summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2017-02-20 12:52:55 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2017-02-20 12:52:55 -0800
commit828cad8ea05d194d8a9452e0793261c2024c23a2 (patch)
tree0ad7c7e044cdcfe75d78da0b52eb2358d4686e02
parent60c906bab124a0627fba04c9ca5e61bba4747c0c (diff)
parentbb3bac2ca9a3a5b7fa601781adf70167a0449d75 (diff)
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: "The main changes in this (fairly busy) cycle were: - There was a class of scheduler bugs related to forgetting to update the rq-clock timestamp which can cause weird and hard to debug problems, so there's a new debug facility for this: which uncovered a whole lot of bugs which convinced us that we want to keep the debug facility. (Peter Zijlstra, Matt Fleming) - Various cputime related updates: eliminate cputime and use u64 nanoseconds directly, simplify and improve the arch interfaces, implement delayed accounting more widely, etc. - (Frederic Weisbecker) - Move code around for better structure plus cleanups (Ingo Molnar) - Move IO schedule accounting deeper into the scheduler plus related changes to improve the situation (Tejun Heo) - ... plus a round of sched/rt and sched/deadline fixes, plus other fixes, updats and cleanups" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (85 commits) sched/core: Remove unlikely() annotation from sched_move_task() sched/autogroup: Rename auto_group.[ch] to autogroup.[ch] sched/topology: Split out scheduler topology code from core.c into topology.c sched/core: Remove unnecessary #include headers sched/rq_clock: Consolidate the ordering of the rq_clock methods delayacct: Include <uapi/linux/taskstats.h> sched/core: Clean up comments sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds sched/clock: Add dummy clear_sched_clock_stable() stub function sched/cputime: Remove generic asm headers sched/cputime: Remove unused nsec_to_cputime() s390, sched/cputime: Remove unused cputime definitions powerpc, sched/cputime: Remove unused cputime definitions s390, sched/cputime: Make arch_cpu_idle_time() to return nsecs ia64, sched/cputime: Remove unused cputime definitions ia64: Convert vtime to use nsec units directly ia64, sched/cputime: Move the nsecs based cputime headers to the last arch using it sched/cputime: Remove jiffies based cputime sched/cputime, vtime: Return nsecs instead of cputime_t to account sched/cputime: Complete nsec conversion of tick based accounting ...
-rw-r--r--Documentation/scheduler/sched-deadline.txt6
-rw-r--r--Documentation/scheduler/sched-rt-group.txt8
-rw-r--r--arch/alpha/include/asm/Kbuild1
-rw-r--r--arch/alpha/kernel/osf_sys.c10
-rw-r--r--arch/arc/include/asm/Kbuild1
-rw-r--r--arch/arm/include/asm/Kbuild1
-rw-r--r--arch/arm64/include/asm/Kbuild1
-rw-r--r--arch/avr32/include/asm/Kbuild1
-rw-r--r--arch/blackfin/include/asm/Kbuild1
-rw-r--r--arch/c6x/include/asm/Kbuild1
-rw-r--r--arch/cris/include/asm/Kbuild1
-rw-r--r--arch/frv/include/asm/Kbuild1
-rw-r--r--arch/h8300/include/asm/Kbuild1
-rw-r--r--arch/hexagon/include/asm/Kbuild1
-rw-r--r--arch/ia64/include/asm/cputime.h6
-rw-r--r--arch/ia64/include/asm/thread_info.h6
-rw-r--r--arch/ia64/kernel/head.S4
-rw-r--r--arch/ia64/kernel/setup.c2
-rw-r--r--arch/ia64/kernel/time.c69
-rw-r--r--arch/m32r/include/asm/Kbuild1
-rw-r--r--arch/m68k/include/asm/Kbuild1
-rw-r--r--arch/metag/include/asm/Kbuild1
-rw-r--r--arch/microblaze/include/asm/Kbuild1
-rw-r--r--arch/mips/include/asm/Kbuild1
-rw-r--r--arch/mips/kernel/binfmt_elfn32.c12
-rw-r--r--arch/mips/kernel/binfmt_elfo32.c12
-rw-r--r--arch/mn10300/include/asm/Kbuild1
-rw-r--r--arch/nios2/include/asm/Kbuild1
-rw-r--r--arch/openrisc/include/asm/Kbuild1
-rw-r--r--arch/parisc/include/asm/Kbuild1
-rw-r--r--arch/parisc/kernel/binfmt_elf32.c11
-rw-r--r--arch/parisc/kernel/setup.c2
-rw-r--r--arch/powerpc/include/asm/accounting.h14
-rw-r--r--arch/powerpc/include/asm/cputime.h177
-rw-r--r--arch/powerpc/include/asm/paca.h1
-rw-r--r--arch/powerpc/kernel/asm-offsets.c8
-rw-r--r--arch/powerpc/kernel/time.c161
-rw-r--r--arch/powerpc/xmon/xmon.c8
-rw-r--r--arch/s390/appldata/appldata_os.c16
-rw-r--r--arch/s390/include/asm/cputime.h109
-rw-r--r--arch/s390/include/asm/lowcore.h65
-rw-r--r--arch/s390/include/asm/processor.h3
-rw-r--r--arch/s390/kernel/idle.c9
-rw-r--r--arch/s390/kernel/vtime.c142
-rw-r--r--arch/score/include/asm/Kbuild1
-rw-r--r--arch/sh/include/asm/Kbuild1
-rw-r--r--arch/sparc/include/asm/Kbuild1
-rw-r--r--arch/tile/include/asm/Kbuild1
-rw-r--r--arch/um/include/asm/Kbuild1
-rw-r--r--arch/unicore32/include/asm/Kbuild1
-rw-r--r--arch/x86/include/asm/Kbuild1
-rw-r--r--arch/x86/kernel/apm_32.c6
-rw-r--r--arch/x86/kernel/cpu/amd.c6
-rw-r--r--arch/x86/kernel/cpu/centaur.c6
-rw-r--r--arch/x86/kernel/cpu/common.c3
-rw-r--r--arch/x86/kernel/cpu/cyrix.c2
-rw-r--r--arch/x86/kernel/cpu/intel.c6
-rw-r--r--arch/x86/kernel/cpu/transmeta.c3
-rw-r--r--arch/x86/kernel/itmt.c6
-rw-r--r--arch/x86/kernel/kvmclock.c2
-rw-r--r--arch/x86/kernel/tsc.c11
-rw-r--r--arch/x86/kvm/hyperv.c5
-rw-r--r--arch/xtensa/include/asm/Kbuild1
-rw-r--r--drivers/cpufreq/cpufreq.c6
-rw-r--r--drivers/cpufreq/cpufreq_governor.c2
-rw-r--r--drivers/cpufreq/cpufreq_stats.c1
-rw-r--r--drivers/isdn/mISDN/stack.c4
-rw-r--r--drivers/macintosh/rack-meter.c28
-rw-r--r--fs/binfmt_elf.c15
-rw-r--r--fs/binfmt_elf_fdpic.c14
-rw-r--r--fs/compat_binfmt_elf.c18
-rw-r--r--fs/jbd2/commit.c2
-rw-r--r--fs/jbd2/journal.c12
-rw-r--r--fs/proc/array.c16
-rw-r--r--fs/proc/stat.c64
-rw-r--r--fs/proc/uptime.c7
-rw-r--r--include/asm-generic/cputime.h15
-rw-r--r--include/asm-generic/cputime_jiffies.h75
-rw-r--r--include/asm-generic/cputime_nsecs.h121
-rw-r--r--include/linux/clocksource.h3
-rw-r--r--include/linux/compat.h20
-rw-r--r--include/linux/cputime.h7
-rw-r--r--include/linux/delayacct.h1
-rw-r--r--include/linux/jiffies.h2
-rw-r--r--include/linux/kernel_stat.h14
-rw-r--r--include/linux/mutex.h4
-rw-r--r--include/linux/posix-timers.h14
-rw-r--r--include/linux/sched.h80
-rw-r--r--include/linux/sched/sysctl.h1
-rw-r--r--include/linux/vtime.h7
-rw-r--r--include/trace/events/timer.h26
-rw-r--r--init/main.c1
-rw-r--r--kernel/acct.c7
-rw-r--r--kernel/delayacct.c6
-rw-r--r--kernel/exit.c4
-rw-r--r--kernel/fork.c2
-rw-r--r--kernel/locking/mutex.c24
-rw-r--r--kernel/sched/Makefile4
-rw-r--r--kernel/sched/autogroup.c (renamed from kernel/sched/auto_group.c)0
-rw-r--r--kernel/sched/autogroup.h (renamed from kernel/sched/auto_group.h)0
-rw-r--r--kernel/sched/clock.c158
-rw-r--r--kernel/sched/completion.c10
-rw-r--r--kernel/sched/core.c2333
-rw-r--r--kernel/sched/cpuacct.c2
-rw-r--r--kernel/sched/cputime.c178
-rw-r--r--kernel/sched/deadline.c13
-rw-r--r--kernel/sched/debug.c4
-rw-r--r--kernel/sched/fair.c94
-rw-r--r--kernel/sched/idle_task.c2
-rw-r--r--kernel/sched/rt.c10
-rw-r--r--kernel/sched/sched.h137
-rw-r--r--kernel/sched/stats.h4
-rw-r--r--kernel/sched/stop_task.c2
-rw-r--r--kernel/sched/topology.c1658
-rw-r--r--kernel/signal.c12
-rw-r--r--kernel/sys.c16
-rw-r--r--kernel/sysctl.c2
-rw-r--r--kernel/time/clocksource.c4
-rw-r--r--kernel/time/itimer.c60
-rw-r--r--kernel/time/jiffies.c32
-rw-r--r--kernel/time/posix-cpu-timers.c170
-rw-r--r--kernel/time/time.c10
-rw-r--r--kernel/time/timeconst.bc6
-rw-r--r--kernel/tsacct.c21
124 files changed, 3140 insertions, 3370 deletions
diff --git a/Documentation/scheduler/sched-deadline.txt b/Documentation/scheduler/sched-deadline.txt
index 8e37b0ba2c9d..cbc1b46cbf70 100644
--- a/Documentation/scheduler/sched-deadline.txt
+++ b/Documentation/scheduler/sched-deadline.txt
@@ -408,6 +408,11 @@ CONTENTS
* the new scheduling related syscalls that manipulate it, i.e.,
sched_setattr() and sched_getattr() are implemented.
+ For debugging purposes, the leftover runtime and absolute deadline of a
+ SCHED_DEADLINE task can be retrieved through /proc/<pid>/sched (entries
+ dl.runtime and dl.deadline, both values in ns). A programmatic way to
+ retrieve these values from production code is under discussion.
+
4.3 Default behavior
---------------------
@@ -476,6 +481,7 @@ CONTENTS
Still missing:
+ - programmatic way to retrieve current runtime and absolute deadline
- refinements to deadline inheritance, especially regarding the possibility
of retaining bandwidth isolation among non-interacting tasks. This is
being studied from both theoretical and practical points of view, and
diff --git a/Documentation/scheduler/sched-rt-group.txt b/Documentation/scheduler/sched-rt-group.txt
index a03f0d944fe6..d8fce3e78457 100644
--- a/Documentation/scheduler/sched-rt-group.txt
+++ b/Documentation/scheduler/sched-rt-group.txt
@@ -158,11 +158,11 @@ as its prone to starvation without deadline scheduling.
Consider two sibling groups A and B; both have 50% bandwidth, but A's
period is twice the length of B's.
-* group A: period=100000us, runtime=10000us
- - this runs for 0.01s once every 0.1s
+* group A: period=100000us, runtime=50000us
+ - this runs for 0.05s once every 0.1s
-* group B: period= 50000us, runtime=10000us
- - this runs for 0.01s twice every 0.1s (or once every 0.05 sec).
+* group B: period= 50000us, runtime=25000us
+ - this runs for 0.025s twice every 0.1s (or once every 0.05 sec).
This means that currently a while (1) loop in A will run for the full period of
B and can starve B's tasks (assuming they are of lower priority) for a whole
diff --git a/arch/alpha/include/asm/Kbuild b/arch/alpha/include/asm/Kbuild
index bf8475ce85ee..baa152b9348e 100644
--- a/arch/alpha/include/asm/Kbuild
+++ b/arch/alpha/include/asm/Kbuild
@@ -1,7 +1,6 @@
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += exec.h
generic-y += export.h
generic-y += irq_work.h
diff --git a/arch/alpha/kernel/osf_sys.c b/arch/alpha/kernel/osf_sys.c
index 54d8616644e2..9d27a7d333dc 100644
--- a/arch/alpha/kernel/osf_sys.c
+++ b/arch/alpha/kernel/osf_sys.c
@@ -1145,7 +1145,7 @@ struct rusage32 {
SYSCALL_DEFINE2(osf_getrusage, int, who, struct rusage32 __user *, ru)
{
struct rusage32 r;
- cputime_t utime, stime;
+ u64 utime, stime;
unsigned long utime_jiffies, stime_jiffies;
if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
@@ -1155,16 +1155,16 @@ SYSCALL_DEFINE2(osf_getrusage, int, who, struct rusage32 __user *, ru)
switch (who) {
case RUSAGE_SELF:
task_cputime(current, &utime, &stime);
- utime_jiffies = cputime_to_jiffies(utime);
- stime_jiffies = cputime_to_jiffies(stime);
+ utime_jiffies = nsecs_to_jiffies(utime);
+ stime_jiffies = nsecs_to_jiffies(stime);
jiffies_to_timeval32(utime_jiffies, &r.ru_utime);
jiffies_to_timeval32(stime_jiffies, &r.ru_stime);
r.ru_minflt = current->min_flt;
r.ru_majflt = current->maj_flt;
break;
case RUSAGE_CHILDREN:
- utime_jiffies = cputime_to_jiffies(current->signal->cutime);
- stime_jiffies = cputime_to_jiffies(current->signal->cstime);
+ utime_jiffies = nsecs_to_jiffies(current->signal->cutime);
+ stime_jiffies = nsecs_to_jiffies(current->signal->cstime);
jiffies_to_timeval32(utime_jiffies, &r.ru_utime);
jiffies_to_timeval32(stime_jiffies, &r.ru_stime);
r.ru_minflt = current->signal->cmin_flt;
diff --git a/arch/arc/include/asm/Kbuild b/arch/arc/include/asm/Kbuild
index c332604606dd..63a04013d05a 100644
--- a/arch/arc/include/asm/Kbuild
+++ b/arch/arc/include/asm/Kbuild
@@ -2,7 +2,6 @@ generic-y += auxvec.h
generic-y += bitsperlong.h
generic-y += bugs.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += device.h
generic-y += div64.h
generic-y += emergency-restart.h
diff --git a/arch/arm/include/asm/Kbuild b/arch/arm/include/asm/Kbuild
index efb21757d41f..b14e8c7d71bd 100644
--- a/arch/arm/include/asm/Kbuild
+++ b/arch/arm/include/asm/Kbuild
@@ -2,7 +2,6 @@
generic-y += bitsperlong.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += current.h
generic-y += early_ioremap.h
generic-y += emergency-restart.h
diff --git a/arch/arm64/include/asm/Kbuild b/arch/arm64/include/asm/Kbuild
index 8365a84c2640..a12f1afc95a3 100644
--- a/arch/arm64/include/asm/Kbuild
+++ b/arch/arm64/include/asm/Kbuild
@@ -1,6 +1,5 @@
generic-y += bugs.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += delay.h
generic-y += div64.h
generic-y += dma.h
diff --git a/arch/avr32/include/asm/Kbuild b/arch/avr32/include/asm/Kbuild
index 241b9b9729d8..3d7ef2c17a7c 100644
--- a/arch/avr32/include/asm/Kbuild
+++ b/arch/avr32/include/asm/Kbuild
@@ -1,6 +1,5 @@
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += delay.h
generic-y += device.h
generic-y += div64.h
diff --git a/arch/blackfin/include/asm/Kbuild b/arch/blackfin/include/asm/Kbuild
index 2fb67b59d188..d6fa60b158be 100644
--- a/arch/blackfin/include/asm/Kbuild
+++ b/arch/blackfin/include/asm/Kbuild
@@ -2,7 +2,6 @@
generic-y += auxvec.h
generic-y += bitsperlong.h
generic-y += bugs.h
-generic-y += cputime.h
generic-y += current.h
generic-y += device.h
generic-y += div64.h
diff --git a/arch/c6x/include/asm/Kbuild b/arch/c6x/include/asm/Kbuild
index 64465e7e2245..4e9f57433f3a 100644
--- a/arch/c6x/include/asm/Kbuild
+++ b/arch/c6x/include/asm/Kbuild
@@ -5,7 +5,6 @@ generic-y += barrier.h
generic-y += bitsperlong.h
generic-y += bugs.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += current.h
generic-y += device.h
generic-y += div64.h
diff --git a/arch/cris/include/asm/Kbuild b/arch/cris/include/asm/Kbuild
index 1778805f6380..9f19e19bff9d 100644
--- a/arch/cris/include/asm/Kbuild
+++ b/arch/cris/include/asm/Kbuild
@@ -4,7 +4,6 @@ generic-y += barrier.h
generic-y += bitsperlong.h
generic-y += clkdev.h
generic-y += cmpxchg.h
-generic-y += cputime.h
generic-y += device.h
generic-y += div64.h
generic-y += errno.h
diff --git a/arch/frv/include/asm/Kbuild b/arch/frv/include/asm/Kbuild
index 1fa084cf1a43..0f5b0d5d313c 100644
--- a/arch/frv/include/asm/Kbuild
+++ b/arch/frv/include/asm/Kbuild
@@ -1,6 +1,5 @@
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += exec.h
generic-y += irq_work.h
generic-y += mcs_spinlock.h
diff --git a/arch/h8300/include/asm/Kbuild b/arch/h8300/include/asm/Kbuild
index 373cb23301e3..5efd0c87f3c0 100644
--- a/arch/h8300/include/asm/Kbuild
+++ b/arch/h8300/include/asm/Kbuild
@@ -5,7 +5,6 @@ generic-y += bugs.h
generic-y += cacheflush.h
generic-y += checksum.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += current.h
generic-y += delay.h
generic-y += device.h
diff --git a/arch/hexagon/include/asm/Kbuild b/arch/hexagon/include/asm/Kbuild
index db8ddabc6bd2..a43a7c90e4af 100644
--- a/arch/hexagon/include/asm/Kbuild
+++ b/arch/hexagon/include/asm/Kbuild
@@ -6,7 +6,6 @@ generic-y += barrier.h
generic-y += bug.h
generic-y += bugs.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += current.h
generic-y += device.h
generic-y += div64.h
diff --git a/arch/ia64/include/asm/cputime.h b/arch/ia64/include/asm/cputime.h
index e2d3f5baf265..3d665c0627a8 100644
--- a/arch/ia64/include/asm/cputime.h
+++ b/arch/ia64/include/asm/cputime.h
@@ -18,11 +18,7 @@
#ifndef __IA64_CPUTIME_H
#define __IA64_CPUTIME_H
-#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
-# include <asm-generic/cputime.h>
-#else
-# include <asm/processor.h>
-# include <asm-generic/cputime_nsecs.h>
+#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
extern void arch_vtime_task_switch(struct task_struct *tsk);
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
diff --git a/arch/ia64/include/asm/thread_info.h b/arch/ia64/include/asm/thread_info.h
index c7026429816b..8742d741d19a 100644
--- a/arch/ia64/include/asm/thread_info.h
+++ b/arch/ia64/include/asm/thread_info.h
@@ -27,6 +27,12 @@ struct thread_info {
mm_segment_t addr_limit; /* user-level address space limit */
int preempt_count; /* 0=premptable, <0=BUG; will also serve as bh-counter */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
+ __u64 utime;
+ __u64 stime;
+ __u64 gtime;
+ __u64 hardirq_time;
+ __u64 softirq_time;
+ __u64 idle_time;
__u64 ac_stamp;
__u64 ac_leave;
__u64 ac_stime;
diff --git a/arch/ia64/kernel/head.S b/arch/ia64/kernel/head.S
index c9b5e942f671..3204fddc439c 100644
--- a/arch/ia64/kernel/head.S
+++ b/arch/ia64/kernel/head.S
@@ -1031,7 +1031,7 @@ GLOBAL_ENTRY(ia64_native_sched_clock)
END(ia64_native_sched_clock)
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
-GLOBAL_ENTRY(cycle_to_cputime)
+GLOBAL_ENTRY(cycle_to_nsec)
alloc r16=ar.pfs,1,0,0,0
addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
;;
@@ -1047,7 +1047,7 @@ GLOBAL_ENTRY(cycle_to_cputime)
;;
shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
br.ret.sptk.many rp
-END(cycle_to_cputime)
+END(cycle_to_nsec)
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
#ifdef CONFIG_IA64_BRL_EMU
diff --git a/arch/ia64/kernel/setup.c b/arch/ia64/kernel/setup.c
index 7ec7acc844c2..c483ece3eb84 100644
--- a/arch/ia64/kernel/setup.c
+++ b/arch/ia64/kernel/setup.c
@@ -619,6 +619,8 @@ setup_arch (char **cmdline_p)
check_sal_cache_flush();
#endif
paging_init();
+
+ clear_sched_clock_stable();
}
/*
diff --git a/arch/ia64/kernel/time.c b/arch/ia64/kernel/time.c
index 71775b95d6cc..faa116822c4c 100644
--- a/arch/ia64/kernel/time.c
+++ b/arch/ia64/kernel/time.c
@@ -21,6 +21,7 @@
#include <linux/timex.h>
#include <linux/timekeeper_internal.h>
#include <linux/platform_device.h>
+#include <linux/cputime.h>
#include <asm/machvec.h>
#include <asm/delay.h>
@@ -59,18 +60,43 @@ static struct clocksource *itc_clocksource;
#include <linux/kernel_stat.h>
-extern cputime_t cycle_to_cputime(u64 cyc);
+extern u64 cycle_to_nsec(u64 cyc);
-void vtime_account_user(struct task_struct *tsk)
+void vtime_flush(struct task_struct *tsk)
{
- cputime_t delta_utime;
struct thread_info *ti = task_thread_info(tsk);
+ u64 delta;
- if (ti->ac_utime) {
- delta_utime = cycle_to_cputime(ti->ac_utime);
- account_user_time(tsk, delta_utime);
- ti->ac_utime = 0;
+ if (ti->utime)
+ account_user_time(tsk, cycle_to_nsec(ti->utime));
+
+ if (ti->gtime)
+ account_guest_time(tsk, cycle_to_nsec(ti->gtime));
+
+ if (ti->idle_time)
+ account_idle_time(cycle_to_nsec(ti->idle_time));
+
+ if (ti->stime) {
+ delta = cycle_to_nsec(ti->stime);
+ account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
+ }
+
+ if (ti->hardirq_time) {
+ delta = cycle_to_nsec(ti->hardirq_time);
+ account_system_index_time(tsk, delta, CPUTIME_IRQ);
+ }
+
+ if (ti->softirq_time) {
+ delta = cycle_to_nsec(ti->softirq_time));
+ account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
}
+
+ ti->utime = 0;
+ ti->gtime = 0;
+ ti->idle_time = 0;
+ ti->stime = 0;
+ ti->hardirq_time = 0;
+ ti->softirq_time = 0;
}
/*
@@ -83,7 +109,7 @@ void arch_vtime_task_switch(struct task_struct *prev)
struct thread_info *pi = task_thread_info(prev);
struct thread_info *ni = task_thread_info(current);
- pi->ac_stamp = ni->ac_stamp;
+ ni->ac_stamp = pi->ac_stamp;
ni->ac_stime = ni->ac_utime = 0;
}
@@ -91,18 +117,15 @@ void arch_vtime_task_switch(struct task_struct *prev)
* Account time for a transition between system, hard irq or soft irq state.
