summaryrefslogtreecommitdiff
path: root/lib/psci/psci_main.c
AgeCommit message (Collapse)Author
2018-01-29Add support for SMCCC_VERSION in PSCI featuresDimitris Papastamos
On some platforms it may be necessary to discover the SMCCC version via a PSCI features call. Change-Id: I95281ac2263ca9aefda1809eb03464fbdb8ac24d Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
2017-11-20Flush the affinity data in psci_affinity_infoRoberto Vargas
There is an edge case where the cache maintaince done in psci_do_cpu_off may not seen by some cores. This case is handled in psci_cpu_on_start but it hasn't handled in psci_affinity_info. Change-Id: I4d64f3d1ca9528e364aea8d04e2d254f201e1702 Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
2017-10-13reset2: Add PSCI system_reset2 functionRoberto Vargas
This patch implements PSCI_SYSTEM_RESET2 API as defined in PSCI v1.1 specification. The specification allows architectural and vendor-specific resets via this API. In the current specification, there is only one architectural reset, the warm reset. This reset is intended to provide a fast reboot path that guarantees not to reset system main memory. Change-Id: I057bb81a60cd0fe56465dbb5791d8e1cca025bd3 Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
2017-09-25mem_protect: Add mem_protect APIRoberto Vargas
This patch adds the generic code that links the psci smc handler with the platform function that implements the mem_protect and mem_check_range functionalities. These functions are optional APIs added in PSCI v1.1 (ARM DEN022D). Change-Id: I3bac1307a5ce2c7a196ace76db8317e8d8c8bb3f Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
2017-06-14Tegra: enable 'signed-comparison' compilation warning/errorsVarun Wadekar
This patch enables the 'sign-compare' flag, to enable warning/errors for comparisons between signed/unsigned variables. The warning has been enabled for all the Tegra platforms, to start with. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
2017-05-03Use SPDX license identifiersdp-arm
To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
2017-02-13PSCI: Decouple PSCI stat residency calculation from PMFdp-arm
This patch introduces the following three platform interfaces: * void plat_psci_stat_accounting_start(const psci_power_state_t *state_info) This is an optional hook that platforms can implement in order to perform accounting before entering a low power state. This typically involves capturing a timestamp. * void plat_psci_stat_accounting_stop(const psci_power_state_t *state_info) This is an optional hook that platforms can implement in order to perform accounting after exiting from a low power state. This typically involves capturing a timestamp. * u_register_t plat_psci_stat_get_residency(unsigned int lvl, const psci_power_state_t *state_info, unsigned int last_cpu_index) This is an optional hook that platforms can implement in order to calculate the PSCI stat residency. If any of these interfaces are overridden by the platform, it is recommended that all of them are. By default `ENABLE_PSCI_STAT` is disabled. If `ENABLE_PSCI_STAT` is set but `ENABLE_PMF` is not set then an alternative PSCI stat collection backend must be provided. If both are set, then default weak definitions of these functions are provided, using PMF to calculate the residency. NOTE: Previously, platforms did not have to explicitly set `ENABLE_PMF` since this was automatically done by the top-level Makefile. Change-Id: I17b47804dea68c77bc284df15ee1ccd66bc4b79b Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
2016-10-12Add PMF instrumentation points in TFdp-arm
In order to quantify the overall time spent in the PSCI software implementation, an initial collection of PMF instrumentation points has been added. Instrumentation has been added to the following code paths: - Entry to PSCI SMC handler. The timestamp is captured as early as possible during the runtime exception and stored in memory before entering the PSCI SMC handler. - Exit from PSCI SMC handler. The timestamp is captured after normal return from the PSCI SMC handler or if a low power state was requested it is captured in the bl31 warm boot path before return to normal world. - Entry to low power state. The timestamp is captured before entry to a low power state which implies either standby or power down. As these power states are mutually exclusive, only one timestamp is defined to describe both. It is possible to differentiate between the two power states using the PSCI STAT interface. - Exit from low power state. The timestamp is captured after a standby or power up operation has completed. To calculate the number of cycles spent running code in Trusted Firmware one can perform the following calculation: (exit_psci - enter_psci) - (exit_low_pwr - enter_low_pwr). The resulting number of cycles can be converted to time given the frequency of the counter. Change-Id: Ie3b8f3d16409b6703747093b3a2d5c7429ad0166 Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
