summaryrefslogtreecommitdiff
path: root/source/com_task.c
blob: d6bc97dcb65b0be7c5bad9e3f1a54e07c2fe8311 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

#include "com_task.h"
#include "can_task.h"
#include "gpio_ext.h"
#include "adc_task.h"

volatile uint8_t registers[APALIS_TK1_K20_LAST_REG];
volatile uint8_t regRxHandled;

/* Put FW version at known address in a binary. Make it 32-bit to have room for the future */
#ifndef TESTER_BUILD
const uint32_t __attribute__((section(".FwVersion"), used)) fw_version = APALIS_TK1_K20_FW_VER;
#else
const uint32_t __attribute__((section(".FwVersion"), used)) fw_version = APALIS_TK1_K20_TESTER_FW_VER;
#endif

static dspi_slave_handle_t spi_handle;
static uint8_t slaveRxData[APALIS_TK1_K20_MAX_BULK + APALIS_TK1_K20_HEADER];
static uint8_t slaveTxData[APALIS_TK1_K20_MAX_BULK + APALIS_TK1_K20_HEADER];

#ifdef SPI_DMA
dspi_slave_edma_handle_t g_dspi_edma_s_handle;
edma_handle_t dspiEdmaSlaveRxHandle;
edma_handle_t dspiEdmaSlaveTxHandle;
#endif

void generate_irq(uint8_t irq) {
	if (!(registers[APALIS_TK1_K20_MSQREG] & BIT(irq))) {
		taskENTER_CRITICAL();
		registers[APALIS_TK1_K20_IRQREG] |= BIT(irq);
		/* Toggle INT1 pin */
		GPIO_TogglePinsOutput(GPIOA, 1u << 16u);
		taskEXIT_CRITICAL();
	}
}

void clear_irq_flag(uint8_t irq) {
	registers[APALIS_TK1_K20_IRQREG] &= ~irq;
}

uint8_t get_control_reg()
{
	return registers[APALIS_TK1_K20_CTRREG];

}

void set_control_reg(uint8_t value)
{
	registers[APALIS_TK1_K20_CTRREG] = value;
}

uint8_t get_status_reg()
{
	return registers[APALIS_TK1_K20_STAREG];

}

void set_status_reg(uint8_t value)
{
	registers[APALIS_TK1_K20_STAREG] = value;
}

uint8_t get_mask_reg()
{
	return registers[APALIS_TK1_K20_MSQREG];

}

void set_mask_reg(uint8_t value)
{
	registers[APALIS_TK1_K20_MSQREG] = value;
}

uint8_t get_irq_reg()
{
	return registers[APALIS_TK1_K20_IRQREG];

}

void set_irq_reg(uint8_t value)
{
	/* Clear IRQ flag on 1 */
	clear_irq_flag(value);

}

inline int general_registers(dspi_transfer_t * spi_transfer)
{
	uint8_t *rx_buf = spi_transfer->rxData;

	if (rx_buf[0] == APALIS_TK1_K20_WRITE_INST) {
		switch (rx_buf[1]) {
		case APALIS_TK1_K20_STAREG:
			set_status_reg(rx_buf[2]);
			return 1;
		case APALIS_TK1_K20_REVREG:
			return -ENOENT;
		case APALIS_TK1_K20_IRQREG:
			set_irq_reg(rx_buf[2]);
			return 1;
		case APALIS_TK1_K20_CTRREG:
			set_control_reg(rx_buf[2]);
			return 1;
		case APALIS_TK1_K20_MSQREG:
			set_mask_reg(rx_buf[2]);
			return 1;
		default:
			return -ESRCH;
		}
	}


	return -ENXIO;
}


inline void SPI_main_callback(status_t status, void *userData)
{
	callback_message_t * cb = (callback_message_t*) userData;
	BaseType_t reschedule = pdFALSE;

	if (status == kStatus_Success)
	{
		xSemaphoreGiveFromISR(cb->sem, &reschedule);
	}
#if 0
	if (status == kStatus_DSPI_Error)
	{
		__NOP();
	}
#endif
	portYIELD_FROM_ISR(reschedule);
}

static void SPI_callback(SPI_Type *base, dspi_slave_handle_t *handle, status_t status, void *userData)
{
	SPI_main_callback(status, userData);
}

static void SPI_EDMA_callback(SPI_Type *base, dspi_slave_edma_handle_t *handle, status_t status, void *userData)
{
	SPI_main_callback(status, userData);
}

static dspi_slave_config_t spi2_slaveConfig;

static void SPI_init() {
	gpio_pin_config_t gpio_out_config = {
			kGPIO_DigitalOutput, 0,
	};
	GPIO_PinInit(GPIOD, 11u, &gpio_out_config);
	/* Slave config */
	spi2_slaveConfig.whichCtar = kDSPI_Ctar0;
	spi2_slaveConfig.ctarConfig.bitsPerFrame = 8;
	spi2_slaveConfig.ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
	spi2_slaveConfig.ctarConfig.cpha = kDSPI_ClockPhaseSecondEdge;
	spi2_slaveConfig.enableContinuousSCK = false;
	spi2_slaveConfig.enableRxFifoOverWrite = true;
	spi2_slaveConfig.enableModifiedTimingFormat = false;
	spi2_slaveConfig.samplePoint = kDSPI_SckToSin0Clock;
	PRINTF("SPI init \r\n");
	DSPI_SlaveInit(SPI2, &spi2_slaveConfig);
	DSPI_SlaveTransferCreateHandle(SPI2, &spi_handle, SPI_callback, spi_handle.userData);

	/* Set dspi slave interrupt priority higher. */
	NVIC_SetPriority(SPI2_IRQn, 5U);
	GPIO_ClearPinsOutput(GPIOA, 1u << 29u); /* INT2 active */
	PRINTF("SPI init done \r\n");