* Note that this function is called with interrupts enabled.
*/
-static cputime_t vtime_delta(struct task_struct *tsk)
+static __u64 vtime_delta(struct task_struct *tsk)
{
struct thread_info *ti = task_thread_info(tsk);
- cputime_t delta_stime;
- __u64 now;
+ __u64 now, delta_stime;
WARN_ON_ONCE(!irqs_disabled());
now = ia64_get_itc();
-
- delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
- ti->ac_stime = 0;
+ delta_stime = now - ti->ac_stamp;
ti->ac_stamp = now;
return delta_stime;
@@ -110,15 +133,25 @@ static cputime_t vtime_delta(struct task_struct *tsk)
void vtime_account_system(struct task_struct *tsk)
{
- cputime_t delta = vtime_delta(tsk);
-
- account_system_time(tsk, 0, delta);
+ struct thread_info *ti = task_thread_info(tsk);
+ __u64 stime = vtime_delta(tsk);
+
+ if ((tsk->flags & PF_VCPU) && !irq_count())
+ ti->gtime += stime;
+ else if (hardirq_count())
+ ti->hardirq_time += stime;
+ else if (in_serving_softirq())
+ ti->softirq_time += stime;
+ else
+ ti->stime += stime;
}
EXPORT_SYMBOL_GPL(vtime_account_system);
void vtime_account_idle(struct task_struct *tsk)
{
- account_idle_time(vtime_delta(tsk));
+ struct thread_info *ti = task_thread_info(tsk);
+
+ ti->idle_time += vtime_delta(tsk);
}
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
diff --git a/arch/m32r/include/asm/Kbuild b/arch/m32r/include/asm/Kbuild
index 860e440611c9..652100b64a71 100644
--- a/arch/m32r/include/asm/Kbuild
+++ b/arch/m32r/include/asm/Kbuild
@@ -1,6 +1,5 @@
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += exec.h
generic-y += irq_work.h
generic-y += kvm_para.h
diff --git a/arch/m68k/include/asm/Kbuild b/arch/m68k/include/asm/Kbuild
index 1f2e5d31cb24..6c76d6c24b3d 100644
--- a/arch/m68k/include/asm/Kbuild
+++ b/arch/m68k/include/asm/Kbuild
@@ -1,7 +1,6 @@
generic-y += barrier.h
generic-y += bitsperlong.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += device.h
generic-y += emergency-restart.h
generic-y += errno.h
diff --git a/arch/metag/include/asm/Kbuild b/arch/metag/include/asm/Kbuild
index 167150c701d1..d3731f0db73b 100644
--- a/arch/metag/include/asm/Kbuild
+++ b/arch/metag/include/asm/Kbuild
@@ -2,7 +2,6 @@ generic-y += auxvec.h
generic-y += bitsperlong.h
generic-y += bugs.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += current.h
generic-y += device.h
generic-y += dma.h
diff --git a/arch/microblaze/include/asm/Kbuild b/arch/microblaze/include/asm/Kbuild
index b0ae88c9fed9..6275eb051801 100644
--- a/arch/microblaze/include/asm/Kbuild
+++ b/arch/microblaze/include/asm/Kbuild
@@ -1,7 +1,6 @@
generic-y += barrier.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += device.h
generic-y += exec.h
generic-y += irq_work.h
diff --git a/arch/mips/include/asm/Kbuild b/arch/mips/include/asm/Kbuild
index 3269b742a75e..994b1c4392be 100644
--- a/arch/mips/include/asm/Kbuild
+++ b/arch/mips/include/asm/Kbuild
@@ -1,7 +1,6 @@
# MIPS headers
generic-(CONFIG_GENERIC_CSUM) += checksum.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += current.h
generic-y += dma-contiguous.h
generic-y += emergency-restart.h
diff --git a/arch/mips/kernel/binfmt_elfn32.c b/arch/mips/kernel/binfmt_elfn32.c
index 9c7f3e136d50..4a2ff3953b99 100644
--- a/arch/mips/kernel/binfmt_elfn32.c
+++ b/arch/mips/kernel/binfmt_elfn32.c
@@ -99,15 +99,7 @@ jiffies_to_compat_timeval(unsigned long jiffies, struct compat_timeval *value)
#undef TASK_SIZE
#define TASK_SIZE TASK_SIZE32
-#undef cputime_to_timeval
-#define cputime_to_timeval cputime_to_compat_timeval
-static __inline__ void
-cputime_to_compat_timeval(const cputime_t cputime, struct compat_timeval *value)
-{
- unsigned long jiffies = cputime_to_jiffies(cputime);
-
- value->tv_usec = (jiffies % HZ) * (1000000L / HZ);
- value->tv_sec = jiffies / HZ;
-}
+#undef ns_to_timeval
+#define ns_to_timeval ns_to_compat_timeval
#include "../../../fs/binfmt_elf.c"
diff --git a/arch/mips/kernel/binfmt_elfo32.c b/arch/mips/kernel/binfmt_elfo32.c
index 1ab34322dd97..3916404e7fd1 100644
--- a/arch/mips/kernel/binfmt_elfo32.c
+++ b/arch/mips/kernel/binfmt_elfo32.c
@@ -102,15 +102,7 @@ jiffies_to_compat_timeval(unsigned long jiffies, struct compat_timeval *value)
#undef TASK_SIZE
#define TASK_SIZE TASK_SIZE32
-#undef cputime_to_timeval
-#define cputime_to_timeval cputime_to_compat_timeval
-static __inline__ void
-cputime_to_compat_timeval(const cputime_t cputime, struct compat_timeval *value)
-{
- unsigned long jiffies = cputime_to_jiffies(cputime);
-
- value->tv_usec = (jiffies % HZ) * (1000000L / HZ);
- value->tv_sec = jiffies / HZ;
-}
+#undef ns_to_timeval
+#define ns_to_timeval ns_to_compat_timeval
#include "../../../fs/binfmt_elf.c"
diff --git a/arch/mn10300/include/asm/Kbuild b/arch/mn10300/include/asm/Kbuild
index 1c8dd0f5cd5d..97f64c723a0c 100644
--- a/arch/mn10300/include/asm/Kbuild
+++ b/arch/mn10300/include/asm/Kbuild
@@ -1,7 +1,6 @@
generic-y += barrier.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += exec.h
generic-y += irq_work.h
generic-y += mcs_spinlock.h
diff --git a/arch/nios2/include/asm/Kbuild b/arch/nios2/include/asm/Kbuild
index d63330e88379..35b0e883761a 100644
--- a/arch/nios2/include/asm/Kbuild
+++ b/arch/nios2/include/asm/Kbuild
@@ -6,7 +6,6 @@ generic-y += bitsperlong.h
generic-y += bug.h
generic-y += bugs.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += current.h
generic-y += device.h
generic-y += div64.h
diff --git a/arch/openrisc/include/asm/Kbuild b/arch/openrisc/include/asm/Kbuild
index 2832f031fb11..ef8d1ccc3e45 100644
--- a/arch/openrisc/include/asm/Kbuild
+++ b/arch/openrisc/include/asm/Kbuild
@@ -12,7 +12,6 @@ generic-y += checksum.h
generic-y += clkdev.h
generic-y += cmpxchg-local.h
generic-y += cmpxchg.h
-generic-y += cputime.h
generic-y += current.h
generic-y += device.h
generic-y += div64.h
diff --git a/arch/parisc/include/asm/Kbuild b/arch/parisc/include/asm/Kbuild
index 91f53c07f410..4e179d770d69 100644
--- a/arch/parisc/include/asm/Kbuild
+++ b/arch/parisc/include/asm/Kbuild
@@ -2,7 +2,6 @@
generic-y += auxvec.h
generic-y += barrier.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += device.h
generic-y += div64.h
generic-y += emergency-restart.h
diff --git a/arch/parisc/kernel/binfmt_elf32.c b/arch/parisc/kernel/binfmt_elf32.c
index 00dc66f9c2ba..f2adcf33f8f2 100644
--- a/arch/parisc/kernel/binfmt_elf32.c
+++ b/arch/parisc/kernel/binfmt_elf32.c
@@ -91,14 +91,7 @@ struct elf_prpsinfo32
current->thread.map_base = DEFAULT_MAP_BASE32; \
current->thread.task_size = DEFAULT_TASK_SIZE32 \
-#undef cputime_to_timeval
-#define cputime_to_timeval cputime_to_compat_timeval
-static __inline__ void
-cputime_to_compat_timeval(const cputime_t cputime, struct compat_timeval *value)
-{
- unsigned long jiffies = cputime_to_jiffies(cputime);
- value->tv_usec = (jiffies % HZ) * (1000000L / HZ);
- value->tv_sec = jiffies / HZ;
-}
+#undef ns_to_timeval
+#define ns_to_timeval ns_to_compat_timeval
#include "../../../fs/binfmt_elf.c"
diff --git a/arch/parisc/kernel/setup.c b/arch/parisc/kernel/setup.c
index 2e66a887788e..068ed3607bac 100644
--- a/arch/parisc/kernel/setup.c
+++ b/arch/parisc/kernel/setup.c
@@ -36,6 +36,7 @@
#undef PCI_DEBUG
#include <linux/proc_fs.h>
#include <linux/export.h>
+#include <linux/sched.h>
#include <asm/processor.h>
#include <asm/sections.h>
@@ -176,6 +177,7 @@ void __init setup_arch(char **cmdline_p)
conswitchp = &dummy_con; /* we use do_take_over_console() later ! */
#endif
+ clear_sched_clock_stable();
}
/*
diff --git a/arch/powerpc/include/asm/accounting.h b/arch/powerpc/include/asm/accounting.h
index c133246df467..3abcf98ed2e0 100644
--- a/arch/powerpc/include/asm/accounting.h
+++ b/arch/powerpc/include/asm/accounting.h
@@ -12,9 +12,17 @@
/* Stuff for accurate time accounting */
struct cpu_accounting_data {
- unsigned long user_time; /* accumulated usermode TB ticks */
- unsigned long system_time; /* accumulated system TB ticks */
- unsigned long user_time_scaled; /* accumulated usermode SPURR ticks */
+ /* Accumulated cputime values to flush on ticks*/
+ unsigned long utime;
+ unsigned long stime;
+ unsigned long utime_scaled;
+ unsigned long stime_scaled;
+ unsigned long gtime;
+ unsigned long hardirq_time;
+ unsigned long softirq_time;
+ unsigned long steal_time;
+ unsigned long idle_time;
+ /* Internal counters */
unsigned long starttime; /* TB value snapshot */
unsigned long starttime_user; /* TB value on exit to usermode */
unsigned long startspurr; /* SPURR value snapshot */
diff --git a/arch/powerpc/include/asm/cputime.h b/arch/powerpc/include/asm/cputime.h
index aa2e6a34b872..99b541865d8d 100644
--- a/arch/powerpc/include/asm/cputime.h
+++ b/arch/powerpc/include/asm/cputime.h
@@ -16,12 +16,7 @@
#ifndef __POWERPC_CPUTIME_H
#define __POWERPC_CPUTIME_H
-#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
-#include <asm-generic/cputime.h>
-#ifdef __KERNEL__
-static inline void setup_cputime_one_jiffy(void) { }
-#endif
-#else
+#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
#include <linux/types.h>
#include <linux/time.h>
@@ -36,65 +31,6 @@ typedef u64 __nocast cputime64_t;
#define cmpxchg_cputime(ptr, old, new) cmpxchg(ptr, old, new)
#ifdef __KERNEL__
-
-/*
- * One jiffy in timebase units computed during initialization
- */
-extern cputime_t cputime_one_jiffy;
-
-/*
- * Convert cputime <-> jiffies
- */
-extern u64 __cputime_jiffies_factor;
-
-static inline unsigned long cputime_to_jiffies(const cputime_t ct)
-{
- return mulhdu((__force u64) ct, __cputime_jiffies_factor);
-}
-
-static inline cputime_t jiffies_to_cputime(const unsigned long jif)
-{
- u64 ct;
- unsigned long sec;
-
- /* have to be a little careful about overflow */
- ct = jif % HZ;
- sec = jif / HZ;
- if (ct) {
- ct *= tb_ticks_per_sec;
- do_div(ct, HZ);
- }
- if (sec)
- ct += (cputime_t) sec * tb_ticks_per_sec;
- return (__force cputime_t) ct;
-}
-
-static inline void setup_cputime_one_jiffy(void)
-{
- cputime_one_jiffy = jiffies_to_cputime(1);
-}
-
-static inline cputime64_t jiffies64_to_cputime64(const u64 jif)
-{
- u64 ct;
- u64 sec = jif;
-
- /* have to be a little careful about overflow */
- ct = do_div(sec, HZ);
- if (ct) {
- ct *= tb_ticks_per_sec;
- do_div(ct, HZ);
- }
- if (sec)
- ct += (u64) sec * tb_ticks_per_sec;
- return (__force cputime64_t) ct;
-}
-
-static inline u64 cputime64_to_jiffies64(const cputime_t ct)
-{
- return mulhdu((__force u64) ct, __cputime_jiffies_factor);
-}
-
/*
* Convert cputime <-> microseconds
*/
@@ -105,117 +41,6 @@ static inline unsigned long cputime_to_usecs(const cputime_t ct)
return mulhdu((__force u64) ct, __cputime_usec_factor);
}
-static inline cputime_t usecs_to_cputime(const unsigned long us)
-{
- u64 ct;
- unsigned long sec;
-
- /* have to be a little careful about overflow */
- ct = us % 1000000;
- sec = us / 1000000;
- if (ct) {
- ct *= tb_ticks_per_sec;
- do_div(ct, 1000000);
- }
- if (sec)
- ct += (cputime_t) sec * tb_ticks_per_sec;
- return (__force cputime_t) ct;
-}
-
-#define usecs_to_cputime64(us) usecs_to_cputime(us)
-
-/*
- * Convert cputime <-> seconds
- */
-extern u64 __cputime_sec_factor;
-
-static inline unsigned long cputime_to_secs(const cputime_t ct)
-{
- return mulhdu((__force u64) ct, __cputime_sec_factor);
-}
-
-static inline cputime_t secs_to_cputime(const unsigned long sec)
-{
- return (__force cputime_t)((u64) sec * tb_ticks_per_sec);
-}
-
-/*
- * Convert cputime <-> timespec
- */
-static inline void cputime_to_timespec(const cputime_t ct, struct timespec *p)
-{
- u64 x = (__force u64) ct;
- unsigned int frac;
-
- frac = do_div(x, tb_ticks_per_sec);
- p->tv_sec = x;
- x = (u64) frac * 1000000000;
- do_div(x, tb_ticks_per_sec);
- p->tv_nsec = x;
-}
-
-static inline cputime_t timespec_to_cputime(const struct timespec *p)
-{
- u64 ct;
-
- ct = (u64) p->tv_nsec * tb_ticks_per_sec;
- do_div(ct, 1000000000);
- return (__force cputime_t)(ct + (u64) p->tv_sec * tb_ticks_per_sec);
-}
-
-/*
- * Convert cputime <-> timeval
- */
-static inline void cputime_to_timeval(const cputime_t ct, struct timeval *p)
-{
- u64 x = (__force u64) ct;
- unsigned int frac;
-
- frac = do_div(x, tb_ticks_per_sec);
- p->tv_sec = x;
- x = (u64) frac * 1000000;
- do_div(x, tb_ticks_per_sec);
- p->tv_usec = x;
-}
-
-static inline cputime_t timeval_to_cputime(const struct timeval *p)
-{
- u64 ct;
-
- ct = (u64) p->tv_usec * tb_ticks_per_sec;
- do_div(ct, 1000000);
- return (__force cputime_t)(ct + (u64) p->tv_sec * tb_ticks_per_sec);
-}
-
-/*
- * Convert cputime <-> clock_t (units of 1/USER_HZ seconds)
- */
-extern u64 __cputime_clockt_factor;
-
-static inline unsigned long cputime_to_clock_t(const cputime_t ct)
-{
- return mulhdu((__force u64) ct, __cputime_clockt_factor);
-}
-
-static inline cputime_t clock_t_to_cputime(const unsigned long clk)
-{
- u64 ct;
- unsigned long sec;
-
- /* have to be a little careful about overflow */
- ct = clk % USER_HZ;
- sec = clk / USER_HZ;
- if (ct) {
- ct *= tb_ticks_per_sec;
- do_div(ct, USER_HZ);
- }
- if (sec)
- ct += (u64) sec * tb_ticks_per_sec;
- return (__force cputime_t) ct;
-}
-
-#define cputime64_to_clock_t(ct) cputime_to_clock_t((cputime_t)(ct))
-
/*
* PPC64 uses PACA which is task independent for storing accounting data while
* PPC32 uses struct thread_info, therefore at task switch the accounting data
diff --git a/arch/powerpc/include/asm/paca.h b/arch/powerpc/include/asm/paca.h
index 6a6792bb39fb..708c3e592eeb 100644
--- a/arch/powerpc/include/asm/paca.h
+++ b/arch/powerpc/include/asm/paca.h
@@ -187,7 +187,6 @@ struct paca_struct {
/* Stuff for accurate time accounting */
struct cpu_accounting_data accounting;
- u64 stolen_time; /* TB ticks taken by hypervisor */
u64 dtl_ridx; /* read index in dispatch log */
struct dtl_entry *dtl_curr; /* pointer corresponding to dtl_ridx */
diff --git a/arch/powerpc/kernel/asm-offsets.c b/arch/powerpc/kernel/asm-offsets.c
index 195a9fc8f81c..9e8e771f8acb 100644
--- a/arch/powerpc/kernel/asm-offsets.c
+++ b/arch/powerpc/kernel/asm-offsets.c
@@ -249,9 +249,9 @@ int main(void)
DEFINE(ACCOUNT_STARTTIME_USER,
offsetof(struct paca_struct, accounting.starttime_user));
DEFINE(ACCOUNT_USER_TIME,
- offsetof(struct paca_struct, accounting.user_time));
+ offsetof(struct paca_struct, accounting.utime));
DEFINE(ACCOUNT_SYSTEM_TIME,
- offsetof(struct paca_struct, accounting.system_time));
+ offsetof(struct paca_struct, accounting.stime));
DEFINE(PACA_TRAP_SAVE, offsetof(struct paca_struct, trap_save));
DEFINE(PACA_NAPSTATELOST, offsetof(struct paca_struct, nap_state_lost));
DEFINE(PACA_SPRG_VDSO, offsetof(struct paca_struct, sprg_vdso));
@@ -262,9 +262,9 @@ int main(void)
DEFINE(ACCOUNT_STARTTIME_USER,
offsetof(struct thread_info, accounting.starttime_user));
DEFINE(ACCOUNT_USER_TIME,
- offsetof(struct thread_info, accounting.user_time));
+ offsetof(struct thread_info, accounting.utime));
DEFINE(ACCOUNT_SYSTEM_TIME,
- offsetof(struct thread_info, accounting.system_time));
+ offsetof(struct thread_info, accounting.stime));
#endif
#endif /* CONFIG_PPC64 */
diff --git a/arch/powerpc/kernel/time.c b/arch/powerpc/kernel/time.c
index bc2e08d415fa..14e485525e31 100644
--- a/arch/powerpc/kernel/time.c
+++ b/arch/powerpc/kernel/time.c
@@ -57,6 +57,7 @@
#include <linux/clk-provider.h>
#include <linux/suspend.h>
#include <linux/rtc.h>
+#include <linux/cputime.h>
#include <asm/trace.h>
#include <asm/io.h>
@@ -72,7 +73,6 @@
#include <asm/smp.h>
#include <asm/vdso_datapage.h>
#include <asm/firmware.h>
-#include <asm/cputime.h>
#include <asm/asm-prototypes.h>
/* powerpc clocksource/clockevent code */
@@ -152,20 +152,11 @@ EXPORT_SYMBOL_GPL(ppc_tb_freq);
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
/*
- * Factors for converting from cputime_t (timebase ticks) to
- * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
- * These are all stored as 0.64 fixed-point binary fractions.
+ * Factor for converting from cputime_t (timebase ticks) to
+ * microseconds. This is stored as 0.64 fixed-point binary fraction.