2016-09-15PSCI: Add support for PSCI NODE_HW_STATE APIJeenu Viswambharan
This patch adds support for NODE_HW_STATE PSCI API by introducing a new PSCI platform hook (get_node_hw_state). The implementation validates supplied arguments, and then invokes this platform-defined hook and returns its result to the caller. PSCI capabilities are updated accordingly. Also updates porting and firmware design guides. Change-Id: I808e55bdf0c157002a7c104b875779fe50a68a30
2016-07-25Validate psci_find_target_suspend_lvl() resultSandrine Bailleux
This patch adds a runtime check that psci_find_target_suspend_lvl() returns a valid value back to psci_cpu_suspend() and psci_get_stat(). If it is invalid, BL31 will now panic. Note that on the PSCI CPU suspend path there is already a debug assertion checking the validity of the target composite power state, which effectively also checks the validity of the target suspend level. Therefore, the error condition would already be caught in debug builds, but in a release build this assertion would be compiled out. On the PSCI stat path, there is currently no debug assertion checking the validity of the power state before using it as an index into the power domain state array. Although BL31 platforms ports are responsible for validating the power state parameter, the security impact (i.e. an out-of-bounds array access) of a potential platform port bug in this code would be quite high, given that this parameter comes from an untrusted source. The cost of checking this in runtime generic code is low. Change-Id: Icea85b8020e39928ac03ec0cd49805b5857b3906
2016-07-19Introduce PSCI Library InterfaceSoby Mathew
This patch introduces the PSCI Library interface. The major changes introduced are as follows: * Earlier BL31 was responsible for Architectural initialization during cold boot via bl31_arch_setup() whereas PSCI was responsible for the same during warm boot. This functionality is now consolidated by the PSCI library and it does Architectural initialization via psci_arch_setup() during both cold and warm boots. * Earlier the warm boot entry point was always `psci_entrypoint()`. This was not flexible enough as a library interface. Now PSCI expects the runtime firmware to provide the entry point via `psci_setup()`. A new function `bl31_warm_entrypoint` is introduced in BL31 and the previous `psci_entrypoint()` is deprecated. * The `smc_helpers.h` is reorganized to separate the SMC Calling Convention defines from the Trusted Firmware SMC helpers. The former is now in a new header file `smcc.h` and the SMC helpers are moved to Architecture specific header. * The CPU context is used by PSCI for context initialization and restoration after power down (PSCI Context). It is also used by BL31 for SMC handling and context management during Normal-Secure world switch (SMC Context). The `psci_smc_handler()` interface is redefined to not use SMC helper macros thus enabling to decouple the PSCI context from EL3 runtime firmware SMC context. This enables PSCI to be integrated with other runtime firmware using a different SMC context. NOTE: With this patch the architectural setup done in `bl31_arch_setup()` is done as part of `psci_setup()` and hence `bl31_platform_setup()` will be invoked prior to architectural setup. It is highly unlikely that the platform setup will depend on architectural setup and cause any failure. Please be be aware of this change in sequence. Change-Id: I7f497a08d33be234bbb822c28146250cb20dab73
2016-07-18Introduce `el3_runtime` and `PSCI` librariesSoby Mathew
This patch moves the PSCI services and BL31 frameworks like context management and per-cpu data into new library components `PSCI` and `el3_runtime` respectively. This enables PSCI to be built independently from BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant PSCI library sources and gets included by `bl31.mk`. Other changes which are done as part of this patch are: * The runtime services framework is now moved to the `common/` folder to enable reuse. * The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture specific folder. * The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder to `plat/common` folder. The original file location now has a stub which just includes the file from new location to maintain platform compatibility. Most of the changes wouldn't affect platform builds as they just involve changes to the generic bl1.mk and bl31.mk makefiles. NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION. Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86