summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCédric Le Goater <clg@kaod.org>2019-04-18 12:39:39 +0200
committerPaul Mackerras <paulus@ozlabs.org>2019-04-30 19:35:16 +1000
commit232b984b7d55e68971962f07f1dd1d1eb1be52e0 (patch)
tree384927ab56bb638acf1744f0b0986de51c2438a7
parent6520ca64cde71b75dae54f3fcb33517a93d82486 (diff)
KVM: PPC: Book3S HV: XIVE: Add passthrough support
The KVM XICS-over-XIVE device and the proposed KVM XIVE native device implement an IRQ space for the guest using the generic IPI interrupts of the XIVE IC controller. These interrupts are allocated at the OPAL level and "mapped" into the guest IRQ number space in the range 0-0x1FFF. Interrupt management is performed in the XIVE way: using loads and stores on the addresses of the XIVE IPI interrupt ESB pages. Both KVM devices share the same internal structure caching information on the interrupts, among which the xive_irq_data struct containing the addresses of the IPI ESB pages and an extra one in case of pass-through. The later contains the addresses of the ESB pages of the underlying HW controller interrupts, PHB4 in all cases for now. A guest, when running in the XICS legacy interrupt mode, lets the KVM XICS-over-XIVE device "handle" interrupt management, that is to perform the loads and stores on the addresses of the ESB pages of the guest interrupts. However, when running in XIVE native exploitation mode, the KVM XIVE native device exposes the interrupt ESB pages to the guest and lets the guest perform directly the loads and stores. The VMA exposing the ESB pages make use of a custom VM fault handler which role is to populate the VMA with appropriate pages. When a fault occurs, the guest IRQ number is deduced from the offset, and the ESB pages of associated XIVE IPI interrupt are inserted in the VMA (using the internal structure caching information on the interrupts). Supporting device passthrough in the guest running in XIVE native exploitation mode adds some extra refinements because the ESB pages of a different HW controller (PHB4) need to be exposed to the guest along with the initial IPI ESB pages of the XIVE IC controller. But the overall mechanic is the same. When the device HW irqs are mapped into or unmapped from the guest IRQ number space, the passthru_irq helpers, kvmppc_xive_set_mapped() and kvmppc_xive_clr_mapped(), are called to record or clear the passthrough interrupt information and to perform the switch. The approach taken by this patch is to clear the ESB pages of the guest IRQ number being mapped and let the VM fault handler repopulate. The handler will insert the ESB page corresponding to the HW interrupt of the device being passed-through or the initial IPI ESB page if the device is being removed. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
-rw-r--r--Documentation/virtual/kvm/devices/xive.txt19
-rw-r--r--arch/powerpc/kvm/book3s_xive.c15
-rw-r--r--arch/powerpc/kvm/book3s_xive.h9
-rw-r--r--arch/powerpc/kvm/book3s_xive_native.c41
4 files changed, 84 insertions, 0 deletions
diff --git a/Documentation/virtual/kvm/devices/xive.txt b/Documentation/virtual/kvm/devices/xive.txt
index 69ee62d3d4dc..9a24a4525253 100644
--- a/Documentation/virtual/kvm/devices/xive.txt
+++ b/Documentation/virtual/kvm/devices/xive.txt
@@ -43,6 +43,25 @@ the legacy interrupt mode, referred as XICS (POWER7/8).
manage the source: to trigger, to EOI, to turn off the source for
instance.
+ 3. Device pass-through
+
+ When a device is passed-through into the guest, the source
+ interrupts are from a different HW controller (PHB4) and the ESB
+ pages exposed to the guest should accommadate this change.
+
+ The passthru_irq helpers, kvmppc_xive_set_mapped() and
+ kvmppc_xive_clr_mapped() are called when the device HW irqs are
+ mapped into or unmapped from the guest IRQ number space. The KVM
+ device extends these helpers to clear the ESB pages of the guest IRQ
+ number being mapped and then lets the VM fault handler repopulate.
+ The handler will insert the ESB page corresponding to the HW
+ interrupt of the device being passed-through or the initial IPI ESB
+ page if the device has being removed.
+
+ The ESB remapping is fully transparent to the guest and the OS
+ device driver. All handling is done within VFIO and the above
+ helpers in KVM-PPC.