*/
-u64 __cputime_jiffies_factor;
-EXPORT_SYMBOL(__cputime_jiffies_factor);
u64 __cputime_usec_factor;
EXPORT_SYMBOL(__cputime_usec_factor);
-u64 __cputime_sec_factor;
-EXPORT_SYMBOL(__cputime_sec_factor);
-u64 __cputime_clockt_factor;
-EXPORT_SYMBOL(__cputime_clockt_factor);
-
-cputime_t cputime_one_jiffy;
#ifdef CONFIG_PPC_SPLPAR
void (*dtl_consumer)(struct dtl_entry *, u64);
@@ -181,14 +172,8 @@ static void calc_cputime_factors(void)
{
struct div_result res;
- div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
- __cputime_jiffies_factor = res.result_low;
div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
__cputime_usec_factor = res.result_low;
- div128_by_32(1, 0, tb_ticks_per_sec, &res);
- __cputime_sec_factor = res.result_low;
- div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
- __cputime_clockt_factor = res.result_low;
}
/*
@@ -271,25 +256,19 @@ void accumulate_stolen_time(void)
sst = scan_dispatch_log(acct->starttime_user);
ust = scan_dispatch_log(acct->starttime);
- acct->system_time -= sst;
- acct->user_time -= ust;
- local_paca->stolen_time += ust + sst;
+ acct->stime -= sst;
+ acct->utime -= ust;
+ acct->steal_time += ust + sst;
local_paca->soft_enabled = save_soft_enabled;
}
static inline u64 calculate_stolen_time(u64 stop_tb)
{
- u64 stolen = 0;
+ if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
+ return scan_dispatch_log(stop_tb);
- if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
- stolen = scan_dispatch_log(stop_tb);
- get_paca()->accounting.system_time -= stolen;
- }
-
- stolen += get_paca()->stolen_time;
- get_paca()->stolen_time = 0;
- return stolen;
+ return 0;
}
#else /* CONFIG_PPC_SPLPAR */
@@ -305,28 +284,27 @@ static inline u64 calculate_stolen_time(u64 stop_tb)
* or soft irq state.
*/
static unsigned long vtime_delta(struct task_struct *tsk,
- unsigned long *sys_scaled,
- unsigned long *stolen)
+ unsigned long *stime_scaled,
+ unsigned long *steal_time)
{
unsigned long now, nowscaled, deltascaled;
- unsigned long udelta, delta, user_scaled;
+ unsigned long stime;
+ unsigned long utime, utime_scaled;
struct cpu_accounting_data *acct = get_accounting(tsk);
WARN_ON_ONCE(!irqs_disabled());
now = mftb();
nowscaled = read_spurr(now);
- acct->system_time += now - acct->starttime;
+ stime = now - acct->starttime;
acct->starttime = now;
deltascaled = nowscaled - acct->startspurr;
acct->startspurr = nowscaled;
- *stolen = calculate_stolen_time(now);
+ *steal_time = calculate_stolen_time(now);
- delta = acct->system_time;
- acct->system_time = 0;
- udelta = acct->user_time - acct->utime_sspurr;
- acct->utime_sspurr = acct->user_time;
+ utime = acct->utime - acct->utime_sspurr;
+ acct->utime_sspurr = acct->utime;
/*
* Because we don't read the SPURR on every kernel entry/exit,
@@ -338,62 +316,105 @@ static unsigned long vtime_delta(struct task_struct *tsk,
* the user ticks get saved up in paca->user_time_scaled to be
* used by account_process_tick.
*/
- *sys_scaled = delta;
- user_scaled = udelta;
- if (deltascaled != delta + udelta) {
- if (udelta) {
- *sys_scaled = deltascaled * delta / (delta + udelta);
- user_scaled = deltascaled - *sys_scaled;
+ *stime_scaled = stime;
+ utime_scaled = utime;
+ if (deltascaled != stime + utime) {
+ if (utime) {
+ *stime_scaled = deltascaled * stime / (stime + utime);
+ utime_scaled = deltascaled - *stime_scaled;
} else {
- *sys_scaled = deltascaled;
+ *stime_scaled = deltascaled;
}
}
- acct->user_time_scaled += user_scaled;
+ acct->utime_scaled += utime_scaled;
- return delta;
+ return stime;
}
void vtime_account_system(struct task_struct *tsk)
{
- unsigned long delta, sys_scaled, stolen;
+ unsigned long stime, stime_scaled, steal_time;
+ struct cpu_accounting_data *acct = get_accounting(tsk);
+
+ stime = vtime_delta(tsk, &stime_scaled, &steal_time);
- delta = vtime_delta(tsk, &sys_scaled, &stolen);
- account_system_time(tsk, 0, delta);
- tsk->stimescaled += sys_scaled;
- if (stolen)
- account_steal_time(stolen);
+ stime -= min(stime, steal_time);
+ acct->steal_time += steal_time;
+
+ if ((tsk->flags & PF_VCPU) && !irq_count()) {
+ acct->gtime += stime;
+ acct->utime_scaled += stime_scaled;
+ } else {
+ if (hardirq_count())
+ acct->hardirq_time += stime;
+ else if (in_serving_softirq())
+ acct->softirq_time += stime;
+ else
+ acct->stime += stime;
+
+ acct->stime_scaled += stime_scaled;
+ }
}
EXPORT_SYMBOL_GPL(vtime_account_system);
void vtime_account_idle(struct task_struct *tsk)
{
- unsigned long delta, sys_scaled, stolen;
+ unsigned long stime, stime_scaled, steal_time;
+ struct cpu_accounting_data *acct = get_accounting(tsk);
- delta = vtime_delta(tsk, &sys_scaled, &stolen);
- account_idle_time(delta + stolen);
+ stime = vtime_delta(tsk, &stime_scaled, &steal_time);
+ acct->idle_time += stime + steal_time;
}
/*
- * Transfer the user time accumulated in the paca
- * by the exception entry and exit code to the generic
- * process user time records.
+ * Account the whole cputime accumulated in the paca
* Must be called with interrupts disabled.
* Assumes that vtime_account_system/idle() has been called
* recently (i.e. since the last entry from usermode) so that
* get_paca()->user_time_scaled is up to date.
*/
-void vtime_account_user(struct task_struct *tsk)
+void vtime_flush(struct task_struct *tsk)
{
- cputime_t utime, utimescaled;
struct cpu_accounting_data *acct = get_accounting(tsk);
- utime = acct->user_time;
- utimescaled = acct->user_time_scaled;
- acct->user_time = 0;
- acct->user_time_scaled = 0;
+ if (acct->utime)
+ account_user_time(tsk, cputime_to_nsecs(acct->utime));
+
+ if (acct->utime_scaled)
+ tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
+
+ if (acct->gtime)
+ account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
+
+ if (acct->steal_time)
+ account_steal_time(cputime_to_nsecs(acct->steal_time));
+
+ if (acct->idle_time)
+ account_idle_time(cputime_to_nsecs(acct->idle_time));
+
+ if (acct->stime)
+ account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
+ CPUTIME_SYSTEM);
+ if (acct->stime_scaled)
+ tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
+
+ if (acct->hardirq_time)
+ account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
+ CPUTIME_IRQ);
+ if (acct->softirq_time)
+ account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
+ CPUTIME_SOFTIRQ);
+
+ acct->utime = 0;
+ acct->utime_scaled = 0;
acct->utime_sspurr = 0;
- account_user_time(tsk, utime);
- tsk->utimescaled += utimescaled;
+ acct->gtime = 0;
+ acct->steal_time = 0;
+ acct->idle_time = 0;
+ acct->stime = 0;
+ acct->stime_scaled = 0;
+ acct->hardirq_time = 0;
+ acct->softirq_time = 0;
}
#ifdef CONFIG_PPC32
@@ -407,8 +428,7 @@ void arch_vtime_task_switch(struct task_struct *prev)
struct cpu_accounting_data *acct = get_accounting(current);
acct->starttime = get_accounting(prev)->starttime;
- acct->system_time = 0;
- acct->user_time = 0;
+ acct->startspurr = get_accounting(prev)->startspurr;
}
#endif /* CONFIG_PPC32 */
@@ -1018,7 +1038,6 @@ void __init time_init(void)
tb_ticks_per_sec = ppc_tb_freq;
tb_ticks_per_usec = ppc_tb_freq / 1000000;
calc_cputime_factors();
- setup_cputime_one_jiffy();
/*
* Compute scale factor for sched_clock.
diff --git a/arch/powerpc/xmon/xmon.c b/arch/powerpc/xmon/xmon.c
index 9c0e17cf6886..3f864c36d847 100644
--- a/arch/powerpc/xmon/xmon.c
+++ b/arch/powerpc/xmon/xmon.c
@@ -2287,14 +2287,14 @@ static void dump_one_paca(int cpu)
DUMP(p, subcore_sibling_mask, "x");
#endif
- DUMP(p, accounting.user_time, "llx");
- DUMP(p, accounting.system_time, "llx");
- DUMP(p, accounting.user_time_scaled, "llx");
+ DUMP(p, accounting.utime, "llx");
+ DUMP(p, accounting.stime, "llx");
+ DUMP(p, accounting.utime_scaled, "llx");
DUMP(p, accounting.starttime, "llx");
DUMP(p, accounting.starttime_user, "llx");
DUMP(p, accounting.startspurr, "llx");
DUMP(p, accounting.utime_sspurr, "llx");
- DUMP(p, stolen_time, "llx");
+ DUMP(p, accounting.steal_time, "llx");
#undef DUMP
catch_memory_errors = 0;
diff --git a/arch/s390/appldata/appldata_os.c b/arch/s390/appldata/appldata_os.c
index 69b23b25ac34..08b9e942a262 100644
--- a/arch/s390/appldata/appldata_os.c
+++ b/arch/s390/appldata/appldata_os.c
@@ -113,21 +113,21 @@ static void appldata_get_os_data(void *data)
j = 0;
for_each_online_cpu(i) {
os_data->os_cpu[j].per_cpu_user =
- cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_USER]);
+ nsecs_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_USER]);
os_data->os_cpu[j].per_cpu_nice =
- cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_NICE]);
+ nsecs_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_NICE]);
os_data->os_cpu[j].per_cpu_system =
- cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]);
+ nsecs_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]);
os_data->os_cpu[j].per_cpu_idle =
- cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_IDLE]);
+ nsecs_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_IDLE]);
os_data->os_cpu[j].per_cpu_irq =
- cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_IRQ]);
+ nsecs_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_IRQ]);
os_data->os_cpu[j].per_cpu_softirq =
- cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]);
+ nsecs_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]);
os_data->os_cpu[j].per_cpu_iowait =
- cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_IOWAIT]);
+ nsecs_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_IOWAIT]);
os_data->os_cpu[j].per_cpu_steal =
- cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_STEAL]);
+ nsecs_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_STEAL]);
os_data->os_cpu[j].cpu_id = i;
j++;
}
diff --git a/arch/s390/include/asm/cputime.h b/arch/s390/include/asm/cputime.h
index 221b454c734a..d1c407ddf703 100644
--- a/arch/s390/include/asm/cputime.h
+++ b/arch/s390/include/asm/cputime.h
@@ -25,33 +25,6 @@ static inline unsigned long __div(unsigned long long n, unsigned long base)
return n / base;
}
-#define cputime_one_jiffy jiffies_to_cputime(1)
-
-/*
- * Convert cputime to jiffies and back.
- */
-static inline unsigned long cputime_to_jiffies(const cputime_t cputime)
-{
- return __div((__force unsigned long long) cputime, CPUTIME_PER_SEC / HZ);
-}
-
-static inline cputime_t jiffies_to_cputime(const unsigned int jif)
-{
- return (__force cputime_t)(jif * (CPUTIME_PER_SEC / HZ));
-}
-
-static inline u64 cputime64_to_jiffies64(cputime64_t cputime)
-{
- unsigned long long jif = (__force unsigned long long) cputime;
- do_div(jif, CPUTIME_PER_SEC / HZ);
- return jif;
-}
-
-static inline cputime64_t jiffies64_to_cputime64(const u64 jif)
-{
- return (__force cputime64_t)(jif * (CPUTIME_PER_SEC / HZ));
-}
-
/*
* Convert cputime to microseconds and back.
*/
@@ -60,88 +33,8 @@ static inline unsigned int cputime_to_usecs(const cputime_t cputime)
return (__force unsigned long long) cputime >> 12;
}
-static inline cputime_t usecs_to_cputime(const unsigned int m)
-{
- return (__force cputime_t)(m * CPUTIME_PER_USEC);
-}
-
-#define usecs_to_cputime64(m) usecs_to_cputime(m)
-
-/*
- * Convert cputime to milliseconds and back.
- */
-static inline unsigned int cputime_to_secs(const cputime_t cputime)
-{
- return __div((__force unsigned long long) cputime, CPUTIME_PER_SEC / 2) >> 1;
-}
-
-static inline cputime_t secs_to_cputime(const unsigned int s)
-{
- return (__force cputime_t)(s * CPUTIME_PER_SEC);
-}
-
-/*
- * Convert cputime to timespec and back.
- */
-static inline cputime_t timespec_to_cputime(const struct timespec *value)
-{
- unsigned long long ret = value->tv_sec * CPUTIME_PER_SEC;
- return (__force cputime_t)(ret + __div(value->tv_nsec * CPUTIME_PER_USEC, NSEC_PER_USEC));
-}
-
-static inline void cputime_to_timespec(const cputime_t cputime,
- struct timespec *value)
-{
- unsigned long long __cputime = (__force unsigned long long) cputime;
- value->tv_nsec = (__cputime % CPUTIME_PER_SEC) * NSEC_PER_USEC / CPUTIME_PER_USEC;
- value->tv_sec = __cputime / CPUTIME_PER_SEC;
-}
-
-/*
- * Convert cputime to timeval and back.
- * Since cputime and timeval have the same resolution (microseconds)
- * this is easy.
- */
-static inline cputime_t timeval_to_cputime(const struct timeval *value)
-{
- unsigned long long ret = value->tv_sec * CPUTIME_PER_SEC;
- return (__force cputime_t)(ret + value->tv_usec * CPUTIME_PER_USEC);
-}
-
-static inline void cputime_to_timeval(const cputime_t cputime,
- struct timeval *value)
-{
- unsigned long long __cputime = (__force unsigned long long) cputime;
- value->tv_usec = (__cputime % CPUTIME_PER_SEC) / CPUTIME_PER_USEC;
- value->tv_sec = __cputime / CPUTIME_PER_SEC;
-}
-
-/*
- * Convert cputime to clock and back.
- */
-static inline clock_t cputime_to_clock_t(cputime_t cputime)
-{
- unsigned long long clock = (__force unsigned long long) cputime;
- do_div(clock, CPUTIME_PER_SEC / USER_HZ);
- return clock;
-}
-
-static inline cputime_t clock_t_to_cputime(unsigned long x)
-{
- return (__force cputime_t)(x * (CPUTIME_PER_SEC / USER_HZ));
-}
-
-/*
- * Convert cputime64 to clock.
- */
-static inline clock_t cputime64_to_clock_t(cputime64_t cputime)
-{
- unsigned long long clock = (__force unsigned long long) cputime;
- do_div(clock, CPUTIME_PER_SEC / USER_HZ);
- return clock;
-}
-cputime64_t arch_cpu_idle_time(int cpu);
+u64 arch_cpu_idle_time(int cpu);
#define arch_idle_time(cpu) arch_cpu_idle_time(cpu)
diff --git a/arch/s390/include/asm/lowcore.h b/arch/s390/include/asm/lowcore.h
index 9bfad2ad6312..61261e0e95c0 100644
--- a/arch/s390/include/asm/lowcore.h
+++ b/arch/s390/include/asm/lowcore.h
@@ -85,53 +85,56 @@ struct lowcore {
__u64 mcck_enter_timer; /* 0x02c0 */
__u64 exit_timer; /* 0x02c8 */
__u64 user_timer; /* 0x02d0 */
- __u64 system_timer; /* 0x02d8 */
- __u64 steal_timer; /* 0x02e0 */
- __u64 last_update_timer; /* 0x02e8 */
- __u64 last_update_clock; /* 0x02f0 */
- __u64 int_clock; /* 0x02f8 */
- __u64 mcck_clock; /* 0x0300 */
- __u64 clock_comparator; /* 0x0308 */
+ __u64 guest_timer; /* 0x02d8 */
+ __u64 system_timer; /* 0x02e0 */
+ __u64 hardirq_timer; /* 0x02e8 */
+ __u64 softirq_timer; /* 0x02f0 */
+ __u64 steal_timer; /* 0x02f8 */
+ __u64 last_update_timer; /* 0x0300 */
+ __u64 last_update_clock; /* 0x0308 */
+ __u64 int_clock; /* 0x0310 */
+ __u64 mcck_clock; /* 0x0318 */
+ __u64 clock_comparator; /* 0x0320 */
/* Current process. */
- __u64 current_task; /* 0x0310 */
- __u8 pad_0x318[0x320-0x318]; /* 0x0318 */
- __u64 kernel_stack; /* 0x0320 */
+ __u64 current_task; /* 0x0328 */
+ __u8 pad_0x318[0x320-0x318]; /* 0x0330 */
+ __u64 kernel_stack; /* 0x0338 */
/* Interrupt, panic and restart stack. */
- __u64 async_stack; /* 0x0328 */
- __u64 panic_stack; /* 0x0330 */
- __u64 restart_stack; /* 0x0338 */
+ __u64 async_stack; /* 0x0340 */
+ __u64 panic_stack; /* 0x0348 */
+ __u64 restart_stack; /* 0x0350 */
/* Restart function and parameter. */
- __u64 restart_fn; /* 0x0340 */
- __u64 restart_data; /* 0x0348 */
- __u64 restart_source; /* 0x0350 */
+ __u64 restart_fn; /* 0x0358 */
+ __u64 restart_data; /* 0x0360 */
+ __u64 restart_source; /* 0x0368 */
/* Address space pointer. */
- __u64 kernel_asce; /* 0x0358 */
- __u64 user_asce; /* 0x0360 */
+ __u64 kernel_asce; /* 0x0370 */
+ __u64 user_asce; /* 0x0378 */
/*
* The lpp and current_pid fields form a
* 64-bit value that is set as program
* parameter with the LPP instruction.
*/
- __u32 lpp; /* 0x0368 */
- __u32 current_pid; /* 0x036c */
+ __u32 lpp; /* 0x0380 */
+ __u32 current_pid; /* 0x0384 */
/* SMP info area */
- __u32 cpu_nr; /* 0x0370 */
- __u32 softirq_pending; /* 0x0374 */
- __u64 percpu_offset; /* 0x0378 */
- __u64 vdso_per_cpu_data; /* 0x0380 */
- __u64 machine_flags; /* 0x0388 */
- __u32 preempt_count; /* 0x0390 */
- __u8 pad_0x0394[0x0398-0x0394]; /* 0x0394 */
- __u64 gmap; /* 0x0398 */
- __u32 spinlock_lockval; /* 0x03a0 */
- __u32 fpu_flags; /* 0x03a4 */
- __u8 pad_0x03a8[0x0400-0x03a8]; /* 0x03a8 */
+ __u32 cpu_nr; /* 0x0388 */
+ __u32 softirq_pending; /* 0x038c */
+ __u64 percpu_offset; /* 0x0390 */
+ __u64 vdso_per_cpu_data; /* 0x0398 */
+ __u64 machine_flags; /* 0x03a0 */
+ __u32 preempt_count; /* 0x03a8 */
+ __u8 pad_0x03ac[0x03b0-0x03ac]; /* 0x03ac */
+ __u64 gmap; /* 0x03b0 */
+ __u32 spinlock_lockval; /* 0x03b8 */
+ __u32 fpu_flags; /* 0x03bc */
+ __u8 pad_0x03c0[0x0400-0x03c0]; /* 0x03c0 */
/* Per cpu primary space access list */
__u32 paste[16]; /* 0x0400 */
diff --git a/arch/s390/include/asm/processor.h b/arch/s390/include/asm/processor.h
index 6bca916a5ba0..977a5b6501b8 100644
--- a/arch/s390/include/asm/processor.h
+++ b/arch/s390/include/asm/processor.h
@@ -111,7 +111,10 @@ struct thread_struct {
unsigned int acrs[NUM_ACRS];
unsigned long ksp; /* kernel stack pointer */
unsigned long user_timer; /* task cputime in user space */
+ unsigned long guest_timer; /* task cputime in kvm guest */
unsigned long system_timer; /* task cputime in kernel space */
+ unsigned long hardirq_timer; /* task cputime in hardirq context */
+ unsigned long softirq_timer; /* task cputime in softirq context */
unsigned long sys_call_table; /* system call table address */
mm_segment_t mm_segment;
unsigned long gmap_addr; /* address of last gmap fault. */
diff --git a/arch/s390/kernel/idle.c b/arch/s390/kernel/idle.c
index 7a55c29b0b33..d3bf69ef42cf 100644
--- a/arch/s390/kernel/idle.c
+++ b/arch/s390/kernel/idle.c
@@ -12,7 +12,7 @@
#include <linux/notifier.h>
#include <linux/init.h>
#include <linux/cpu.h>
-#include <asm/cputime.h>
+#include <linux/cputime.h>
#include <asm/nmi.h>
#include <asm/smp.h>
#include "entry.h"
@@ -43,7 +43,7 @@ void enabled_wait(void)
idle->clock_idle_enter = idle->clock_idle_exit = 0ULL;
idle->idle_time += idle_time;
idle->idle_count++;
- account_idle_time(idle_time);
+ account_idle_time(cputime_to_nsecs(idle_time));
write_seqcount_end(&idle->seqcount);
}
NOKPROBE_SYMBOL(enabled_wait);
@@ -84,7 +84,7 @@ static ssize_t show_idle_time(struct device *dev,
}
DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
-cputime64_t arch_cpu_idle_time(int cpu)
+u64 arch_cpu_idle_time(int cpu)
{
struct s390_idle_data *idle = &per_cpu(s390_idle, cpu);
unsigned long long now, idle_enter, idle_exit;
@@ -96,7 +96,8 @@ cputime64_t arch_cpu_idle_time(int cpu)
idle_enter = ACCESS_ONCE(idle->clock_idle_enter);
idle_exit = ACCESS_ONCE(idle->clock_idle_exit);
} while (read_seqcount_retry(&idle->seqcount, seq));
- return idle_enter ? ((idle_exit ?: now) - idle_enter) : 0;
+
+ return cputime_to_nsecs(idle_enter ? ((idle_exit ?: now) - idle_enter) : 0);
}
void arch_cpu_idle_enter(void)
diff --git a/arch/s390/kernel/vtime.c b/arch/s390/kernel/vtime.c
index 1b5c5ee9fc1b..b4a3e9e06ef2 100644
--- a/arch/s390/kernel/vtime.c
+++ b/arch/s390/kernel/vtime.c
@@ -6,13 +6,13 @@
*/
#include <linux/kernel_stat.h>
+#include <linux/cputime.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/timex.h>
#include <linux/types.h>
#include <linux/time.h>
-#include <asm/cputime.h>
#include <asm/vtimer.h>
#include <asm/vtime.h>
#include <asm/cpu_mf.h>
@@ -90,14 +90,41 @@ static void update_mt_scaling(void)
__this_cpu_write(mt_scaling_jiffies, jiffies_64);
}
+static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
+{
+ u64 delta;
+
+ delta = new - *tsk_vtime;
+ *tsk_vtime = new;
+ return delta;
+}
+
+
+static inline u64 scale_vtime(u64 vtime)
+{
+ u64 mult = __this_cpu_read(mt_scaling_mult);
+ u64 div = __this_cpu_read(mt_scaling_div);
+
+ if (smp_cpu_mtid)
+ return vtime * mult / div;
+ return vtime;
+}
+
+static void account_system_index_scaled(struct task_struct *p,
+ cputime_t cputime, cputime_t scaled,
+ enum cpu_usage_stat index)
+{
+ p->stimescaled += cputime_to_nsecs(scaled);
+ account_system_index_time(p, cputime_to_nsecs(cputime), index);
+}
+
/*
* Update process times based on virtual cpu times stored by entry.S
* to the lowcore fields user_timer, system_timer & steal_clock.
