of handles the
 * registry can hold.  configQUEUE_REGISTRY_SIZE must be greater than 0
 * within FreeRTOSConfig.h for the registry to be available.  Its value
 * does not effect the number of queues, semaphores and mutexes that can be
 * created - just the number that the registry can hold.
 *
 * @param xQueue The handle of the queue being added to the registry.  This
 * is the handle returned by a call to xQueueCreate().  Semaphore and mutex
 * handles can also be passed in here.
 *
 * @param pcName The name to be associated with the handle.  This is the
 * name that the kernel aware debugger will display.  The queue registry only
 * stores a pointer to the string - so the string must be persistent (global or
 * preferably in ROM/Flash), not on the stack.
 */
#if( configQUEUE_REGISTRY_SIZE > 0 )
	void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcName ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
#endif

/*
 * The registry is provided as a means for kernel aware debuggers to
 * locate queues, semaphores and mutexes.  Call vQueueAddToRegistry() add
 * a queue, semaphore or mutex handle to the registry if you want the handle
 * to be available to a kernel aware debugger, and vQueueUnregisterQueue() to
 * remove the queue, semaphore or mutex from the register.  If you are not using
 * a kernel aware debugger then this function can be ignored.
 *
 * @param xQueue The handle of the queue being removed from the registry.
 */
#if( configQUEUE_REGISTRY_SIZE > 0 )
	void vQueueUnregisterQueue( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
#endif

/*
 * The queue registry is provided as a means for kernel aware debuggers to
 * locate queues, semaphores and mutexes.  Call pcQueueGetName() to look
 * up and return the name of a queue in the queue registry from the queue's
 * handle.
 *
 * @param xQueue The handle of the queue the name of which will be returned.
 * @return If the queue is in the registry then a pointer to the name of the
 * queue is returned.  If the queue is not in the registry then NULL is
 * returned.
 */
#if( configQUEUE_REGISTRY_SIZE > 0 )
	const char *pcQueueGetName( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
#endif

/*
 * Generic version of the function used to creaet a queue using dynamic memory
 * allocation.  This is called by other functions and macros that create other
 * RTOS objects that use the queue structure as their base.
 */
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
	QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
#endif

/*
 * Generic version of the function used to creaet a queue using dynamic memory
 * allocation.  This is called by other functions and macros that create other
 * RTOS objects that use the queue structure as their base.
 */
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
	QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, StaticQueue_t *pxStaticQueue, const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
#endif

/*
 * Queue sets provide a mechanism to allow a task to block (pend) on a read
 * operation from multiple queues or semaphores simultaneously.
 *
 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
 * function.
 *
 * A queue set must be explicitly created using a call to xQueueCreateSet()
 * before it can be used.  Once created, standard FreeRTOS queues and semaphores
 * can be added to the set using calls to xQueueAddToSet().
 * xQueueSelectFromSet() is then used to determine which, if any, of the queues
 * or semaphores contained in the set is in a state where a queue read or
 * semaphore take operation would be successful.
 *
 * Note 1:  See the documentation on http://wwwFreeRTOS.org/RTOS-queue-sets.html
 * for reasons why queue sets are very rarely needed in practice as there are
 * simpler methods of blocking on multiple objects.
 *
 * Note 2:  Blocking on a queue set that contains a mutex will not cause the
 * mutex holder to inherit the priority of the blocked task.
 *
 * Note 3:  An additional 4 bytes of RAM is required for each space in a every
 * queue added to a queue set.  Therefore counting semaphores that have a high
 * maximum count value should not be added to a queue set.
 *
 * Note 4:  A receive (in the case of a queue) or take (in the case of a
 * semaphore) operation must not be performed on a member of a queue set unless
 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
 *
 * @param uxEventQueueLength Queue sets store events that occur on
 * the queues and semaphores contained in the set.  uxEventQueueLength specifies
 * the maximum number of events that can be queued at once.  To be absolutely
 * certain that events are not lost uxEventQueueLength should be set to the
 * total sum of the length of the queues added to the set, where binary
 * semaphores and mutexes have a length of 1, and counting semaphores have a
 * length set by their maximum count value.  Examples:
 *  + If a queue set is to hold a queue of length 5, another queue of length 12,
 *    and a binary semaphore, then uxEventQueueLength should be set to
 *    (5 + 12 + 1), or 18.
 *  + If a queue set is to hold three binary semaphores then uxEventQueueLength
 *    should be set to (1 + 1 + 1 ), or 3.
 *  + If a queue set is to hold a counting semaphore that has a maximum count of
 *    5, and a counting semaphore that has a maximum count of 3, then
 *    uxEventQueueLength should be set to (5 + 3), or 8.
 *
 * @return If the queue set is created successfully then a handle to the created
 * queue set is returned.  Otherwise NULL is returned.
 */
QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength ) PRIVILEGED_FUNCTION;