+
* Groups:
1. KVM_DEV_XIVE_GRP_CTRL
diff --git a/arch/powerpc/kvm/book3s_xive.c b/arch/powerpc/kvm/book3s_xive.c
index c1b7aa7dbc28..480a3fc6b9fd 100644
--- a/arch/powerpc/kvm/book3s_xive.c
+++ b/arch/powerpc/kvm/book3s_xive.c
@@ -937,6 +937,13 @@ int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
/* Turn the IPI hard off */
xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
+ /*
+ * Reset ESB guest mapping. Needed when ESB pages are exposed
+ * to the guest in XIVE native mode
+ */
+ if (xive->ops && xive->ops->reset_mapped)
+ xive->ops->reset_mapped(kvm, guest_irq);
+
/* Grab info about irq */
state->pt_number = hw_irq;
state->pt_data = irq_data_get_irq_handler_data(host_data);
@@ -1022,6 +1029,14 @@ int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
state->pt_number = 0;
state->pt_data = NULL;
+ /*
+ * Reset ESB guest mapping. Needed when ESB pages are exposed
+ * to the guest in XIVE native mode
+ */
+ if (xive->ops && xive->ops->reset_mapped) {
+ xive->ops->reset_mapped(kvm, guest_irq);
+ }
+
/* Reconfigure the IPI */
xive_native_configure_irq(state->ipi_number,
kvmppc_xive_vp(xive, state->act_server),
diff --git a/arch/powerpc/kvm/book3s_xive.h b/arch/powerpc/kvm/book3s_xive.h
index 622f594d93e1..e011622dc038 100644
--- a/arch/powerpc/kvm/book3s_xive.h
+++ b/arch/powerpc/kvm/book3s_xive.h
@@ -94,6 +94,11 @@ struct kvmppc_xive_src_block {
struct kvmppc_xive_irq_state irq_state[KVMPPC_XICS_IRQ_PER_ICS];
};
+struct kvmppc_xive;
+
+struct kvmppc_xive_ops {
+ int (*reset_mapped)(struct kvm *kvm, unsigned long guest_irq);
+};
struct kvmppc_xive {
struct kvm *kvm;
@@ -132,6 +137,10 @@ struct kvmppc_xive {
/* Flags */
u8 single_escalation;
+
+ struct kvmppc_xive_ops *ops;
+ struct address_space *mapping;
+ struct mutex mapping_lock;
};
#define KVMPPC_XIVE_Q_COUNT 8
diff --git a/arch/powerpc/kvm/book3s_xive_native.c b/arch/powerpc/kvm/book3s_xive_native.c
index 465eb90ff23e..62648f833adf 100644
--- a/arch/powerpc/kvm/book3s_xive_native.c
+++ b/arch/powerpc/kvm/book3s_xive_native.c
@@ -11,6 +11,7 @@
#include <linux/gfp.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
+#include <linux/file.h>
#include <asm/uaccess.h>
#include <asm/kvm_book3s.h>
#include <asm/kvm_ppc.h>
@@ -165,6 +166,35 @@ bail:
return rc;
}
+/*
+ * Device passthrough support
+ */
+static int kvmppc_xive_native_reset_mapped(struct kvm *kvm, unsigned long irq)
+{
+ struct kvmppc_xive *xive = kvm->arch.xive;
+
+ if (irq >= KVMPPC_XIVE_NR_IRQS)
+ return -EINVAL;
+
+ /*
+ * Clear the ESB pages of the IRQ number being mapped (or
+ * unmapped) into the guest and let the the VM fault handler
+ * repopulate with the appropriate ESB pages (device or IC)
+ */
+ pr_debug("clearing esb pages for girq 0x%lx\n", irq);
+ mutex_lock(&xive->mapping_lock);
+ if (xive->mapping)
+ unmap_mapping_range(xive->mapping,
+ irq * (2ull << PAGE_SHIFT),
+ 2ull << PAGE_SHIFT, 1);
+ mutex_unlock(&xive->mapping_lock);
+ return 0;
+}
+
+static struct kvmppc_xive_ops kvmppc_xive_native_ops = {
+ .reset_mapped = kvmppc_xive_native_reset_mapped,
+};
+
static vm_fault_t xive_native_esb_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
@@ -242,6 +272,8 @@ static const struct vm_operations_struct xive_native_tima_vmops = {
static int kvmppc_xive_native_mmap(struct kvm_device *dev,
struct vm_area_struct *vma)
{
+ struct kvmppc_xive *xive = dev->private;
+
/* We only allow mappings at fixed offset for now */
if (vma->vm_pgoff == KVM_XIVE_TIMA_PAGE_OFFSET) {
if (vma_pages(vma) > 4)
@@ -257,6 +289,13 @@ static int kvmppc_xive_native_mmap(struct kvm_device *dev,
vma->vm_flags |= VM_IO | VM_PFNMAP;
vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
+
+ /*
+ * Grab the KVM device file address_space to be able to clear
+ * the ESB pages mapping when a device is passed-through into
+ * the guest.
+ */
+ xive->mapping = vma->vm_file->f_mapping;
return 0;
}
@@ -971,6 +1010,7 @@ static int kvmppc_xive_native_create(struct kvm_device *dev, u32 type)
xive->dev = dev;
xive->kvm = kvm;
kvm->arch.xive = xive;
+ mutex_init(&xive->mapping_lock);
/*
* Allocate a bunch of VPs. KVM_MAX_VCPUS is a large value for
@@ -984,6 +1024,7 @@ static int kvmppc_xive_native_create(struct kvm_device *dev, u32 type)
ret = -ENXIO;
xive->single_escalation = xive_native_has_single_escalation();
+ xive->ops = &kvmppc_xive_native_ops;
if (ret)
kfree(xive);