*/
static int do_account_vtime(struct task_struct *tsk)
{
- u64 timer, clock, user, system, steal;
- u64 user_scaled, system_scaled;
+ u64 timer, clock, user, guest, system, hardirq, softirq, steal;
timer = S390_lowcore.last_update_timer;
clock = S390_lowcore.last_update_clock;
@@ -110,53 +137,76 @@ static int do_account_vtime(struct task_struct *tsk)
#endif
: "=m" (S390_lowcore.last_update_timer),
"=m" (S390_lowcore.last_update_clock));
- S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
- S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock;
+ clock = S390_lowcore.last_update_clock - clock;
+ timer -= S390_lowcore.last_update_timer;
+
+ if (hardirq_count())
+ S390_lowcore.hardirq_timer += timer;
+ else
+ S390_lowcore.system_timer += timer;
/* Update MT utilization calculation */
if (smp_cpu_mtid &&
time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
update_mt_scaling();
- user = S390_lowcore.user_timer - tsk->thread.user_timer;
- S390_lowcore.steal_timer -= user;
- tsk->thread.user_timer = S390_lowcore.user_timer;
-
- system = S390_lowcore.system_timer - tsk->thread.system_timer;
- S390_lowcore.steal_timer -= system;
- tsk->thread.system_timer = S390_lowcore.system_timer;
-
- user_scaled = user;
- system_scaled = system;
- /* Do MT utilization scaling */
- if (smp_cpu_mtid) {
- u64 mult = __this_cpu_read(mt_scaling_mult);
- u64 div = __this_cpu_read(mt_scaling_div);
+ /* Calculate cputime delta */
+ user = update_tsk_timer(&tsk->thread.user_timer,
+ READ_ONCE(S390_lowcore.user_timer));
+ guest = update_tsk_timer(&tsk->thread.guest_timer,
+ READ_ONCE(S390_lowcore.guest_timer));
+ system = update_tsk_timer(&tsk->thread.system_timer,
+ READ_ONCE(S390_lowcore.system_timer));
+ hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
+ READ_ONCE(S390_lowcore.hardirq_timer));
+ softirq = update_tsk_timer(&tsk->thread.softirq_timer,
+ READ_ONCE(S390_lowcore.softirq_timer));
+ S390_lowcore.steal_timer +=
+ clock - user - guest - system - hardirq - softirq;
+
+ /* Push account value */
+ if (user) {
+ account_user_time(tsk, cputime_to_nsecs(user));
+ tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
+ }
- user_scaled = (user_scaled * mult) / div;
- system_scaled = (system_scaled * mult) / div;
+ if (guest) {
+ account_guest_time(tsk, cputime_to_nsecs(guest));
+ tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
}
- account_user_time(tsk, user);
- tsk->utimescaled += user_scaled;
- account_system_time(tsk, 0, system);
- tsk->stimescaled += system_scaled;
+
+ if (system)
+ account_system_index_scaled(tsk, system, scale_vtime(system),
+ CPUTIME_SYSTEM);
+ if (hardirq)
+ account_system_index_scaled(tsk, hardirq, scale_vtime(hardirq),
+ CPUTIME_IRQ);
+ if (softirq)
+ account_system_index_scaled(tsk, softirq, scale_vtime(softirq),
+ CPUTIME_SOFTIRQ);
steal = S390_lowcore.steal_timer;
if ((s64) steal > 0) {
S390_lowcore.steal_timer = 0;
- account_steal_time(steal);
+ account_steal_time(cputime_to_nsecs(steal));
}
- return virt_timer_forward(user + system);
+ return virt_timer_forward(user + guest + system + hardirq + softirq);
}
void vtime_task_switch(struct task_struct *prev)
{
do_account_vtime(prev);
prev->thread.user_timer = S390_lowcore.user_timer;
+ prev->thread.guest_timer = S390_lowcore.guest_timer;
prev->thread.system_timer = S390_lowcore.system_timer;
+ prev->thread.hardirq_timer = S390_lowcore.hardirq_timer;
+ prev->thread.softirq_timer = S390_lowcore.softirq_timer;
S390_lowcore.user_timer = current->thread.user_timer;
+ S390_lowcore.guest_timer = current->thread.guest_timer;
S390_lowcore.system_timer = current->thread.system_timer;
+ S390_lowcore.hardirq_timer = current->thread.hardirq_timer;
+ S390_lowcore.softirq_timer = current->thread.softirq_timer;
}
/*
@@ -164,7 +214,7 @@ void vtime_task_switch(struct task_struct *prev)
* accounting system time in order to correctly compute
* the stolen time accounting.
*/
-void vtime_account_user(struct task_struct *tsk)
+void vtime_flush(struct task_struct *tsk)
{
if (do_account_vtime(tsk))
virt_timer_expire();
@@ -176,32 +226,22 @@ void vtime_account_user(struct task_struct *tsk)
*/
void vtime_account_irq_enter(struct task_struct *tsk)
{
- u64 timer, system, system_scaled;
+ u64 timer;
timer = S390_lowcore.last_update_timer;
S390_lowcore.last_update_timer = get_vtimer();
- S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
-
- /* Update MT utilization calculation */
- if (smp_cpu_mtid &&
- time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
- update_mt_scaling();
-
- system = S390_lowcore.system_timer - tsk->thread.system_timer;
- S390_lowcore.steal_timer -= system;
- tsk->thread.system_timer = S390_lowcore.system_timer;
- system_scaled = system;
- /* Do MT utilization scaling */
- if (smp_cpu_mtid) {
- u64 mult = __this_cpu_read(mt_scaling_mult);
- u64 div = __this_cpu_read(mt_scaling_div);
-
- system_scaled = (system_scaled * mult) / div;
- }
- account_system_time(tsk, 0, system);
- tsk->stimescaled += system_scaled;
-
- virt_timer_forward(system);
+ timer -= S390_lowcore.last_update_timer;
+
+ if ((tsk->flags & PF_VCPU) && (irq_count() == 0))
+ S390_lowcore.guest_timer += timer;
+ else if (hardirq_count())
+ S390_lowcore.hardirq_timer += timer;
+ else if (in_serving_softirq())
+ S390_lowcore.softirq_timer += timer;
+ else
+ S390_lowcore.system_timer += timer;
+
+ virt_timer_forward(timer);
}
EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
diff --git a/arch/score/include/asm/Kbuild b/arch/score/include/asm/Kbuild
index a05218ff3fe4..51970bb6c4fe 100644
--- a/arch/score/include/asm/Kbuild
+++ b/arch/score/include/asm/Kbuild
@@ -4,7 +4,6 @@ header-y +=
generic-y += barrier.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += irq_work.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
diff --git a/arch/sh/include/asm/Kbuild b/arch/sh/include/asm/Kbuild
index 751c3373a92c..cf2a75063b53 100644
--- a/arch/sh/include/asm/Kbuild
+++ b/arch/sh/include/asm/Kbuild
@@ -1,7 +1,6 @@
generic-y += bitsperlong.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += current.h
generic-y += delay.h
generic-y += div64.h
diff --git a/arch/sparc/include/asm/Kbuild b/arch/sparc/include/asm/Kbuild
index 0569bfac4afb..e9e837bc3158 100644
--- a/arch/sparc/include/asm/Kbuild
+++ b/arch/sparc/include/asm/Kbuild
@@ -2,7 +2,6 @@
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += div64.h
generic-y += emergency-restart.h
generic-y += exec.h
diff --git a/arch/tile/include/asm/Kbuild b/arch/tile/include/asm/Kbuild
index 20f2ba6d79be..aa48b6eaff2d 100644
--- a/arch/tile/include/asm/Kbuild
+++ b/arch/tile/include/asm/Kbuild
@@ -4,7 +4,6 @@ header-y += ../arch/
generic-y += bug.h
generic-y += bugs.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += emergency-restart.h
generic-y += errno.h
generic-y += exec.h
diff --git a/arch/um/include/asm/Kbuild b/arch/um/include/asm/Kbuild
index 052f7f6d0551..90c281cd7e1d 100644
--- a/arch/um/include/asm/Kbuild
+++ b/arch/um/include/asm/Kbuild
@@ -1,7 +1,6 @@
generic-y += barrier.h
generic-y += bug.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += current.h
generic-y += delay.h
generic-y += device.h
diff --git a/arch/unicore32/include/asm/Kbuild b/arch/unicore32/include/asm/Kbuild
index 256c45b3ae34..5d51ade89f4c 100644
--- a/arch/unicore32/include/asm/Kbuild
+++ b/arch/unicore32/include/asm/Kbuild
@@ -4,7 +4,6 @@ generic-y += auxvec.h
generic-y += bitsperlong.h
generic-y += bugs.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += current.h
generic-y += device.h
generic-y += div64.h
diff --git a/arch/x86/include/asm/Kbuild b/arch/x86/include/asm/Kbuild
index 2b892e2313a9..5d6a53fd7521 100644
--- a/arch/x86/include/asm/Kbuild
+++ b/arch/x86/include/asm/Kbuild
@@ -7,7 +7,6 @@ generated-y += unistd_64_x32.h
generated-y += xen-hypercalls.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += dma-contiguous.h
generic-y += early_ioremap.h
generic-y += mcs_spinlock.h
diff --git a/arch/x86/kernel/apm_32.c b/arch/x86/kernel/apm_32.c
index 45d44c173cf9..4a7080c84a5a 100644
--- a/arch/x86/kernel/apm_32.c
+++ b/arch/x86/kernel/apm_32.c
@@ -905,8 +905,8 @@ static int apm_cpu_idle(struct cpuidle_device *dev,
{
static int use_apm_idle; /* = 0 */
static unsigned int last_jiffies; /* = 0 */
- static unsigned int last_stime; /* = 0 */
- cputime_t stime, utime;
+ static u64 last_stime; /* = 0 */
+ u64 stime, utime;
int apm_idle_done = 0;
unsigned int jiffies_since_last_check = jiffies - last_jiffies;
@@ -919,7 +919,7 @@ recalc:
} else if (jiffies_since_last_check > idle_period) {
unsigned int idle_percentage;
- idle_percentage = cputime_to_jiffies(stime - last_stime);
+ idle_percentage = nsecs_to_jiffies(stime - last_stime);
idle_percentage *= 100;
idle_percentage /= jiffies_since_last_check;
use_apm_idle = (idle_percentage > idle_threshold);
diff --git a/arch/x86/kernel/cpu/amd.c b/arch/x86/kernel/cpu/amd.c
index 2b4cf04239b6..4e95b2e0d95f 100644
--- a/arch/x86/kernel/cpu/amd.c
+++ b/arch/x86/kernel/cpu/amd.c
@@ -555,8 +555,10 @@ static void early_init_amd(struct cpuinfo_x86 *c)
if (c->x86_power & (1 << 8)) {
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
- if (!check_tsc_unstable())
- set_sched_clock_stable();
+ if (check_tsc_unstable())
+ clear_sched_clock_stable();
+ } else {
+ clear_sched_clock_stable();
}
/* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
diff --git a/arch/x86/kernel/cpu/centaur.c b/arch/x86/kernel/cpu/centaur.c
index 1661d8ec9280..2c234a6d94c4 100644
--- a/arch/x86/kernel/cpu/centaur.c
+++ b/arch/x86/kernel/cpu/centaur.c
@@ -1,5 +1,5 @@
-#include <linux/bitops.h>
-#include <linux/kernel.h>
+
+#include <linux/sched.h>
#include <asm/cpufeature.h>
#include <asm/e820.h>
@@ -104,6 +104,8 @@ static void early_init_centaur(struct cpuinfo_x86 *c)
#ifdef CONFIG_X86_64
set_cpu_cap(c, X86_FEATURE_SYSENTER32);
#endif
+
+ clear_sched_clock_stable();
}
static void init_centaur(struct cpuinfo_x86 *c)
diff --git a/arch/x86/kernel/cpu/common.c b/arch/x86/kernel/cpu/common.c
index ede03e849a8b..3bcf6d880611 100644
--- a/arch/x86/kernel/cpu/common.c
+++ b/arch/x86/kernel/cpu/common.c
@@ -83,6 +83,7 @@ static void default_init(struct cpuinfo_x86 *c)
strcpy(c->x86_model_id, "386");
}
#endif
+ clear_sched_clock_stable();
}
static const struct cpu_dev default_cpu = {
@@ -1056,6 +1057,8 @@ static void identify_cpu(struct cpuinfo_x86 *c)
*/
if (this_cpu->c_init)
this_cpu->c_init(c);
+ else
+ clear_sched_clock_stable();
/* Disable the PN if appropriate */
squash_the_stupid_serial_number(c);
diff --git a/arch/x86/kernel/cpu/cyrix.c b/arch/x86/kernel/cpu/cyrix.c
index bd9dcd6b712d..47416f959a48 100644
--- a/arch/x86/kernel/cpu/cyrix.c
+++ b/arch/x86/kernel/cpu/cyrix.c
@@ -9,6 +9,7 @@
#include <asm/pci-direct.h>
#include <asm/tsc.h>
#include <asm/cpufeature.h>
+#include <linux/sched.h>
#include "cpu.h"
@@ -183,6 +184,7 @@ static void early_init_cyrix(struct cpuinfo_x86 *c)
set_cpu_cap(c, X86_FEATURE_CYRIX_ARR);
break;
}
+ clear_sched_clock_stable();
}
static void init_cyrix(struct cpuinfo_x86 *c)
diff --git a/arch/x86/kernel/cpu/intel.c b/arch/x86/kernel/cpu/intel.c
index 203f860d2ab3..026c728d6ba7 100644
--- a/arch/x86/kernel/cpu/intel.c
+++ b/arch/x86/kernel/cpu/intel.c
@@ -119,8 +119,10 @@ static void early_init_intel(struct cpuinfo_x86 *c)
if (c->x86_power & (1 << 8)) {
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
- if (!check_tsc_unstable())
- set_sched_clock_stable();
+ if (check_tsc_unstable())
+ clear_sched_clock_stable();
+ } else {
+ clear_sched_clock_stable();
}
/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
diff --git a/arch/x86/kernel/cpu/transmeta.c b/arch/x86/kernel/cpu/transmeta.c
index 34178564be2a..c1ea5b999839 100644
--- a/arch/x86/kernel/cpu/transmeta.c
+++ b/arch/x86/kernel/cpu/transmeta.c
@@ -1,4 +1,5 @@
#include <linux/kernel.h>
+#include <linux/sched.h>
#include <linux/mm.h>
#include <asm/cpufeature.h>
#include <asm/msr.h>
@@ -14,6 +15,8 @@ static void early_init_transmeta(struct cpuinfo_x86 *c)
if (xlvl >= 0x80860001)
c->x86_capability[CPUID_8086_0001_EDX] = cpuid_edx(0x80860001);
}
+
+ clear_sched_clock_stable();
}
static void init_transmeta(struct cpuinfo_x86 *c)
diff --git a/arch/x86/kernel/itmt.c b/arch/x86/kernel/itmt.c
index cb9c1ed1d391..f73f475d0573 100644
--- a/arch/x86/kernel/itmt.c
+++ b/arch/x86/kernel/itmt.c
@@ -132,10 +132,8 @@ int sched_set_itmt_support(void)
sysctl_sched_itmt_enabled = 1;
- if (sysctl_sched_itmt_enabled) {
- x86_topology_update = true;
- rebuild_sched_domains();
- }
+ x86_topology_update = true;
+ rebuild_sched_domains();
mutex_unlock(&itmt_update_mutex);
diff --git a/arch/x86/kernel/kvmclock.c b/arch/x86/kernel/kvmclock.c
index 2a5cafdf8808..542710b99f52 100644
--- a/arch/x86/kernel/kvmclock.c
+++ b/arch/x86/kernel/kvmclock.c
@@ -107,12 +107,12 @@ static inline void kvm_sched_clock_init(bool stable)
{
if (!stable) {
pv_time_ops.sched_clock = kvm_clock_read;
+ clear_sched_clock_stable();
return;
}
kvm_sched_clock_offset = kvm_clock_read();
pv_time_ops.sched_clock = kvm_sched_clock_read;
- set_sched_clock_stable();
printk(KERN_INFO "kvm-clock: using sched offset of %llu cycles\n",
kvm_sched_clock_offset);
diff --git a/arch/x86/kernel/tsc.c b/arch/x86/kernel/tsc.c
index 37e7cf544e51..2724dc82f992 100644
--- a/arch/x86/kernel/tsc.c
+++ b/arch/x86/kernel/tsc.c
@@ -1107,6 +1107,16 @@ static u64 read_tsc(struct clocksource *cs)
return (u64)rdtsc_ordered();
}
+static void tsc_cs_mark_unstable(struct clocksource *cs)
+{
+ if (tsc_unstable)
+ return;
+ tsc_unstable = 1;
+ clear_sched_clock_stable();
+ disable_sched_clock_irqtime();
+ pr_info("Marking TSC unstable due to clocksource watchdog\n");
+}
+
/*
* .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
*/
@@ -1119,6 +1129,7 @@ static struct clocksource clocksource_tsc = {
CLOCK_SOURCE_MUST_VERIFY,
.archdata = { .vclock_mode = VCLOCK_TSC },
.resume = tsc_resume,
+ .mark_unstable = tsc_cs_mark_unstable,
};
void mark_tsc_unstable(char *reason)
diff --git a/arch/x86/kvm/hyperv.c b/arch/x86/kvm/hyperv.c
index 1572c35b4f1a..2ecd7dab4631 100644
--- a/arch/x86/kvm/hyperv.c
+++ b/arch/x86/kvm/hyperv.c
@@ -964,10 +964,11 @@ static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
/* Calculate cpu time spent by current task in 100ns units */
static u64 current_task_runtime_100ns(void)
{
- cputime_t utime, stime;
+ u64 utime, stime;
task_cputime_adjusted(current, &utime, &stime);
- return div_u64(cputime_to_nsecs(utime + stime), 100);
+
+ return div_u64(utime + stime, 100);
}
static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
diff --git a/arch/xtensa/include/asm/Kbuild b/arch/xtensa/include/asm/Kbuild
index b7fbaa56b51a..9e9760b20be5 100644
--- a/arch/xtensa/include/asm/Kbuild
+++ b/arch/xtensa/include/asm/Kbuild
@@ -1,7 +1,6 @@
generic-y += bitsperlong.h
generic-y += bug.h
generic-y += clkdev.h
-generic-y += cputime.h
generic-y += div64.h
generic-y += dma-contiguous.h
generic-y += emergency-restart.h
diff --git a/drivers/cpufreq/cpufreq.c b/drivers/cpufreq/cpufreq.c
index cc475eff90b3..3e9b319a2e79 100644
--- a/drivers/cpufreq/cpufreq.c
+++ b/drivers/cpufreq/cpufreq.c
@@ -132,7 +132,7 @@ static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
u64 cur_wall_time;
u64 busy_time;
- cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
+ cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
@@ -143,9 +143,9 @@ static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
idle_time = cur_wall_time - busy_time;
if (wall)
- *wall = cputime_to_usecs(cur_wall_time);
+ *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
- return cputime_to_usecs(idle_time);
+ return div_u64(idle_time, NSEC_PER_USEC);
}
u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
diff --git a/drivers/cpufreq/cpufreq_governor.c b/drivers/cpufreq/cpufreq_governor.c
index 0196467280bd..631bd2c86c5e 100644
--- a/drivers/cpufreq/cpufreq_governor.c
+++ b/drivers/cpufreq/cpufreq_governor.c
@@ -152,7 +152,7 @@ unsigned int dbs_update(struct cpufreq_policy *policy)
if (ignore_nice) {
u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
- idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
+ idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
j_cdbs->prev_cpu_nice = cur_nice;
}
diff --git a/drivers/cpufreq/cpufreq_stats.c b/drivers/cpufreq/cpufreq_stats.c
index ac284e66839c..17048bbec287 100644
--- a/drivers/cpufreq/cpufreq_stats.c
+++ b/drivers/cpufreq/cpufreq_stats.c
@@ -13,7 +13,6 @@
#include <linux/cpufreq.h>
#include <linux/module.h>
#include <linux/slab.h>
-#include <linux/cputime.h>
static DEFINE_SPINLOCK(cpufreq_stats_lock);
diff --git a/drivers/isdn/mISDN/stack.c b/drivers/isdn/mISDN/stack.c
index 9cb4b621fbc3..b324474c0c12 100644
--- a/drivers/isdn/mISDN/stack.c
+++ b/drivers/isdn/mISDN/stack.c
@@ -203,7 +203,7 @@ mISDNStackd(void *data)
{
struct mISDNstack *st = data;
#ifdef MISDN_MSG_STATS
- cputime_t utime, stime;
+ u64 utime, stime;
#endif
int err = 0;
@@ -308,7 +308,7 @@ mISDNStackd(void *data)
st->stopped_cnt);
task_cputime(st->thread, &utime, &stime);
printk(KERN_DEBUG
- "mISDNStackd daemon for %s utime(%ld) stime(%ld)\n",
+ "mISDNStackd daemon for %s utime(%llu) stime(%llu)\n",
dev_name(&st->dev->dev), utime, stime);
printk(KERN_DEBUG
"mISDNStackd daemon for %s nvcsw(%ld) nivcsw(%ld)\n",
diff --git a/drivers/macintosh/rack-meter.c b/drivers/macintosh/rack-meter.c
index 775527135b93..e199fd6c71ce 100644
--- a/drivers/macintosh/rack-meter.c
+++ b/drivers/macintosh/rack-meter.c
@@ -52,8 +52,8 @@ struct rackmeter_dma {
struct rackmeter_cpu {
struct delayed_work sniffer;
struct rackmeter *rm;
- cputime64_t prev_wall;
- cputime64_t prev_idle;
+ u64 prev_wall;
+ u64 prev_idle;
int zero;
} ____cacheline_aligned;
@@ -81,7 +81,7 @@ static int rackmeter_ignore_nice;
/* This is copied from cpufreq_ondemand, maybe we should put it in
* a common header somewhere
*/
-static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
+static inline u64 get_cpu_idle_time(unsigned int cpu)
{
u64 retval;
@@ -217,23 +217,23 @@ static void rackmeter_do_timer(struct work_struct *work)
container_of(work, struct rackmeter_cpu, sniffer.work);
struct rackmeter *rm = rcpu->rm;
unsigned int cpu = smp_processor_id();
- cputime64_t cur_jiffies, total_idle_ticks;
- unsigned int total_ticks, idle_ticks;
+ u64 cur_nsecs, total_idle_nsecs;
+ u64 total_nsecs, idle_nsecs;
int i, offset, load, cumm, pause;
- cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
- total_ticks = (unsigned int) (cur_jiffies - rcpu->prev_wall);
- rcpu->prev_wall = cur_jiffies;
+ cur_nsecs = jiffies64_to_nsecs(get_jiffies_64());
+ total_nsecs = cur_nsecs - rcpu->prev_wall;
+ rcpu->prev_wall = cur_nsecs;
- total_idle_ticks = get_cpu_idle_time(cpu);
- idle_ticks = (unsigned int) (total_idle_ticks - rcpu->prev_idle);
- idle_ticks = min(idle_ticks, total_ticks);
- rcpu->prev_idle = total_idle_ticks;
+ total_idle_nsecs = get_cpu_idle_time(cpu);
+ idle_nsecs = total_idle_nsecs - rcpu->prev_idle;
+ idle_nsecs = min(idle_nsecs, total_nsecs);
+ rcpu->prev_idle = total_idle_nsecs;
/* We do a very dumb calculation to update the LEDs for now,
* we'll do better once we have actual PWM implemented
*/
- load = (9 * (total_ticks - idle_ticks)) / total_ticks;
+ load = div64_u64(9 * (total_nsecs - idle_nsecs), total_nsecs);
offset = cpu << 3;
cumm = 0;
@@ -278,7 +278,7 @@ static void rackmeter_init_cpu_sniffer(struct rackmeter *rm)
continue;
rcpu = &rm->cpu[cpu];
rcpu->prev_idle = get_cpu_idle_time(cpu);
- rcpu->prev_wall = jiffies64_to_cputime64(get_jiffies_64());
+ rcpu->prev_wall = jiffies64_to_nsecs(get_jiffies_64());
schedule_delayed_work_on(cpu, &rm->cpu[cpu].sniffer,
msecs_to_jiffies(CPU_SAMPLING_RATE));
}
diff --git a/fs/binfmt_elf.c b/fs/binfmt_elf.c
index 422370293cfd..e7bf01373bc4 100644
--- a/fs/binfmt_elf.c
+++ b/fs/binfmt_elf.c
@@ -1428,17 +1428,18 @@ static void fill_prstatus(struct elf_prstatus *prstatus,
* group-wide total, not its individual thread total.