/*
 * Adds a queue or semaphore to a queue set that was previously created by a
 * call to xQueueCreateSet().
 *
 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
 * function.
 *
 * Note 1:  A receive (in the case of a queue) or take (in the case of a
 * semaphore) operation must not be performed on a member of a queue set unless
 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
 *
 * @param xQueueOrSemaphore The handle of the queue or semaphore being added to
 * the queue set (cast to an QueueSetMemberHandle_t type).
 *
 * @param xQueueSet The handle of the queue set to which the queue or semaphore
 * is being added.
 *
 * @return If the queue or semaphore was successfully added to the queue set
 * then pdPASS is returned.  If the queue could not be successfully added to the
 * queue set because it is already a member of a different queue set then pdFAIL
 * is returned.
 */
BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;

/*
 * Removes a queue or semaphore from a queue set.  A queue or semaphore can only
 * be removed from a set if the queue or semaphore is empty.
 *
 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
 * function.
 *
 * @param xQueueOrSemaphore The handle of the queue or semaphore being removed
 * from the queue set (cast to an QueueSetMemberHandle_t type).
 *
 * @param xQueueSet The handle of the queue set in which the queue or semaphore
 * is included.
 *
 * @return If the queue or semaphore was successfully removed from the queue set
 * then pdPASS is returned.  If the queue was not in the queue set, or the
 * queue (or semaphore) was not empty, then pdFAIL is returned.
 */
BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;

/*
 * xQueueSelectFromSet() selects from the members of a queue set a queue or
 * semaphore that either contains data (in the case of a queue) or is available
 * to take (in the case of a semaphore).  xQueueSelectFromSet() effectively
 * allows a task to block (pend) on a read operation on all the queues and
 * semaphores in a queue set simultaneously.
 *
 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
 * function.
 *
 * Note 1:  See the documentation on http://wwwFreeRTOS.org/RTOS-queue-sets.html
 * for reasons why queue sets are very rarely needed in practice as there are
 * simpler methods of blocking on multiple objects.
 *
 * Note 2:  Blocking on a queue set that contains a mutex will not cause the
 * mutex holder to inherit the priority of the blocked task.
 *
 * Note 3:  A receive (in the case of a queue) or take (in the case of a
 * semaphore) operation must not be performed on a member of a queue set unless
 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
 *
 * @param xQueueSet The queue set on which the task will (potentially) block.
 *
 * @param xTicksToWait The maximum time, in ticks, that the calling task will
 * remain in the Blocked state (with other tasks executing) to wait for a member
 * of the queue set to be ready for a successful queue read or semaphore take
 * operation.
 *
 * @return xQueueSelectFromSet() will return the handle of a queue (cast to
 * a QueueSetMemberHandle_t type) contained in the queue set that contains data,
 * or the handle of a semaphore (cast to a QueueSetMemberHandle_t type) contained
 * in the queue set that is available, or NULL if no such queue or semaphore
 * exists before before the specified block time expires.
 */
QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet, const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;

/*
 * A version of xQueueSelectFromSet() that can be used from an ISR.
 */
QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;

/* Not public API functions. */
void vQueueWaitForMessageRestricted( QueueHandle_t xQueue, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely ) PRIVILEGED_FUNCTION;
BaseType_t xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue ) PRIVILEGED_FUNCTION;
void vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber ) PRIVILEGED_FUNCTION;
UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
uint8_t ucQueueGetQueueType( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;


#ifdef __cplusplus
}
#endif

#endif /* QUEUE_H */