}

void spi_task(void *pvParameters) {
	callback_message_t spi_msg;
	dspi_transfer_t slaveXfer;
	int ret = 0;
	int can_read = -1;
#ifdef SPI_DMA
	uint32_t slaveRxChannel, slaveTxChannel;
	edma_config_t userConfig;
#endif

	spi_msg.sem = xSemaphoreCreateBinary();
	spi_handle.userData = &spi_msg;
	SPI_init();
#ifdef SPI_DMA
	slaveRxChannel = 0U;
	slaveTxChannel = 1U;

	DMAMUX_Init(DMAMUX);
	DMAMUX_SetSource(DMAMUX, slaveRxChannel, kDmaRequestMux0SPI2Rx);
	DMAMUX_EnableChannel(DMAMUX, slaveRxChannel);
	DMAMUX_SetSource(DMAMUX, slaveTxChannel, kDmaRequestMux0SPI2Tx);
	DMAMUX_EnableChannel(DMAMUX, slaveTxChannel);

	EDMA_GetDefaultConfig(&userConfig);
	EDMA_Init(DMA0, &userConfig);

	EDMA_CreateHandle(&dspiEdmaSlaveRxHandle, DMA0, slaveRxChannel);
	EDMA_CreateHandle(&dspiEdmaSlaveTxHandle, DMA0, slaveTxChannel);

	g_dspi_edma_s_handle.userData = &spi_msg;
	DSPI_SlaveTransferCreateHandleEDMA(SPI2, &g_dspi_edma_s_handle, SPI_EDMA_callback,
			&spi_msg, &dspiEdmaSlaveRxHandle, &dspiEdmaSlaveTxHandle);
#endif
	memset((uint8_t *)registers, 0x00, APALIS_TK1_K20_LAST_REG);
	registers[APALIS_TK1_K20_REVREG] = APALIS_TK1_K20_FW_VER;
	GPIO_SetPinsOutput(GPIOA, 1u << 29u); /* INT2 idle */
	slaveXfer.configFlags = kDSPI_SlaveCtar0;

	while(1){
		slaveXfer.txData = NULL;/* no MISO traffic*/
		slaveXfer.rxData = slaveRxData;
		slaveXfer.dataSize = 3;
		/* Wait for instructions from SoC */
		ret = DSPI_SlaveTransferNonBlocking(SPI2, &spi_handle, &slaveXfer);
		if ( ret == kStatus_Success) {
			xSemaphoreTake(spi_msg.sem, portMAX_DELAY);

			if (slaveRxData[0] != APALIS_TK1_K20_READ_INST) {
				taskENTER_CRITICAL();
				slaveXfer.txData = slaveTxData;
				slaveXfer.rxData = slaveRxData;
				if (slaveRxData[1] <= 0x05) {
					ret = general_registers(&slaveXfer);
#ifndef TESTER_BUILD
				} else if ((slaveRxData[1] >= APALIS_TK1_K20_CANREG + APALIS_TK1_K20_CAN_DEV_OFFSET(0))
						&& (slaveRxData[1] <= APALIS_TK1_K20_CAN_OUT_BUF_END + APALIS_TK1_K20_CAN_DEV_OFFSET(0))) {
					ret = canx_registers(&slaveXfer, 0);
					can_read = 0;

				} else if ((slaveRxData[1] >= APALIS_TK1_K20_CANREG + APALIS_TK1_K20_CAN_DEV_OFFSET(1))
						&& (slaveRxData[1] <= APALIS_TK1_K20_CAN_OUT_BUF_END + APALIS_TK1_K20_CAN_DEV_OFFSET(1))) {
					ret = canx_registers(&slaveXfer, 1);
					can_read = 1;
#endif
#ifdef BOARD_USES_ADC
				} else if ((slaveRxData[1] >= APALIS_TK1_K20_ADCREG) && (slaveRxData[1] <= APALIS_TK1_K20_ADC_CH3H)) {
					ret = adc_registers(&slaveXfer);

				} else if ((slaveRxData[1] >= APALIS_TK1_K20_TSCREG) && (slaveRxData[1] <= APALIS_TK1_K20_TSC_YPH)) {
					ret = tsc_registers(&slaveXfer);
#endif
				} else if ((slaveRxData[1] >= APALIS_TK1_K20_GPIOREG) && (slaveRxData[1] <= APALIS_TK1_K20_GPIO_STA)) {
					ret = gpio_registers(&slaveXfer);
				} else {
					/* Register not defined */
					ret = -EINVAL;
				}

				if (ret < 0) {
					PRINTF("Invalid read/write ret = %d rx[0] = 0x%x, rx[1] = 0x%x, rx[2] = 0x%x\r\n",
							ret, slaveRxData[0], slaveRxData[1], slaveRxData[2]);
				}

				if (slaveRxData[0] == APALIS_TK1_K20_BULK_READ_INST) {
					slaveXfer.dataSize = ret;
					slaveXfer.rxData = NULL;
#ifdef SPI_DMA
					DSPI_SlaveTransferEDMA(SPI2, &g_dspi_edma_s_handle, &slaveXfer);
#else
					DSPI_SlaveTransferNonBlocking(SPI2, &spi_handle, &slaveXfer);
#endif
					taskEXIT_CRITICAL();
					xSemaphoreTake(spi_msg.sem, portMAX_DELAY);

					if (can_read >= 0) {
						can_spi_read_complete(can_read);
						can_read = -1;
					}
				} else {
					taskEXIT_CRITICAL();
				}
			}
		} else {
			/* Something went wrong, retry */
			DSPI_SlaveTransferAbort(SPI2, &spi_handle);
		}
	}
}