*/
thread_group_cputime(p, &cputime);
- cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
- cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
+ prstatus->pr_utime = ns_to_timeval(cputime.utime);
+ prstatus->pr_stime = ns_to_timeval(cputime.stime);
} else {
- cputime_t utime, stime;
+ u64 utime, stime;
task_cputime(p, &utime, &stime);
- cputime_to_timeval(utime, &prstatus->pr_utime);
- cputime_to_timeval(stime, &prstatus->pr_stime);
+ prstatus->pr_utime = ns_to_timeval(utime);
+ prstatus->pr_stime = ns_to_timeval(stime);
}
- cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
- cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
+
+ prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
+ prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
}
static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
diff --git a/fs/binfmt_elf_fdpic.c b/fs/binfmt_elf_fdpic.c
index d2e36f82c35d..ffca4bbc3d63 100644
--- a/fs/binfmt_elf_fdpic.c
+++ b/fs/binfmt_elf_fdpic.c
@@ -1349,17 +1349,17 @@ static void fill_prstatus(struct elf_prstatus *prstatus,
* group-wide total, not its individual thread total.
*/
thread_group_cputime(p, &cputime);
- cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
- cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
+ prstatus->pr_utime = ns_to_timeval(cputime.utime);
+ prstatus->pr_stime = ns_to_timeval(cputime.stime);
} else {
- cputime_t utime, stime;
+ u64 utime, stime;
task_cputime(p, &utime, &stime);
- cputime_to_timeval(utime, &prstatus->pr_utime);
- cputime_to_timeval(stime, &prstatus->pr_stime);
+ prstatus->pr_utime = ns_to_timeval(utime);
+ prstatus->pr_stime = ns_to_timeval(stime);
}
- cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
- cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
+ prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
+ prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
prstatus->pr_exec_fdpic_loadmap = p->mm->context.exec_fdpic_loadmap;
prstatus->pr_interp_fdpic_loadmap = p->mm->context.interp_fdpic_loadmap;
diff --git a/fs/compat_binfmt_elf.c b/fs/compat_binfmt_elf.c
index 4d24d17bcfc1..504b3c3539dc 100644
--- a/fs/compat_binfmt_elf.c
+++ b/fs/compat_binfmt_elf.c
@@ -51,22 +51,8 @@
#define elf_prstatus compat_elf_prstatus
#define elf_prpsinfo compat_elf_prpsinfo
-/*
- * Compat version of cputime_to_compat_timeval, perhaps this
- * should be an inline in <linux/compat.h>.
- */
-static void cputime_to_compat_timeval(const cputime_t cputime,
- struct compat_timeval *value)
-{
- struct timeval tv;
- cputime_to_timeval(cputime, &tv);
- value->tv_sec = tv.tv_sec;
- value->tv_usec = tv.tv_usec;
-}
-
-#undef cputime_to_timeval
-#define cputime_to_timeval cputime_to_compat_timeval
-
+#undef ns_to_timeval
+#define ns_to_timeval ns_to_compat_timeval
/*
* To use this file, asm/elf.h must define compat_elf_check_arch.
diff --git a/fs/jbd2/commit.c b/fs/jbd2/commit.c
index 8c514367ba5a..b6b194ec1b4f 100644
--- a/fs/jbd2/commit.c
+++ b/fs/jbd2/commit.c
@@ -393,7 +393,7 @@ void jbd2_journal_commit_transaction(journal_t *journal)
/* Do we need to erase the effects of a prior jbd2_journal_flush? */
if (journal->j_flags & JBD2_FLUSHED) {
jbd_debug(3, "super block updated\n");
- mutex_lock(&journal->j_checkpoint_mutex);
+ mutex_lock_io(&journal->j_checkpoint_mutex);
/*
* We hold j_checkpoint_mutex so tail cannot change under us.
* We don't need any special data guarantees for writing sb
diff --git a/fs/jbd2/journal.c b/fs/jbd2/journal.c
index a097048ed1a3..d8a5d0a08f07 100644
--- a/fs/jbd2/journal.c
+++ b/fs/jbd2/journal.c
@@ -944,7 +944,7 @@ out:
*/
void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
{
- mutex_lock(&journal->j_checkpoint_mutex);
+ mutex_lock_io(&journal->j_checkpoint_mutex);
if (tid_gt(tid, journal->j_tail_sequence))
__jbd2_update_log_tail(journal, tid, block);
mutex_unlock(&journal->j_checkpoint_mutex);
@@ -1304,7 +1304,7 @@ static int journal_reset(journal_t *journal)
journal->j_flags |= JBD2_FLUSHED;
} else {
/* Lock here to make assertions happy... */
- mutex_lock(&journal->j_checkpoint_mutex);
+ mutex_lock_io(&journal->j_checkpoint_mutex);
/*
* Update log tail information. We use REQ_FUA since new
* transaction will start reusing journal space and so we
@@ -1691,7 +1691,7 @@ int jbd2_journal_destroy(journal_t *journal)
spin_lock(&journal->j_list_lock);
while (journal->j_checkpoint_transactions != NULL) {
spin_unlock(&journal->j_list_lock);
- mutex_lock(&journal->j_checkpoint_mutex);
+ mutex_lock_io(&journal->j_checkpoint_mutex);
err = jbd2_log_do_checkpoint(journal);
mutex_unlock(&journal->j_checkpoint_mutex);
/*
@@ -1713,7 +1713,7 @@ int jbd2_journal_destroy(journal_t *journal)
if (journal->j_sb_buffer) {
if (!is_journal_aborted(journal)) {
- mutex_lock(&journal->j_checkpoint_mutex);
+ mutex_lock_io(&journal->j_checkpoint_mutex);
write_lock(&journal->j_state_lock);
journal->j_tail_sequence =
@@ -1955,7 +1955,7 @@ int jbd2_journal_flush(journal_t *journal)
spin_lock(&journal->j_list_lock);
while (!err && journal->j_checkpoint_transactions != NULL) {
spin_unlock(&journal->j_list_lock);
- mutex_lock(&journal->j_checkpoint_mutex);
+ mutex_lock_io(&journal->j_checkpoint_mutex);
err = jbd2_log_do_checkpoint(journal);
mutex_unlock(&journal->j_checkpoint_mutex);
spin_lock(&journal->j_list_lock);
@@ -1965,7 +1965,7 @@ int jbd2_journal_flush(journal_t *journal)
if (is_journal_aborted(journal))
return -EIO;
- mutex_lock(&journal->j_checkpoint_mutex);
+ mutex_lock_io(&journal->j_checkpoint_mutex);
if (!err) {
err = jbd2_cleanup_journal_tail(journal);
if (err < 0) {
diff --git a/fs/proc/array.c b/fs/proc/array.c
index 51a4213afa2e..fe12b519d09b 100644
--- a/fs/proc/array.c
+++ b/fs/proc/array.c
@@ -401,8 +401,8 @@ static int do_task_stat(struct seq_file *m, struct pid_namespace *ns,
unsigned long long start_time;
unsigned long cmin_flt = 0, cmaj_flt = 0;
unsigned long min_flt = 0, maj_flt = 0;
- cputime_t cutime, cstime, utime, stime;
- cputime_t cgtime, gtime;
+ u64 cutime, cstime, utime, stime;
+ u64 cgtime, gtime;
unsigned long rsslim = 0;
char tcomm[sizeof(task->comm)];
unsigned long flags;
@@ -497,10 +497,10 @@ static int do_task_stat(struct seq_file *m, struct pid_namespace *ns,
seq_put_decimal_ull(m, " ", cmin_flt);
seq_put_decimal_ull(m, " ", maj_flt);
seq_put_decimal_ull(m, " ", cmaj_flt);
- seq_put_decimal_ull(m, " ", cputime_to_clock_t(utime));
- seq_put_decimal_ull(m, " ", cputime_to_clock_t(stime));
- seq_put_decimal_ll(m, " ", cputime_to_clock_t(cutime));
- seq_put_decimal_ll(m, " ", cputime_to_clock_t(cstime));
+ seq_put_decimal_ull(m, " ", nsec_to_clock_t(utime));
+ seq_put_decimal_ull(m, " ", nsec_to_clock_t(stime));
+ seq_put_decimal_ll(m, " ", nsec_to_clock_t(cutime));
+ seq_put_decimal_ll(m, " ", nsec_to_clock_t(cstime));
seq_put_decimal_ll(m, " ", priority);
seq_put_decimal_ll(m, " ", nice);
seq_put_decimal_ll(m, " ", num_threads);
@@ -542,8 +542,8 @@ static int do_task_stat(struct seq_file *m, struct pid_namespace *ns,
seq_put_decimal_ull(m, " ", task->rt_priority);
seq_put_decimal_ull(m, " ", task->policy);
seq_put_decimal_ull(m, " ", delayacct_blkio_ticks(task));
- seq_put_decimal_ull(m, " ", cputime_to_clock_t(gtime));
- seq_put_decimal_ll(m, " ", cputime_to_clock_t(cgtime));
+ seq_put_decimal_ull(m, " ", nsec_to_clock_t(gtime));
+ seq_put_decimal_ll(m, " ", nsec_to_clock_t(cgtime));
if (mm && permitted) {
seq_put_decimal_ull(m, " ", mm->start_data);
diff --git a/fs/proc/stat.c b/fs/proc/stat.c
index d700c42b3572..e47c3e8c4dfe 100644
--- a/fs/proc/stat.c
+++ b/fs/proc/stat.c
@@ -21,9 +21,9 @@
#ifdef arch_idle_time
-static cputime64_t get_idle_time(int cpu)
+static u64 get_idle_time(int cpu)
{
- cputime64_t idle;
+ u64 idle;
idle = kcpustat_cpu(cpu).cpustat[CPUTIME_IDLE];
if (cpu_online(cpu) && !nr_iowait_cpu(cpu))
@@ -31,9 +31,9 @@ static cputime64_t get_idle_time(int cpu)
return idle;
}
-static cputime64_t get_iowait_time(int cpu)
+static u64 get_iowait_time(int cpu)
{
- cputime64_t iowait;
+ u64 iowait;
iowait = kcpustat_cpu(cpu).cpustat[CPUTIME_IOWAIT];
if (cpu_online(cpu) && nr_iowait_cpu(cpu))
@@ -45,32 +45,32 @@ static cputime64_t get_iowait_time(int cpu)
static u64 get_idle_time(int cpu)
{
- u64 idle, idle_time = -1ULL;
+ u64 idle, idle_usecs = -1ULL;
if (cpu_online(cpu))
- idle_time = get_cpu_idle_time_us(cpu, NULL);
+ idle_usecs = get_cpu_idle_time_us(cpu, NULL);
- if (idle_time == -1ULL)
+ if (idle_usecs == -1ULL)
/* !NO_HZ or cpu offline so we can rely on cpustat.idle */
idle = kcpustat_cpu(cpu).cpustat[CPUTIME_IDLE];
else
- idle = usecs_to_cputime64(idle_time);
+ idle = idle_usecs * NSEC_PER_USEC;
return idle;
}
static u64 get_iowait_time(int cpu)
{
- u64 iowait, iowait_time = -1ULL;
+ u64 iowait, iowait_usecs = -1ULL;
if (cpu_online(cpu))
- iowait_time = get_cpu_iowait_time_us(cpu, NULL);
+ iowait_usecs = get_cpu_iowait_time_us(cpu, NULL);
- if (iowait_time == -1ULL)
+ if (iowait_usecs == -1ULL)
/* !NO_HZ or cpu offline so we can rely on cpustat.iowait */
iowait = kcpustat_cpu(cpu).cpustat[CPUTIME_IOWAIT];
else
- iowait = usecs_to_cputime64(iowait_time);
+ iowait = iowait_usecs * NSEC_PER_USEC;
return iowait;
}
@@ -115,16 +115,16 @@ static int show_stat(struct seq_file *p, void *v)
}
sum += arch_irq_stat();
- seq_put_decimal_ull(p, "cpu ", cputime64_to_clock_t(user));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(nice));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(system));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(idle));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(iowait));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(irq));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(softirq));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(steal));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(guest));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(guest_nice));
+ seq_put_decimal_ull(p, "cpu ", nsec_to_clock_t(user));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(nice));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(system));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(idle));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(iowait));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(irq));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(softirq));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(steal));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(guest));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(guest_nice));
seq_putc(p, '\n');
for_each_online_cpu(i) {
@@ -140,16 +140,16 @@ static int show_stat(struct seq_file *p, void *v)
guest = kcpustat_cpu(i).cpustat[CPUTIME_GUEST];
guest_nice = kcpustat_cpu(i).cpustat[CPUTIME_GUEST_NICE];
seq_printf(p, "cpu%d", i);
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(user));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(nice));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(system));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(idle));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(iowait));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(irq));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(softirq));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(steal));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(guest));
- seq_put_decimal_ull(p, " ", cputime64_to_clock_t(guest_nice));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(user));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(nice));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(system));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(idle));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(iowait));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(irq));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(softirq));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(steal));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(guest));
+ seq_put_decimal_ull(p, " ", nsec_to_clock_t(guest_nice));
seq_putc(p, '\n');
}
seq_put_decimal_ull(p, "intr ", (unsigned long long)sum);
diff --git a/fs/proc/uptime.c b/fs/proc/uptime.c
index 33de567c25af..7981c4ffe787 100644
--- a/fs/proc/uptime.c
+++ b/fs/proc/uptime.c
@@ -5,23 +5,20 @@
#include <linux/seq_file.h>
#include <linux/time.h>
#include <linux/kernel_stat.h>
-#include <linux/cputime.h>
static int uptime_proc_show(struct seq_file *m, void *v)
{
struct timespec uptime;
struct timespec idle;
- u64 idletime;
u64 nsec;
u32 rem;
int i;
- idletime = 0;
+ nsec = 0;
for_each_possible_cpu(i)
- idletime += (__force u64) kcpustat_cpu(i).cpustat[CPUTIME_IDLE];
+ nsec += (__force u64) kcpustat_cpu(i).cpustat[CPUTIME_IDLE];
get_monotonic_boottime(&uptime);
- nsec = cputime64_to_jiffies64(idletime) * TICK_NSEC;
idle.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
idle.tv_nsec = rem;
seq_printf(m, "%lu.%02lu %lu.%02lu\n",
diff --git a/include/asm-generic/cputime.h b/include/asm-generic/cputime.h
deleted file mode 100644
index 51969436b8b8..000000000000
--- a/include/asm-generic/cputime.h
+++ /dev/null
@@ -1,15 +0,0 @@
-#ifndef _ASM_GENERIC_CPUTIME_H
-#define _ASM_GENERIC_CPUTIME_H
-
-#include <linux/time.h>
-#include <linux/jiffies.h>
-
-#ifndef CONFIG_VIRT_CPU_ACCOUNTING
-# include <asm-generic/cputime_jiffies.h>
-#endif
-
-#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
-# include <asm-generic/cputime_nsecs.h>
-#endif
-
-#endif
diff --git a/include/asm-generic/cputime_jiffies.h b/include/asm-generic/cputime_jiffies.h
deleted file mode 100644
index 6bb8cd45f53b..000000000000
--- a/include/asm-generic/cputime_jiffies.h
+++ /dev/null
@@ -1,75 +0,0 @@
-#ifndef _ASM_GENERIC_CPUTIME_JIFFIES_H
-#define _ASM_GENERIC_CPUTIME_JIFFIES_H
-
-typedef unsigned long __nocast cputime_t;
-
-#define cmpxchg_cputime(ptr, old, new) cmpxchg(ptr, old, new)
-
-#define cputime_one_jiffy jiffies_to_cputime(1)
-#define cputime_to_jiffies(__ct) (__force unsigned long)(__ct)
-#define jiffies_to_cputime(__hz) (__force cputime_t)(__hz)
-
-typedef u64 __nocast cputime64_t;
-
-#define cputime64_to_jiffies64(__ct) (__force u64)(__ct)
-#define jiffies64_to_cputime64(__jif) (__force cputime64_t)(__jif)
-
-
-/*
- * Convert nanoseconds <-> cputime
- */
-#define cputime_to_nsecs(__ct) \
- jiffies_to_nsecs(cputime_to_jiffies(__ct))
-#define nsecs_to_cputime64(__nsec) \
- jiffies64_to_cputime64(nsecs_to_jiffies64(__nsec))
-#define nsecs_to_cputime(__nsec) \
- jiffies_to_cputime(nsecs_to_jiffies(__nsec))
-
-
-/*
- * Convert cputime to microseconds and back.
- */
-#define cputime_to_usecs(__ct) \
- jiffies_to_usecs(cputime_to_jiffies(__ct))
-#define usecs_to_cputime(__usec) \
- jiffies_to_cputime(usecs_to_jiffies(__usec))
-#define usecs_to_cputime64(__usec) \
- jiffies64_to_cputime64(nsecs_to_jiffies64((__usec) * 1000))
-
-/*
- * Convert cputime to seconds and back.
- */
-#define cputime_to_secs(jif) (cputime_to_jiffies(jif) / HZ)
-#define secs_to_cputime(sec) jiffies_to_cputime((sec) * HZ)
-
-/*
- * Convert cputime to timespec and back.
- */
-#define timespec_to_cputime(__val) \
- jiffies_to_cputime(timespec_to_jiffies(__val))
-#define cputime_to_timespec(__ct,__val) \
- jiffies_to_timespec(cputime_to_jiffies(__ct),__val)
-
-/*
- * Convert cputime to timeval and back.
- */
-#define timeval_to_cputime(__val) \
- jiffies_to_cputime(timeval_to_jiffies(__val))
-#define cputime_to_timeval(__ct,__val) \
- jiffies_to_timeval(cputime_to_jiffies(__ct),__val)
-
-/*
- * Convert cputime to clock and back.
- */
-#define cputime_to_clock_t(__ct) \
- jiffies_to_clock_t(cputime_to_jiffies(__ct))
-#define clock_t_to_cputime(__x) \
- jiffies_to_cputime(clock_t_to_jiffies(__x))
-
-/*
- * Convert cputime64 to clock.
- */
-#define cputime64_to_clock_t(__ct) \
- jiffies_64_to_clock_t(cputime64_to_jiffies64(__ct))
-
-#endif
diff --git a/include/asm-generic/cputime_nsecs.h b/include/asm-generic/cputime_nsecs.h
deleted file mode 100644
index 4e3b18e559b1..000000000000
--- a/include/asm-generic/cputime_nsecs.h
+++ /dev/null
@@ -1,121 +0,0 @@
-/*
- * Definitions for measuring cputime in nsecs resolution.
- *
- * Based on <arch/ia64/include/asm/cputime.h>
- *
- * Copyright (C) 2007 FUJITSU LIMITED
- * Copyright (C) 2007 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- *
- */
-
-#ifndef _ASM_GENERIC_CPUTIME_NSECS_H
-#define _ASM_GENERIC_CPUTIME_NSECS_H
-
-#include <linux/math64.h>
-
-typedef u64 __nocast cputime_t;
-typedef u64 __nocast cputime64_t;
-
-#define cmpxchg_cputime(ptr, old, new) cmpxchg64(ptr, old, new)
-
-#define cputime_one_jiffy jiffies_to_cputime(1)
-
-#define cputime_div(__ct, divisor) div_u64((__force u64)__ct, divisor)
-#define cputime_div_rem(__ct, divisor, remainder) \
- div_u64_rem((__force u64)__ct, divisor, remainder);
-
-/*
- * Convert cputime <-> jiffies (HZ)
- */
-#define cputime_to_jiffies(__ct) \
- cputime_div(__ct, NSEC_PER_SEC / HZ)
-#define jiffies_to_cputime(__jif) \
- (__force cputime_t)((__jif) * (NSEC_PER_SEC / HZ))
-#define cputime64_to_jiffies64(__ct) \
- cputime_div(__ct, NSEC_PER_SEC / HZ)
-#define jiffies64_to_cputime64(__jif) \
- (__force cputime64_t)((__jif) * (NSEC_PER_SEC / HZ))
-
-
-/*
- * Convert cputime <-> nanoseconds
- */
-#define cputime_to_nsecs(__ct) \
- (__force u64)(__ct)
-#define nsecs_to_cputime(__nsecs) \
- (__force cputime_t)(__nsecs)
-#define nsecs_to_cputime64(__nsecs) \
- (__force cputime64_t)(__nsecs)
-
-
-/*
- * Convert cputime <-> microseconds
- */
-#define cputime_to_usecs(__ct) \
- cputime_div(__ct, NSEC_PER_USEC)
-#define usecs_to_cputime(__usecs) \
- (__force cputime_t)((__usecs) * NSEC_PER_USEC)
-#define usecs_to_cputime64(__usecs) \
- (__force cputime64_t)((__usecs) * NSEC_PER_USEC)
-
-/*
- * Convert cputime <-> seconds
- */
-#define cputime_to_secs(__ct) \
- cputime_div(__ct, NSEC_PER_SEC)
-#define secs_to_cputime(__secs) \
- (__force cputime_t)((__secs) * NSEC_PER_SEC)
-
-/*
- * Convert cputime <-> timespec (nsec)
- */
-static inline cputime_t timespec_to_cputime(const struct timespec *val)
-{
- u64 ret = (u64)val->tv_sec * NSEC_PER_SEC + val->tv_nsec;
- return (__force cputime_t) ret;
-}
-static inline void cputime_to_timespec(const cputime_t ct, struct timespec *val)
-{
- u32 rem;
-
- val->tv_sec = cputime_div_rem(ct, NSEC_PER_SEC, &rem);
- val->tv_nsec = rem;
-}
-
-/*
- * Convert cputime <-> timeval (msec)
- */
-static inline cputime_t timeval_to_cputime(const struct timeval *val)
-{
- u64 ret = (u64)val->tv_sec * NSEC_PER_SEC +
- val->tv_usec * NSEC_PER_USEC;
- return (__force cputime_t) ret;
-}
-static inline void cputime_to_timeval(const cputime_t ct, struct timeval *val)
-{
- u32 rem;
-
- val->tv_sec = cputime_div_rem(ct, NSEC_PER_SEC, &rem);
- val->tv_usec = rem / NSEC_PER_USEC;
-}
-
-/*
- * Convert cputime <-> clock (USER_HZ)
- */
-#define cputime_to_clock_t(__ct) \
- cputime_div(__ct, (NSEC_PER_SEC / USER_HZ))
-#define clock_t_to_cputime(__x) \
- (__force cputime_t)((__x) * (NSEC_PER_SEC / USER_HZ))
-
-/*
- * Convert cputime64 to clock.
- */
-#define cputime64_to_clock_t(__ct) \
- cputime_to_clock_t((__force cputime_t)__ct)
-
-#endif
diff --git a/include/linux/clocksource.h b/include/linux/clocksource.h
index e315d04a2fd9..cfc75848a35d 100644
--- a/include/linux/clocksource.h
+++ b/include/linux/clocksource.h
@@ -62,6 +62,8 @@ struct module;
* @archdata: arch-specific data
* @suspend: suspend function for the clocksource, if necessary
* @resume: resume function for the clocksource, if necessary
+ * @mark_unstable: Optional function to inform the clocksource driver that
+ * the watchdog marked the clocksource unstable
* @owner: module reference, must be set by clocksource in modules
*
* Note: This struct is not used in hotpathes of the timekeeping code
@@ -93,6 +95,7 @@ struct clocksource {
unsigned long flags;
void (*suspend)(struct clocksource *cs);
void (*resume)(struct clocksource *cs);
+ void (*mark_unstable)(struct clocksource *cs);
/* private: */
#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
diff --git a/include/linux/compat.h b/include/linux/compat.h
index 63609398ef9f..9e40be522793 100644
--- a/include/linux/compat.h
+++ b/include/linux/compat.h
@@ -731,7 +731,25 @@ asmlinkage long compat_sys_fanotify_mark(int, unsigned int, __u32, __u32,
static inline bool in_compat_syscall(void) { return is_compat_task(); }
#endif
-#else
+/**
+ * ns_to_compat_timeval - Compat version of ns_to_timeval
+ * @nsec: the nanoseconds value to be converted
+ *
+ * Returns the compat_timeval representation of the nsec parameter.
+ */
+static inline struct compat_timeval ns_to_compat_timeval(s64 nsec)
+{
+ struct timeval tv;
+ struct compat_timeval ctv;
+
+ tv = ns_to_timeval(nsec);
+ ctv.tv_sec = tv.tv_sec;
+ ctv.tv_usec = tv.tv_usec;
+
+ return ctv;
+}
+
+#else /* !CONFIG_COMPAT */
#define is_compat_task() (0)
static inline bool in_compat_syscall(void) { return false; }
diff --git a/include/linux/cputime.h b/include/linux/cputime.h
index f2eb2ee535ca..a691dc4ddc13 100644
--- a/include/linux/cputime.h
+++ b/include/linux/cputime.h
@@ -1,6 +1,7 @@
#ifndef __LINUX_CPUTIME_H
#define __LINUX_CPUTIME_H
+#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
#include <asm/cputime.h>
#ifndef cputime_to_nsecs
@@ -8,9 +9,5 @@
(cputime_to_usecs(__ct) * NSEC_PER_USEC)
#endif
-#ifndef nsecs_to_cputime
-# define nsecs_to_cputime(__nsecs) \
- usecs_to_cputime((__nsecs) / NSEC_PER_USEC)
-#endif
-
+#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
#endif /* __LINUX_CPUTIME_H */
diff --git a/include/linux/delayacct.h b/include/linux/delayacct.h
index 6cee17c22313..00e60f79a9cc 100644
--- a/include/linux/delayacct.h
+++ b/include/linux/delayacct.h
@@ -17,6 +17,7 @@
#ifndef _LINUX_DELAYACCT_H
#define _LINUX_DELAYACCT_H
+#include <uapi/linux/taskstats.h>
#include <linux/sched.h>
#include <linux/slab.h>
diff --git a/include/linux/jiffies.h b/include/linux/jiffies.h
index 589d14e970ad..624215cebee5 100644
--- a/include/linux/jiffies.h
+++ b/include/linux/jiffies.h
@@ -293,6 +293,8 @@ static inline u64 jiffies_to_nsecs(const unsigned long j)
return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
}
+extern u64 jiffies64_to_nsecs(u64 j);
+
extern unsigned long __msecs_to_jiffies(const unsigned int m);
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
/*
diff --git a/include/linux/kernel_stat.h b/include/linux/kernel_stat.h
index 00f776816aa3..66be8b6beceb 100644
--- a/include/linux/kernel_stat.h
+++ b/include/linux/kernel_stat.h
@@ -9,7 +9,6 @@
#include <linux/sched.h>
#include <linux/vtime.h>
#include <asm/irq.h>
-#include <linux/cputime.h>
/*
* 'kernel_stat.h' contains the definitions needed for doing
@@ -78,15 +77,18 @@ static inline unsigned int kstat_cpu_irqs_sum(unsigned int cpu)
return kstat_cpu(cpu).irqs_sum;
}
-extern void account_user_time(struct task_struct *, cputime_t);
-extern void account_system_time(struct task_struct *, int, cputime_t);
-extern void account_steal_time(cputime_t);
-extern void account_idle_time(cputime_t);
+extern void account_user_time(struct task_struct *, u64);
+extern void account_guest_time(struct task_struct *, u64);
+extern void account_system_time(struct task_struct *, int, u64);
+extern void account_system_index_time(struct task_struct *, u64,
+ enum cpu_usage_stat);
+extern void account_steal_time(u64);
+extern void account_idle_time(u64);
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
static inline void account_process_tick(struct task_struct *tsk, int user)
{
- vtime_account_user(tsk);
+ vtime_flush(tsk);
}
#else
extern void account_process_tick(struct task_struct *, int user);
diff --git a/include/linux/mutex.h b/include/linux/mutex.h
index b97870f2debd..7fffbfcd5430 100644
--- a/include/linux/mutex.h
+++ b/include/linux/mutex.h
@@ -156,10 +156,12 @@ extern int __must_check mutex_lock_interruptible_nested(struct mutex *lock,
unsigned int subclass);
extern int __must_check mutex_lock_killable_nested(struct mutex *lock,
unsigned int subclass);
+extern void mutex_lock_io_nested(struct mutex *lock, unsigned int subclass);
#define mutex_lock(lock) mutex_lock_nested(lock, 0)
#define mutex_lock_interruptible(lock) mutex_lock_interruptible_nested(lock, 0)
#define mutex_lock_killable(lock) mutex_lock_killable_nested(lock, 0)
+#define mutex_lock_io(lock) mutex_lock_io_nested(lock, 0)
#define mutex_lock_nest_lock(lock, nest_lock) \
do { \
@@ -171,11 +173,13 @@ do { \
extern void mutex_lock(struct mutex *lock);
extern int __must_check mutex_lock_interruptible(struct mutex *lock);
extern int __must_check mutex_lock_killable(struct mutex *lock);
+extern void mutex_lock_io(struct mutex *lock);
# define mutex_lock_nested(lock, subclass) mutex_lock(lock)
# define mutex_lock_interruptible_nested(lock, subclass) mutex_lock_interruptible(lock)
# define mutex_lock_killable_nested(lock, subclass) mutex_lock_killable(lock)
# define mutex_lock_nest_lock(lock, nest_lock) mutex_lock(lock)
+# define mutex_lock_io_nested(lock, subclass) mutex_lock(lock)
#endif
/*
diff --git a/include/linux/posix-timers.h b/include/linux/posix-timers.h
index 62d44c176071..64aa189efe21 100644
--- a/include/linux/posix-timers.h
+++ b/include/linux/posix-timers.h
@@ -8,19 +8,9 @@
#include <linux/alarmtimer.h>
-static inline unsigned long long cputime_to_expires(cputime_t expires)
-{
- return (__force unsigned long long)expires;
-}
-
-static inline cputime_t expires_to_cputime(unsigned long long expires)
-{
- return (__force cputime_t)expires;
-}
-
struct cpu_timer_list {
struct list_head entry;
- unsigned long long expires, incr;
+ u64 expires, incr;
struct task_struct *task;
int firing;
};
@@ -129,7 +119,7 @@ void run_posix_cpu_timers(struct task_struct *task);
void posix_cpu_timers_exit(struct task_struct *task);
void posix_cpu_timers_exit_group(struct task_struct *task);
void set_process_cpu_timer(struct task_struct *task, unsigned int clock_idx,
- cputime_t *newval, cputime_t *oldval);
+ u64 *newval, u64 *oldval);
long clock_nanosleep_restart(struct restart_block *restart_block);
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 6e4782eae076..c89b7fdec41e 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -29,7 +29,6 @@ struct sched_param {
#include <asm/page.h>
#include <asm/ptrace.h>
-#include <linux/cputime.h>
#include <linux/smp.h>
#include <linux/sem.h>
@@ -461,12 +460,10 @@ extern signed long schedule_timeout_idle(signed long timeout);
asmlinkage void schedule(void);
extern void schedule_preempt_disabled(void);
+extern int __must_check io_schedule_prepare(void);
+extern void io_schedule_finish(int token);
extern long io_schedule_timeout(long timeout);
-
-static inline void io_schedule(void)
-{
- io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
-}
+extern void io_schedule(void);
void __noreturn do_task_dead(void);
@@ -565,15 +562,13 @@ struct pacct_struct {
int ac_flag;
long ac_exitcode;
unsigned long ac_mem;
- cputime_t ac_utime, ac_stime;
+ u64 ac_utime, ac_stime;
unsigned long ac_minflt, ac_majflt;
};
struct cpu_itimer {
- cputime_t expires;
- cputime_t incr;
- u32 error;
- u32 incr_error;
+ u64 expires;
+ u64 incr;
};
/**
@@ -587,8 +582,8 @@ struct cpu_itimer {
*/
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
- cputime_t utime;
- cputime_t stime;
+ u64 utime;
+ u64 stime;
raw_spinlock_t lock;
#endif
};
@@ -603,8 +598,8 @@ static inline void prev_cputime_init(struct prev_cputime *prev)
/**
* struct task_cputime - collected CPU time counts
- * @utime: time spent in user mode, in &cputime_t units
- * @stime: time spent in kernel mode, in &cputime_t units
+ * @utime: time spent in user mode, in nanoseconds
+ * @stime: time spent in kernel mode, in nanoseconds
* @sum_exec_runtime: total time spent on the CPU, in nanoseconds
*
* This structure groups together three kinds of CPU time that are tracked for
@@ -612,8 +607,8 @@ static inline void prev_cputime_init(struct prev_cputime *prev)
* these counts together and treat all three of them in parallel.
*/
struct task_cputime {
- cputime_t utime;
- cputime_t stime;
+ u64 utime;
+ u64 stime;
unsigned long long sum_exec_runtime;
};
@@ -622,13 +617,6 @@ struct task_cputime {
#define prof_exp stime
#define sched_exp sum_exec_runtime
-#define INIT_CPUTIME \
- (struct task_cputime) { \
- .utime = 0, \
- .stime = 0, \
- .sum_exec_runtime = 0, \
- }
-
/*
* This is the atomic variant of task_cputime, which can be used for
* storing and updating task_cputime statistics without locking.
@@ -787,9 +775,9 @@ struct signal_struct {
* in __exit_signal, except for the group leader.
*/
seqlock_t stats_lock;
- cputime_t utime, stime, cutime, cstime;
- cputime_t gtime;
- cputime_t cgtime;
+ u64 utime, stime, cutime, cstime;
+ u64 gtime;
+ u64 cgtime;
struct prev_cputime prev_cputime;
unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
@@ -1668,11 +1656,11 @@ struct task_struct {
int __user *set_child_tid; /* CLONE_CHILD_SETTID */
int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
- cputime_t utime, stime;
+ u64 utime, stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
- cputime_t utimescaled, stimescaled;
+ u64 utimescaled, stimescaled;
#endif
- cputime_t gtime;
+ u64 gtime;
struct prev_cputime prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
seqcount_t vtime_seqcount;
@@ -1824,7 +1812,7 @@ struct task_struct {
#if defined(CONFIG_TASK_XACCT)
u64 acct_rss_mem1; /* accumulated rss usage */
u64 acct_vm_mem1; /* accumulated virtual memory usage */
- cputime_t acct_timexpd; /* stime + utime since last update */
+ u64 acct_timexpd; /* stime + utime since last update */
#endif
#ifdef CONFIG_CPUSETS
nodemask_t mems_allowed; /* Protected by alloc_lock */
@@ -2269,17 +2257,17 @@ struct task_struct *try_get_task_struct(struct task_struct **ptask);
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
extern void task_cputime(struct task_struct *t,
- cputime_t *utime, cputime_t *stime);
-extern cputime_t task_gtime(struct task_struct *t);
+ u64 *utime, u64 *stime);
+extern u64 task_gtime(struct task_struct *t);
#else
static inline void task_cputime(struct task_struct *t,
- cputime_t *utime, cputime_t *stime)
+ u64 *utime, u64 *stime)
{
*utime = t->utime;
*stime = t->stime;
}
-static inline cputime_t task_gtime(struct task_struct *t)
+static inline u64 task_gtime(struct task_struct *t)
{
return t->gtime;
}
@@ -2287,23 +2275,23 @@ static inline cputime_t task_gtime(struct task_struct *t)
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
static inline void task_cputime_scaled(struct task_struct *t,
- cputime_t *utimescaled,
- cputime_t *stimescaled)
+ u64 *utimescaled,
+ u64 *stimescaled)
{
*utimescaled = t->utimescaled;
*stimescaled = t->stimescaled;
}
#else
static inline void task_cputime_scaled(struct task_struct *t,
- cputime_t *utimescaled,
- cputime_t *stimescaled)
+ u64 *utimescaled,
+ u64 *stimescaled)
{
task_cputime(t, utimescaled, stimescaled);
}
#endif
-extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
-extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
+extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
+extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
/*
* Per process flags
@@ -2522,10 +2510,18 @@ extern u64 sched_clock_cpu(int cpu);
extern void sched_clock_init(void);
#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
+static inline void sched_clock_init_late(void)
+{
+}
+
static inline void sched_clock_tick(void)
{
}
+static inline void clear_sched_clock_stable(void)
+{
+}
+
static inline void sched_clock_idle_sleep_event(void)
{
}
@@ -2544,6 +2540,7 @@ static inline u64 local_clock(void)
return sched_clock();
}
#else
+extern void sched_clock_init_late(void);
/*
* Architectures can set this to 1 if they have specified
* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
@@ -2551,7 +2548,6 @@ static inline u64 local_clock(void)
* is reliable after all:
*/
extern int sched_clock_stable(void);
-extern void set_sched_clock_stable(void);
extern void clear_sched_clock_stable(void);
extern void sched_clock_tick(void);
diff --git a/include/linux/sched/sysctl.h b/include/linux/sched/sysctl.h
index 441145351301..49308e142aae 100644
--- a/include/linux/sched/sysctl.h
+++ b/include/linux/sched/sysctl.h
@@ -59,6 +59,7 @@ extern unsigned int sysctl_sched_cfs_bandwidth_slice;
extern unsigned int sysctl_sched_autogroup_enabled;
#endif
+extern int sysctl_sched_rr_timeslice;
extern int sched_rr_timeslice;
extern int sched_rr_handler(struct ctl_table *table, int write,
diff --git a/include/linux/vtime.h b/include/linux/vtime.h
index aa9bfea8804a..0681fe25abeb 100644
--- a/include/linux/vtime.h
+++ b/include/linux/vtime.h
@@ -58,27 +58,28 @@ static inline void vtime_task_switch(struct task_struct *prev)
extern void vtime_account_system(struct task_struct *tsk);
extern void vtime_account_idle(struct task_struct *tsk);
-extern void vtime_account_user(struct task_struct *tsk);
#else /* !CONFIG_VIRT_CPU_ACCOUNTING */
static inline void vtime_task_switch(struct task_struct *prev) { }
static inline void vtime_account_system(struct task_struct *tsk) { }
-static inline void vtime_account_user(struct task_struct *tsk) { }
#endif /* !CONFIG_VIRT_CPU_ACCOUNTING */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
extern void arch_vtime_task_switch(struct task_struct *tsk);
+extern void vtime_account_user(struct task_struct *tsk);
extern void vtime_user_enter(struct task_struct *tsk);
static inline void vtime_user_exit(struct task_struct *tsk)
{
vtime_account_user(tsk);
}
+
extern void vtime_guest_enter(struct task_struct *tsk);
extern void vtime_guest_exit(struct task_struct *tsk);
extern void vtime_init_idle(struct task_struct *tsk, int cpu);
#else /* !CONFIG_VIRT_CPU_ACCOUNTING_GEN */
+static inline void vtime_account_user(struct task_struct *tsk) { }
static inline void vtime_user_enter(struct task_struct *tsk) { }
static inline void vtime_user_exit(struct task_struct *tsk) { }
static inline void vtime_guest_enter(struct task_struct *tsk) { }
@@ -93,9 +94,11 @@ static inline void vtime_account_irq_exit(struct task_struct *tsk)
/* On hard|softirq exit we always account to hard|softirq cputime */
vtime_account_system(tsk);
}
+extern void vtime_flush(struct task_struct *tsk);
#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
static inline void vtime_account_irq_enter(struct task_struct *tsk) { }
static inline void vtime_account_irq_exit(struct task_struct *tsk) { }
+static inline void vtime_flush(struct task_struct *tsk) { }
#endif
diff --git a/include/trace/events/timer.h b/include/trace/events/timer.h
index 1448637616d6..1bca99dbb98f 100644
--- a/include/trace/events/timer.h
+++ b/include/trace/events/timer.h
@@ -269,17 +269,17 @@ DEFINE_EVENT(hrtimer_class, hrtimer_cancel,
TRACE_EVENT(itimer_state,
TP_PROTO(int which, const struct itimerval *const value,
- cputime_t expires),
+ unsigned long long expires),
TP_ARGS(which, value, expires),
TP_STRUCT__entry(
- __field( int, which )
- __field( cputime_t, expires )
- __field( long, value_sec )
- __field( long, value_usec )
- __field( long, interval_sec )
- __field( long, interval_usec )
+ __field( int, which )
+ __field( unsigned long long, expires )
+ __field( long, value_sec )
+ __field( long, value_usec )
+ __field( long, interval_sec )
+ __field( long, interval_usec )
),
TP_fast_assign(
@@ -292,7 +292,7 @@ TRACE_EVENT(itimer_state,
),
TP_printk("which=%d expires=%llu it_value=%ld.%ld it_interval=%ld.%ld",
- __entry->which, (unsigned long long)__entry->expires,
+ __entry->which, __entry->expires,
__entry->value_sec, __entry->value_usec,
__entry->interval_sec, __entry->interval_usec)
);
@@ -305,14 +305,14 @@ TRACE_EVENT(itimer_state,
*/
TRACE_EVENT(itimer_expire,
- TP_PROTO(int which, struct pid *pid, cputime_t now),
+ TP_PROTO(int which, struct pid *pid, unsigned long long now),
TP_ARGS(which, pid, now),
TP_STRUCT__entry(
- __field( int , which )
- __field( pid_t, pid )
- __field( cputime_t, now )
+ __field( int , which )
+ __field( pid_t, pid )
+ __field( unsigned long long, now )
),
TP_fast_assign(
@@ -322,7 +322,7 @@ TRACE_EVENT(itimer_expire,
),
TP_printk("which=%d pid=%d now=%llu", __entry->which,
- (int) __entry->pid, (unsigned long long)__entry->now)
+ (int) __entry->pid, __entry->now)
);
#ifdef CONFIG_NO_HZ_COMMON
diff --git a/init/main.c b/init/main.c
index 9648d707eea5..6ced14a3df12 100644
--- a/init/main.c
+++ b/init/main.c
@@ -625,7 +625,6 @@ asmlinkage __visible void __init start_kernel(void)
numa_policy_init();
if (late_time_init)
late_time_init();
- sched_clock_init();
calibrate_delay();
pidmap_init();
anon_vma_init();
diff --git a/kernel/acct.c b/kernel/acct.c
index 74963d192c5d..ca9cb55b5855 100644
--- a/kernel/acct.c
+++ b/kernel/acct.c
@@ -453,8 +453,8 @@ static void fill_ac(acct_t *ac)
spin_lock_irq(&current->sighand->siglock);
tty = current->signal->tty; /* Safe as we hold the siglock */
ac->ac_tty = tty ? old_encode_dev(tty_devnum(tty)) : 0;
- ac->ac_utime = encode_comp_t(jiffies_to_AHZ(cputime_to_jiffies(pacct->ac_utime)));
- ac->ac_stime = encode_comp_t(jiffies_to_AHZ(cputime_to_jiffies(pacct->ac_stime)));
+ ac->ac_utime = encode_comp_t(nsec_to_AHZ(pacct->ac_utime));
+ ac->ac_stime = encode_comp_t(nsec_to_AHZ(pacct->ac_stime));
ac->ac_flag = pacct->ac_flag;
ac->ac_mem = encode_comp_t(pacct->ac_mem);
ac->ac_minflt = encode_comp_t(pacct->ac_minflt);
@@ -530,7 +530,7 @@ out:
void acct_collect(long exitcode, int group_dead)
{
struct pacct_struct *pacct = &current->signal->pacct;
- cputime_t utime, stime;
+ u64 utime, stime;
unsigned long vsize = 0;
if (group_dead && current->mm) {
@@ -559,6 +559,7 @@ void acct_collect(long exitcode, int group_dead)
pacct->ac_flag |= ACORE;
if (current->flags & PF_SIGNALED)
pacct->ac_flag |= AXSIG;
+
task_cputime(current, &utime, &stime);
pacct->ac_utime += utime;
pacct->ac_stime += stime;
diff --git a/kernel/delayacct.c b/kernel/delayacct.c
index 435c14a45118..660549656991 100644
--- a/kernel/delayacct.c
+++ b/kernel/delayacct.c
@@ -82,19 +82,19 @@ void __delayacct_blkio_end(void)
int __delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk)
{
- cputime_t utime, stime, stimescaled, utimescaled;
+ u64 utime, stime, stimescaled, utimescaled;
unsigned long long t2, t3;
unsigned long flags, t1;
s64 tmp;
task_cputime(tsk, &utime, &stime);
tmp = (s64)d->cpu_run_real_total;
- tmp += cputime_to_nsecs(utime + stime);
+ tmp += utime + stime;
d->cpu_run_real_total = (tmp < (s64)d->cpu_run_real_total) ? 0 : tmp;
task_cputime_scaled(tsk, &utimescaled, &stimescaled);
tmp = (s64)d->cpu_scaled_run_real_total;
- tmp += cputime_to_nsecs(utimescaled + stimescaled);
+ tmp += utimescaled + stimescaled;
d->cpu_scaled_run_real_total =
(tmp < (s64)d->cpu_scaled_run_real_total) ? 0 : tmp;
diff --git a/kernel/exit.c b/kernel/exit.c
index 8f14b866f9f6..8e5e21338b3a 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -86,7 +86,7 @@ static void __exit_signal(struct task_struct *tsk)
bool group_dead = thread_group_leader(tsk);
struct sighand_struct *sighand;
struct tty_struct *uninitialized_var(tty);
- cputime_t utime, stime;
+ u64 utime, stime;
sighand = rcu_dereference_check(tsk->sighand,
lockdep_tasklist_lock_is_held());
@@ -1091,7 +1091,7 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
struct signal_struct *sig = p->signal;
struct signal_struct *psig = current->signal;
unsigned long maxrss;
- cputime_t tgutime, tgstime;
+ u64 tgutime, tgstime;
/*
* The resource counters for the group leader are in its
diff --git a/kernel/fork.c b/kernel/fork.c
index 105c6676d93b..f6995cdfe714 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -1314,7 +1314,7 @@ static void posix_cpu_timers_init_group(struct signal_struct *sig)
cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
if (cpu_limit != RLIM_INFINITY) {
- sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
+ sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
sig->cputimer.running = true;
}
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c
index 9b349619f431..8464a5cbab97 100644
--- a/kernel/locking/mutex.c
+++ b/kernel/locking/mutex.c
@@ -783,6 +783,20 @@ mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
}
EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
+void __sched
+mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
+{
+ int token;
+
+ might_sleep();
+
+ token = io_schedule_prepare();
+ __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
+ subclass, NULL, _RET_IP_, NULL, 0);
+ io_schedule_finish(token);
+}
+EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
+
static inline int
ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
@@ -950,6 +964,16 @@ int __sched mutex_lock_killable(struct mutex *lock)
}
EXPORT_SYMBOL(mutex_lock_killable);
+void __sched mutex_lock_io(struct mutex *lock)
+{
+ int token;
+
+ token = io_schedule_prepare();
+ mutex_lock(lock);
+ io_schedule_finish(token);
+}
+EXPORT_SYMBOL_GPL(mutex_lock_io);
+
static noinline void __sched
__mutex_lock_slowpath(struct mutex *lock)
{
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index 5e59b832ae2b..89ab6758667b 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -18,8 +18,8 @@ endif
obj-y += core.o loadavg.o clock.o cputime.o
obj-y += idle_task.o fair.o rt.o deadline.o stop_task.o
obj-y += wait.o swait.o completion.o idle.o
-obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o
-obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o
+obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o topology.o
+obj-$(CONFIG_SCHED_AUTOGROUP) += autogroup.o
obj-$(CONFIG_SCHEDSTATS) += stats.o
obj-$(CONFIG_SCHED_DEBUG) += debug.o
obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
diff --git a/kernel/sched/auto_group.c b/kernel/sched/autogroup.c
index da39489d2d80..da39489d2d80 100644
--- a/kernel/sched/auto_group.c
+++ b/kernel/sched/autogroup.c
diff --git a/kernel/sched/auto_group.h b/kernel/sched/autogroup.h
index 890c95f2587a..890c95f2587a 100644
--- a/kernel/sched/auto_group.h
+++ b/kernel/sched/autogroup.h
diff --git a/kernel/sched/clock.c b/kernel/sched/clock.c
index e85a725e5c34..ad64efe41722 100644
--- a/kernel/sched/clock.c
+++ b/kernel/sched/clock.c
@@ -77,41 +77,88 @@ EXPORT_SYMBOL_GPL(sched_clock);
__read_mostly int sched_clock_running;
+void sched_clock_init(void)
+{
+ sched_clock_running = 1;
+}
+
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
-static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
-static int __sched_clock_stable_early;
+/*
+ * We must start with !__sched_clock_stable because the unstable -> stable
+ * transition is accurate, while the stable -> unstable transition is not.
+ *
+ * Similarly we start with __sched_clock_stable_early, thereby assuming we
+ * will become stable, such that there's only a single 1 -> 0 transition.
+ */
+static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
+static int __sched_clock_stable_early = 1;
-int sched_clock_stable(void)
+/*
+ * We want: ktime_get_ns() + gtod_offset == sched_clock() + raw_offset
+ */
+static __read_mostly u64 raw_offset;
+static __read_mostly u64 gtod_offset;
+
+struct sched_clock_data {
+ u64 tick_raw;
+ u64 tick_gtod;
+ u64 clock;
+};
+
+static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
+
+static inline struct sched_clock_data *this_scd(void)
{
- return static_key_false(&__sched_clock_stable);
+ return this_cpu_ptr(&sched_clock_data);
}
-static void __set_sched_clock_stable(void)
+static inline struct sched_clock_data *cpu_sdc(int cpu)
{
- if (!sched_clock_stable())
- static_key_slow_inc(&__sched_clock_stable);
+ return &per_cpu(sched_clock_data, cpu);
+}
- tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
+int sched_clock_stable(void)
+{
+ return static_branch_likely(&__sched_clock_stable);
}
-void set_sched_clock_stable(void)
+static void __set_sched_clock_stable(void)
{
- __sched_clock_stable_early = 1;
+ struct sched_clock_data *scd = this_scd();
- smp_mb(); /* matches sched_clock_init() */
+ /*
+ * Attempt to make the (initial) unstable->stable transition continuous.
+ */
+ raw_offset = (scd->tick_gtod + gtod_offset) - (scd->tick_raw);
- if (!sched_clock_running)
- return;
+ printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
+ scd->tick_gtod, gtod_offset,
+ scd->tick_raw, raw_offset);
- __set_sched_clock_stable();
+ static_branch_enable(&__sched_clock_stable);
+ tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
}
static void __clear_sched_clock_stable(struct work_struct *work)
{
- /* XXX worry about clock continuity */
- if (sched_clock_stable())
- static_key_slow_dec(&__sched_clock_stable);
+ struct sched_clock_data *scd = this_scd();
+
+ /*
+ * Attempt to make the stable->unstable transition continuous.
+ *
+ * Trouble is, this is typically called from the TSC watchdog
+ * timer, which is late per definition. This means the tick
+ * values can already be screwy.
+ *
+ * Still do what we can.
+ */
+ gtod_offset = (scd->tick_raw + raw_offset) - (scd->tick_gtod);
+
+ printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
+ scd->tick_gtod, gtod_offset,
+ scd->tick_raw, raw_offset);
+ static_branch_disable(&__sched_clock_stable);
tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
}
@@ -121,47 +168,15 @@ void clear_sched_clock_stable(void)
{
__sched_clock_stable_early = 0;
- smp_mb(); /* matches sched_clock_init() */
-
- if (!sched_clock_running)
- return;
+ smp_mb(); /* matches sched_clock_init_late() */
- schedule_work(&sched_clock_work);
+ if (sched_clock_running == 2)
+ schedule_work(&sched_clock_work);
}
-struct sched_clock_data {
- u64 tick_raw;
- u64 tick_gtod;
- u64 clock;
-};
-
-static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
-
-static inline struct sched_clock_data *this_scd(void)
+void sched_clock_init_late(void)
{
- return this_cpu_ptr(&sched_clock_data);
-}
-
-static inline struct sched_clock_data *cpu_sdc(int cpu)
-{
- return &per_cpu(sched_clock_data, cpu);
-}
-
-void sched_clock_init(void)
-{
- u64 ktime_now = ktime_to_ns(ktime_get());
- int cpu;
-
- for_each_possible_cpu(cpu) {
- struct sched_clock_data *scd = cpu_sdc(cpu);
-
- scd->tick_raw = 0;
- scd->tick_gtod = ktime_now;
- scd->clock = ktime_now;
- }
-
- sched_clock_running = 1;
-
+ sched_clock_running = 2;
/*
* Ensure that it is impossible to not do a static_key update.
*
@@ -173,8 +188,6 @@ void sched_clock_init(void)
if (__sched_clock_stable_early)
__set_sched_clock_stable();
- else
- __clear_sched_clock_stable(NULL);
}
/*
@@ -216,7 +229,7 @@ again:
* scd->tick_gtod + TICK_NSEC);
*/
- clock = scd->tick_gtod + delta;
+ clock = scd->tick_gtod + gtod_offset + delta;
min_clock = wrap_max(scd->tick_gtod, old_clock);
max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
@@ -302,7 +315,7 @@ u64 sched_clock_cpu(int cpu)
u64 clock;
if (sched_clock_stable())
- return sched_clock();
+ return sched_clock() + raw_offset;
if (unlikely(!sched_clock_running))
return 0ull;
@@ -323,23 +336,22 @@ EXPORT_SYMBOL_GPL(sched_clock_cpu);
void sched_clock_tick(void)
{
struct sched_clock_data *scd;
- u64 now, now_gtod;
-
- if (sched_clock_stable())
- return;
-
- if (unlikely(!sched_clock_running))
- return;
WARN_ON_ONCE(!irqs_disabled());
+ /*
+ * Update these values even if sched_clock_stable(), because it can
+ * become unstable at any point in time at which point we need some
+ * values to fall back on.
+ *
+ * XXX arguably we can skip this if we expose tsc_clocksource_reliable
+ */
scd = this_scd();
- now_gtod = ktime_to_ns(ktime_get());
- now = sched_clock();
+ scd->tick_raw = sched_clock();
+ scd->tick_gtod = ktime_get_ns();
- scd->tick_raw = now;
- scd->tick_gtod = now_gtod;
- sched_clock_local(scd);
+ if (!sched_clock_stable() && likely(sched_clock_running))
+ sched_clock_local(scd);
}
/*
@@ -366,11 +378,6 @@ EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
-void sched_clock_init(void)
-{
- sched_clock_running = 1;
-}
-
u64 sched_clock_cpu(int cpu)
{
if (unlikely(!sched_clock_running))
@@ -378,6 +385,7 @@ u64 sched_clock_cpu(int cpu)
return sched_clock();
}
+
#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
/*
diff --git a/kernel/sched/completion.c b/kernel/sched/completion.c
index 8d0f35debf35..f063a25d4449 100644
--- a/kernel/sched/completion.c
+++ b/kernel/sched/completion.c
@@ -31,7 +31,8 @@ void complete(struct completion *x)
unsigned long flags;
spin_lock_irqsave(&x->wait.lock, flags);
- x->done++;
+ if (x->done != UINT_MAX)
+ x->done++;
__wake_up_locked(&x->wait, TASK_NORMAL, 1);
spin_unlock_irqrestore(&x->wait.lock, flags);
}
@@ -51,7 +52,7 @@ void complete_all(struct completion *x)
unsigned long flags;
spin_lock_irqsave(&x->wait.lock, flags);
- x->done += UINT_MAX/2;
+ x->done = UINT_MAX;
__wake_up_locked(&x->wait, TASK_NORMAL, 0);
spin_unlock_irqrestore(&x->wait.lock, flags);
}
@@ -79,7 +80,8 @@ do_wait_for_common(struct completion *x,
if (!x->done)
return timeout;
}
- x->done--;
+ if (x->done != UINT_MAX)
+ x->done--;
return timeout ?: 1;
}
@@ -280,7 +282,7 @@ bool try_wait_for_completion(struct completion *x)
spin_lock_irqsave(&x->wait.lock, flags);
if (!x->done)
ret = 0;
- else
+ else if (x->done != UINT_MAX)
x->done--;
spin_unlock_irqrestore(&x->wait.lock, flags);
return ret;
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index c56fb57f2991..34e2291a9a6c 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -1,88 +1,28 @@
/*
* kernel/sched/core.c
*
- * Kernel scheduler and related syscalls
+ * Core kernel scheduler code and related syscalls
*
* Copyright (C) 1991-2002 Linus Torvalds
- *
- * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
- * make semaphores SMP safe
- * 1998-11-19 Implemented schedule_timeout() and related stuff
- * by Andrea Arcangeli
- * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
- * hybrid priority-list and round-robin design with
- * an array-switch method of distributing timeslices
- * and per-CPU runqueues. Cleanups and useful suggestions
- * by Davide Libenzi, preemptible kernel bits by Robert Love.
- * 2003-09-03 Interactivity tuning by Con Kolivas.
- * 2004-04-02 Scheduler domains code by Nick Piggin
- * 2007-04-15 Work begun on replacing all interactivity tuning with a
- * fair scheduling design by Con Kolivas.
- * 2007-05-05 Load balancing (smp-nice) and other improvements
- * by Peter Williams
- * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
- * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
- * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
- * Thomas Gleixner, Mike Kravetz
*/
-
-#include <linux/kasan.h>
-#include <linux/mm.h>
-#include <linux/module.h>
-#include <linux/nmi.h>
-#include <linux/init.h>
-#include <linux/uaccess.h>
-#include <linux/highmem.h>
-#include <linux/mmu_context.h>
-#include <linux/interrupt.h>
-#include <linux/capability.h>
-#include <linux/completion.h>
-#include <linux/kernel_stat.h>
-#include <linux/debug_locks.h>
-#include <linux/perf_event.h>
-#include <linux/security.h>
-#include <linux/notifier.h>
-#include <linux/profile.h>
-#include <linux/freezer.h>
-#include <linux/vmalloc.h>
-#include <linux/blkdev.h>
-#include <linux/delay.h>
-#include <linux/pid_namespace.h>
-#include <linux/smp.h>
-#include <linux/threads.h>
-#include <linux/timer.h>
-#include <linux/rcupdate.h>
-#include <linux/cpu.h>
+#include <linux/sched.h>
#include <linux/cpuset.h>
-#include <linux/percpu.h>
-#include <linux/proc_fs.h>
-#include <linux/seq_file.h>
-#include <linux/sysctl.h>
-#include <linux/syscalls.h>
-#include <linux/times.h>
-#include <linux/tsacct_kern.h>
-#include <linux/kprobes.h>
#include <linux/delayacct.h>
-#include <linux/unistd.h>
-#include <linux/pagemap.h>
-#include <linux/hrtimer.h>
-#include <linux/tick.h>
-#include <linux/ctype.h>
-#include <linux/ftrace.h>
-#include <linux/slab.h>
#include <linux/init_task.h>
#include <linux/context_tracking.h>
-#include <linux/compiler.h>
-#include <linux/frame.h>
+
+#include <linux/blkdev.h>
+#include <linux/kprobes.h>
+#include <linux/mmu_context.h>
+#include <linux/module.h>
+#include <linux/nmi.h>
#include <linux/prefetch.h>
-#include <linux/mutex.h>
+#include <linux/profile.h>
+#include <linux/security.h>
+#include <linux/syscalls.h>
#include <asm/switch_to.h>
#include <asm/tlb.h>
-#include <asm/irq_regs.h>
-#ifdef CONFIG_PARAVIRT
-#include <asm/paravirt.h>
-#endif
#include "sched.h"
#include "../workqueue_internal.h"
@@ -91,27 +31,8 @@
#define CREATE_TRACE_POINTS
#include <trace/events/sched.h>
-DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
-static void update_rq_clock_task(struct rq *rq, s64 delta);
-
-void update_rq_clock(struct rq *rq)
-{
- s64 delta;
-
- lockdep_assert_held(&rq->lock);
-
- if (rq->clock_skip_update & RQCF_ACT_SKIP)
- return;
-
- delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
- if (delta < 0)
- return;
- rq->clock += delta;
- update_rq_clock_task(rq, delta);
-}
-
/*
* Debugging: various feature bits
*/
@@ -140,7 +61,7 @@ const_debug unsigned int sysctl_sched_nr_migrate = 32;
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
/*
- * period over which we measure -rt task cpu usage in us.
+ * period over which we measure -rt task CPU usage in us.
* default: 1s
*/
unsigned int sysctl_sched_rt_period = 1000000;
@@ -153,7 +74,7 @@ __read_mostly int scheduler_running;
*/
int sysctl_sched_rt_runtime = 950000;
-/* cpus with isolated domains */
+/* CPUs with isolated domains */
cpumask_var_t cpu_isolated_map;
/*
@@ -185,7 +106,7 @@ struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
rq = task_rq(p);
raw_spin_lock(&rq->lock);
if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
- rf->cookie = lockdep_pin_lock(&rq->lock);
+ rq_pin_lock(rq, rf);
return rq;
}
raw_spin_unlock(&rq->lock);
@@ -221,11 +142,11 @@ struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
* If we observe the old cpu in task_rq_lock, the acquire of
* the old rq->lock will fully serialize against the stores.
*
- * If we observe the new cpu in task_rq_lock, the acquire will
+ * If we observe the new CPU in task_rq_lock, the acquire will
* pair with the WMB to ensure we must then also see migrating.
*/
if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
- rf->cookie = lockdep_pin_lock(&rq->lock);
+ rq_pin_lock(rq, rf);
return rq;
}
raw_spin_unlock(&rq->lock);
@@ -236,6 +157,84 @@ struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
}
}
+/*
+ * RQ-clock updating methods:
+ */
+
+static void update_rq_clock_task(struct rq *rq, s64 delta)
+{
+/*
+ * In theory, the compile should just see 0 here, and optimize out the call
+ * to sched_rt_avg_update. But I don't trust it...
+ */
+#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
+ s64 steal = 0, irq_delta = 0;
+#endif
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+ irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
+
+ /*
+ * Since irq_time is only updated on {soft,}irq_exit, we might run into
+ * this case when a previous update_rq_clock() happened inside a
+ * {soft,}irq region.
+ *
+ * When this happens, we stop ->clock_task and only update the
+ * prev_irq_time stamp to account for the part that fit, so that a next
+ * update will consume the rest. This ensures ->clock_task is
+ * monotonic.
+ *
+ * It does however cause some slight miss-attribution of {soft,}irq
+ * time, a more accurate solution would be to update the irq_time using
+ * the current rq->clock timestamp, except that would require using
+ * atomic ops.
+ */
+ if (irq_delta > delta)
+ irq_delta = delta;
+
+ rq->prev_irq_time += irq_delta;
+ delta -= irq_delta;
+#endif
+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
+ if (static_key_false((&paravirt_steal_rq_enabled))) {
+ steal = paravirt_steal_clock(cpu_of(rq));
+ steal -= rq->prev_steal_time_rq;
+
+ if (unlikely(steal > delta))
+ steal = delta;
+
+ rq->prev_steal_time_rq += steal;
+ delta -= steal;
+ }
+#endif
+
+ rq->clock_task += delta;
+
+#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
+ if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
+ sched_rt_avg_update(rq, irq_delta + steal);
+#endif
+}
+
+void update_rq_clock(struct rq *rq)
+{
+ s64 delta;
+
+ lockdep_assert_held(&rq->lock);
+
+ if (rq->clock_update_flags & RQCF_ACT_SKIP)
+ return;
+
+#ifdef CONFIG_SCHED_DEBUG
+ rq->clock_update_flags |= RQCF_UPDATED;
+#endif
+ delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
+ if (delta < 0)
+ return;
+ rq->clock += delta;
+ update_rq_clock_task(rq, delta);
+}
+
+
#ifdef CONFIG_SCHED_HRTICK
/*
* Use HR-timers to deliver accurate preemption points.
@@ -458,7 +457,7 @@ void wake_up_q(struct wake_q_head *head)
task = container_of(node, struct task_struct, wake_q);
BUG_ON(!task);
- /* task can safely be re-inserted now */
+ /* Task can safely be re-inserted now: */
node = node->next;
task->wake_q.next = NULL;
@@ -516,12 +515,12 @@ void resched_cpu(int cpu)
#ifdef CONFIG_SMP
#ifdef CONFIG_NO_HZ_COMMON
/*
- * In the semi idle case, use the nearest busy cpu for migrating timers
- * from an idle cpu. This is good for power-savings.
+ * In the semi idle case, use the nearest busy CPU for migrating timers
+ * from an idle CPU. This is good for power-savings.
*
* We don't do similar optimization for completely idle system, as
- * selecting an idle cpu will add more delays to the timers than intended
- * (as that cpu's timer base may not be uptodate wrt jiffies etc).
+ * selecting an idle CPU will add more delays to the timers than intended
+ * (as that CPU's timer base may not be uptodate wrt jiffies etc).
*/
int get_nohz_timer_target(void)
{
@@ -550,6 +549,7 @@ unlock:
rcu_read_unlock();
return cpu;
}
+
/*
* When add_timer_on() enqueues a timer into the timer wheel of an
* idle CPU then this timer might expire before the next timer event
@@ -784,60 +784,6 @@ void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
dequeue_task(rq, p, flags);
}
-static void update_rq_clock_task(struct rq *rq, s64 delta)
-{
-/*
- * In theory, the compile should just see 0 here, and optimize out the call
- * to sched_rt_avg_update. But I don't trust it...
- */
-#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
- s64 steal = 0, irq_delta = 0;
-#endif
-#ifdef CONFIG_IRQ_TIME_ACCOUNTING
- irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
-
- /*
- * Since irq_time is only updated on {soft,}irq_exit, we might run into
- * this case when a previous update_rq_clock() happened inside a
- * {soft,}irq region.
- *
- * When this happens, we stop ->clock_task and only update the
- * prev_irq_time stamp to account for the part that fit, so that a next
- * update will consume the rest. This ensures ->clock_task is
- * monotonic.
- *
- * It does however cause some slight miss-attribution of {soft,}irq
- * time, a more accurate solution would be to update the irq_time using
- * the current rq->clock timestamp, except that would require using
- * atomic ops.
- */
- if (irq_delta > delta)
- irq_delta = delta;
-
- rq->prev_irq_time += irq_delta;
- delta -= irq_delta;
-#endif
-#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
- if (static_key_false((&paravirt_steal_rq_enabled))) {
- steal = paravirt_steal_clock(cpu_of(rq));
- steal -= rq->prev_steal_time_rq;
-
- if (unlikely(steal > delta))
- steal = delta;
-
- rq->prev_steal_time_rq += steal;
- delta -= steal;
- }
-#endif
-
- rq->clock_task += delta;
-
-#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
- if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
- sched_rt_avg_update(rq, irq_delta + steal);
-#endif
-}
-
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
@@ -1018,7 +964,7 @@ struct migration_arg {
};
/*
- * Move (not current) task off this cpu, onto dest cpu. We're doing
+ * Move (not current) task off this CPU, onto the destination CPU. We're doing
* this because either it can't run here any more (set_cpus_allowed()
* away from this CPU, or CPU going down), or because we're
* attempting to rebalance this task on exec (sched_exec).
@@ -1052,8 +998,8 @@ static int migration_cpu_stop(void *data)
struct rq *rq = this_rq();
/*
- * The original target cpu might have gone down and we might
- * be on another cpu but it doesn't matter.
+ * The original target CPU might have gone down and we might
+ * be on another CPU but it doesn't matter.
*/
local_irq_disable();
/*
@@ -1171,7 +1117,7 @@ static int __set_cpus_allowed_ptr(struct task_struct *p,
if (p->flags & PF_KTHREAD) {
/*
* For kernel threads that do indeed end up on online &&
- * !active we want to ensure they are strict per-cpu threads.
+ * !active we want to ensure they are strict per-CPU threads.
*/
WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
!cpumask_intersects(new_mask, cpu_active_mask) &&
@@ -1195,9 +1141,9 @@ static int __set_cpus_allowed_ptr(struct task_struct *p,
* OK, since we're going to drop the lock immediately
* afterwards anyway.
*/
- lockdep_unpin_lock(&rq->lock, rf.cookie);
+ rq_unpin_lock(rq, &rf);
rq = move_queued_task(rq, p, dest_cpu);
- lockdep_repin_lock(&rq->lock, rf.cookie);
+ rq_repin_lock(rq, &rf);
}
out:
task_rq_unlock(rq, p, &rf);
@@ -1276,7 +1222,7 @@ static void __migrate_swap_task(struct task_struct *p, int cpu)
/*
* Task isn't running anymore; make it appear like we migrated
* it before it went to sleep. This means on wakeup we make the
- * previous cpu our target instead of where it really is.
+ * previous CPU our target instead of where it really is.
*/
p->wake_cpu = cpu;
}
@@ -1508,12 +1454,12 @@ EXPORT_SYMBOL_GPL(kick_process);
*
* - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
* see __set_cpus_allowed_ptr(). At this point the newly online
- * cpu isn't yet part of the sched domains, and balancing will not
+ * CPU isn't yet part of the sched domains, and balancing will not
* see it.
*
- * - on cpu-down we clear cpu_active() to mask the sched domains and
+ * - on CPU-down we clear cpu_active() to mask the sched domains and
* avoid the load balancer to place new tasks on the to be removed
- * cpu. Existing tasks will remain running there and will be taken
+ * CPU. Existing tasks will remain running there and will be taken
* off.
*
* This means that fallback selection must not select !active CPUs.
@@ -1529,9 +1475,9 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
int dest_cpu;
/*
- * If the node that the cpu is on has been offlined, cpu_to_node()
- * will return -1. There is no cpu on the node, and we should
- * select the cpu on the other node.
+ * If the node that the CPU is on has been offlined, cpu_to_node()
+ * will return -1. There is no CPU on the node, and we should
+ * select the CPU on the other node.
*/
if (nid != -1) {
nodemask = cpumask_of_node(nid);
@@ -1563,7 +1509,7 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
state = possible;
break;
}
- /* fall-through */
+ /* Fall-through */
case possible:
do_set_cpus_allowed(p, cpu_possible_mask);
state = fail;
@@ -1607,7 +1553,7 @@ int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
/*
* In order not to call set_task_cpu() on a blocking task we need
* to rely on ttwu() to place the task on a valid ->cpus_allowed
- * cpu.
+ * CPU.
*
* Since this is common to all placement strategies, this lives here.
*
@@ -1681,7 +1627,7 @@ static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_fl
activate_task(rq, p, en_flags);
p->on_rq = TASK_ON_RQ_QUEUED;
- /* if a worker is waking up, notify workqueue */
+ /* If a worker is waking up, notify the workqueue: */
if (p->flags & PF_WQ_WORKER)
wq_worker_waking_up(p, cpu_of(rq));
}
@@ -1690,7 +1636,7 @@ static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_fl
* Mark the task runnable and perform wakeup-preemption.
*/
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
- struct pin_cookie cookie)
+ struct rq_flags *rf)
{
check_preempt_curr(rq, p, wake_flags);
p->state = TASK_RUNNING;
@@ -1702,9 +1648,9 @@ static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
* Our task @p is fully woken up and running; so its safe to
* drop the rq->lock, hereafter rq is only used for statistics.
*/
- lockdep_unpin_lock(&rq->lock, cookie);
+ rq_unpin_lock(rq, rf);
p->sched_class->task_woken(rq, p);
- lockdep_repin_lock(&rq->lock, cookie);
+ rq_repin_lock(rq, rf);
}
if (rq->idle_stamp) {
@@ -1723,7 +1669,7 @@ static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
- struct pin_cookie cookie)
+ struct rq_flags *rf)
{
int en_flags = ENQUEUE_WAKEUP;
@@ -1738,7 +1684,7 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
#endif
ttwu_activate(rq, p, en_flags);
- ttwu_do_wakeup(rq, p, wake_flags, cookie);
+ ttwu_do_wakeup(rq, p, wake_flags, rf);
}
/*
@@ -1757,7 +1703,7 @@ static int ttwu_remote(struct task_struct *p, int wake_flags)
if (task_on_rq_queued(p)) {
/* check_preempt_curr() may use rq clock */
update_rq_clock(rq);
- ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
+ ttwu_do_wakeup(rq, p, wake_flags, &rf);
ret = 1;
}
__task_rq_unlock(rq, &rf);
@@ -1770,15 +1716,15 @@ void sched_ttwu_pending(void)
{
struct rq *rq = this_rq();
struct llist_node *llist = llist_del_all(&rq->wake_list);
- struct pin_cookie cookie;
struct task_struct *p;
unsigned long flags;
+ struct rq_flags rf;
if (!llist)
return;
raw_spin_lock_irqsave(&rq->lock, flags);
- cookie = lockdep_pin_lock(&rq->lock);
+ rq_pin_lock(rq, &rf);
while (llist) {
int wake_flags = 0;
@@ -1789,10 +1735,10 @@ void sched_ttwu_pending(void)
if (p->sched_remote_wakeup)
wake_flags = WF_MIGRATED;
- ttwu_do_activate(rq, p, wake_flags, cookie);
+ ttwu_do_activate(rq, p, wake_flags, &rf);
}
- lockdep_unpin_lock(&rq->lock, cookie);
+ rq_unpin_lock(rq, &rf);
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
@@ -1864,7 +1810,7 @@ void wake_up_if_idle(int cpu)
raw_spin_lock_irqsave(&rq->lock, flags);
if (is_idle_task(rq->curr))
smp_send_reschedule(cpu);
- /* Else cpu is not in idle, do nothing here */
+ /* Else CPU is not idle, do nothing here: */
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
@@ -1881,20 +1827,20 @@ bool cpus_share_cache(int this_cpu, int that_cpu)
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
{
struct rq *rq = cpu_rq(cpu);
- struct pin_cookie cookie;
+ struct rq_flags rf;
#if defined(CONFIG_SMP)
if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
- sched_clock_cpu(cpu); /* sync clocks x-cpu */
+ sched_clock_cpu(cpu); /* Sync clocks across CPUs */
ttwu_queue_remote(p, cpu, wake_flags);
return;
}
#endif
raw_spin_lock(&rq->lock);
- cookie = lockdep_pin_lock(&rq->lock);
- ttwu_do_activate(rq, p, wake_flags, cookie);
- lockdep_unpin_lock(&rq->lock, cookie);
+ rq_pin_lock(rq, &rf);
+ ttwu_do_activate(rq, p, wake_flags, &rf);
+ rq_unpin_lock(rq, &rf);
raw_spin_unlock(&rq->lock);
}
@@ -1904,8 +1850,8 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
* MIGRATION
*
* The basic program-order guarantee on SMP systems is that when a task [t]
- * migrates, all its activity on its old cpu [c0] happens-before any subsequent
- * execution on its new cpu [c1].
+ * migrates, all its activity on its old CPU [c0] happens-before any subsequent
+ * execution on its new CPU [c1].
*
* For migration (of runnable tasks) this is provided by the following means:
*
@@ -1916,7 +1862,7 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
*
* Transitivity guarantees that B happens after A and C after B.
* Note: we only require RCpc transitivity.
- * Note: the cpu doing B need not be c0 or c1
+ * Note: the CPU doing B need not be c0 or c1
*
* Example:
*
@@ -2024,7 +1970,8 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
trace_sched_waking(p);
- success = 1; /* we're going to change ->state */
+ /* We're going to change ->state: */
+ success = 1;
cpu = task_cpu(p);
/*
@@ -2073,7 +2020,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
smp_rmb();
/*
- * If the owning (remote) cpu is still in the middle of schedule() with
+ * If the owning (remote) CPU is still in the middle of schedule() with
* this task as prev, wait until its done referencing the task.
*
* Pairs with the smp_store_release() in finish_lock_switch().
@@ -2086,11 +2033,24 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
p->sched_contributes_to_load = !!task_contributes_to_load(p);
p->state = TASK_WAKING;
+ if (p->in_iowait) {
+ delayacct_blkio_end();
+ atomic_dec(&task_rq(p)->nr_iowait);
+ }
+
cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
if (task_cpu(p) != cpu) {
wake_flags |= WF_MIGRATED;
set_task_cpu(p, cpu);
}
+
+#else /* CONFIG_SMP */
+
+ if (p->in_iowait) {
+ delayacct_blkio_end();
+ atomic_dec(&task_rq(p)->nr_iowait);
+ }
+
#endif /* CONFIG_SMP */
ttwu_queue(p, cpu, wake_flags);
@@ -2111,7 +2071,7 @@ out:
* ensure that this_rq() is locked, @p is bound to this_rq() and not
* the current task.
*/
-static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
+static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
{
struct rq *rq = task_rq(p);
@@ -2128,11 +2088,11 @@ static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie
* disabled avoiding further scheduler activity on it and we've
* not yet picked a replacement task.
*/
- lockdep_unpin_lock(&rq->lock, cookie);
+ rq_unpin_lock(rq, rf);
raw_spin_unlock(&rq->lock);
raw_spin_lock(&p->pi_lock);
raw_spin_lock(&rq->lock);
- lockdep_repin_lock(&rq->lock, cookie);
+ rq_repin_lock(rq, rf);
}
if (!(p->state & TASK_NORMAL))
@@ -2140,10 +2100,15 @@ static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie
trace_sched_waking(p);
- if (!task_on_rq_queued(p))
+ if (!task_on_rq_queued(p)) {
+ if (p->in_iowait) {
+ delayacct_blkio_end();
+ atomic_dec(&rq->nr_iowait);
+ }
ttwu_activate(rq, p, ENQUEUE_WAKEUP);
+ }
- ttwu_do_wakeup(rq, p, 0, cookie);
+ ttwu_do_wakeup(rq, p, 0, rf);
ttwu_stat(p, smp_processor_id(), 0);
out:
raw_spin_unlock(&p->pi_lock);
@@ -2427,7 +2392,7 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p)
*/
raw_spin_lock_irqsave(&p->pi_lock, flags);
/*
- * We're setting the cpu for the first time, we don't migrate,
+ * We're setting the CPU for the first time, we don't migrate,
* so use __set_task_cpu().
*/
__set_task_cpu(p, cpu);
@@ -2570,7 +2535,7 @@ void wake_up_new_task(struct task_struct *p)
/*
* Fork balancing, do it here and not earlier because:
* - cpus_allowed can change in the fork path
- * - any previously selected cpu might disappear through hotplug
+ * - any previously selected CPU might disappear through hotplug
*
* Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
* as we're not fully set-up yet.
@@ -2578,6 +2543,7 @@ void wake_up_new_task(struct task_struct *p)
__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
#endif
rq = __task_rq_lock(p, &rf);
+ update_rq_clock(rq);
post_init_entity_util_avg(&p->se);
activate_task(rq, p, 0);
@@ -2590,9 +2556,9 @@ void wake_up_new_task(struct task_struct *p)
* Nothing relies on rq->lock after this, so its fine to
* drop it.
*/
- lockdep_unpin_lock(&rq->lock, rf.cookie);
+ rq_unpin_lock(rq, &rf);
p->sched_class->task_woken(rq, p);
- lockdep_repin_lock(&rq->lock, rf.cookie);
+ rq_repin_lock(rq, &rf);
}
#endif
task_rq_unlock(rq, p, &rf);
@@ -2861,7 +2827,7 @@ asmlinkage __visible void schedule_tail(struct task_struct *prev)
*/
static __always_inline struct rq *
context_switch(struct rq *rq, struct task_struct *prev,
- struct task_struct *next, struct pin_cookie cookie)
+ struct task_struct *next, struct rq_flags *rf)
{
struct mm_struct *mm, *oldmm;
@@ -2887,13 +2853,16 @@ context_switch(struct rq *rq, struct task_struct *prev,
prev->active_mm = NULL;
rq->prev_mm = oldmm;
}
+
+ rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
+
/*
* Since the runqueue lock will be released by the next
* task (which is an invalid locking op but in the case
* of the scheduler it's an obvious special-case), so we
* do an early lockdep release here:
*/
- lockdep_unpin_lock(&rq->lock, cookie);
+ rq_unpin_lock(rq, rf);
spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
/* Here we just switch the register state and the stack. */
@@ -2920,7 +2889,7 @@ unsigned long nr_running(void)
}
/*
- * Check if only the current task is running on the cpu.
+ * Check if only the current task is running on the CPU.
*
* Caution: this function does not check that the caller has disabled
* preemption, thus the result might have a time-of-check-to-time-of-use
@@ -2949,6 +2918,36 @@ unsigned long long nr_context_switches(void)
return sum;
}
+/*
+ * IO-wait accounting, and how its mostly bollocks (on SMP).
+ *
+ * The idea behind IO-wait account is to account the idle time that we could
+ * have spend running if it were not for IO. That is, if we were to improve the
+ * storage performance, we'd have a proportional reduction in IO-wait time.
+ *
+ * This all works nicely on UP, where, when a task blocks on IO, we account
+ * idle time as IO-wait, because if the storage were faster, it could've been
+ * running and we'd not be idle.
+ *
+ * This has been extended to SMP, by doing the same for each CPU. This however
+ * is broken.
+ *
+ * Imagine for instance the case where two tasks block on one CPU, only the one
+ * CPU will have IO-wait accounted, while the other has regular idle. Even
+ * though, if the storage were faster, both could've ran at the same time,
+ * utilising both CPUs.
+ *
+ * This means, that when looking globally, the current IO-wait accounting on
+ * SMP is a lower bound, by reason of under accounting.
+ *
+ * Worse, since the numbers are provided per CPU, they are sometimes
+ * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
+ * associated with any one particular CPU, it can wake to another CPU than it
+ * blocked on. This means the per CPU IO-wait number is meaningless.
+ *
+ * Task CPU affinities can make all that even more 'interesting'.
+ */
+
unsigned long nr_iowait(void)
{
unsigned long i, sum = 0;
@@ -2959,6 +2958,13 @@ unsigned long nr_iowait(void)
return sum;
}
+/*
+ * Consumers of these two interfaces, like for example the cpufreq menu
+ * governor are using nonsensical data. Boosting frequency for a CPU that has
+ * IO-wait which might not even end up running the task when it does become
+ * runnable.
+ */
+
unsigned long nr_iowait_cpu(int cpu)
{
struct rq *this = cpu_rq(cpu);
@@ -3042,8 +3048,8 @@ unsigned long long task_sched_runtime(struct task_struct *p)
* So we have a optimization chance when the task's delta_exec is 0.
* Reading ->on_cpu is racy, but this is ok.
*
- * If we race with it leaving cpu, we'll take a lock. So we're correct.
- * If we race with it entering cpu, unaccounted time is 0. This is
+ * If we race with it leaving CPU, we'll take a lock. So we're correct.
+ * If we race with it entering CPU, unaccounted time is 0. This is
* indistinguishable from the read occurring a few cycles earlier.
* If we see ->on_cpu without ->on_rq, the task is leaving, and has
* been accounted, so we're correct here as well.
@@ -3257,31 +3263,30 @@ static inline void schedule_debug(struct task_struct *prev)
* Pick up the highest-prio task:
*/
static inline struct task_struct *
-pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
+pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
- const struct sched_class *class = &fair_sched_class;
+ const struct sched_class *class;
struct task_struct *p;
/*
* Optimization: we know that if all tasks are in
* the fair class we can call that function directly:
*/
- if (likely(prev->sched_class == class &&
- rq->nr_running == rq->cfs.h_nr_running)) {
- p = fair_sched_class.pick_next_task(rq, prev, cookie);
+ if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
+ p = fair_sched_class.pick_next_task(rq, prev, rf);
if (unlikely(p == RETRY_TASK))
goto again;
- /* assumes fair_sched_class->next == idle_sched_class */
+ /* Assumes fair_sched_class->next == idle_sched_class */
if (unlikely(!p))
- p = idle_sched_class.pick_next_task(rq, prev, cookie);
+ p = idle_sched_class.pick_next_task(rq, prev, rf);
return p;
}
again:
for_each_class(class) {
- p = class->pick_next_task(rq, prev, cookie);
+ p = class->pick_next_task(rq, prev, rf);
if (p) {
if (unlikely(p == RETRY_TASK))
goto again;
@@ -3289,7 +3294,8 @@ again:
}
}
- BUG(); /* the idle class will always have a runnable task */
+ /* The idle class should always have a runnable task: */
+ BUG();
}
/*
@@ -3335,7 +3341,7 @@ static void __sched notrace __schedule(bool preempt)
{
struct task_struct *prev, *next;
unsigned long *switch_count;
- struct pin_cookie cookie;
+ struct rq_flags rf;
struct rq *rq;
int cpu;
@@ -3358,9 +3364,10 @@ static void __sched notrace __schedule(bool preempt)
*/
smp_mb__before_spinlock();
raw_spin_lock(&rq->lock);
- cookie = lockdep_pin_lock(&rq->lock);
+ rq_pin_lock(rq, &rf);
- rq->clock_skip_update <<= 1; /* promote REQ to ACT */
+ /* Promote REQ to ACT */
+ rq->clock_update_flags <<= 1;
switch_count = &prev->nivcsw;
if (!preempt && prev->state) {
@@ -3370,6 +3377,11 @@ static void __sched notrace __schedule(bool preempt)
deactivate_task(rq, prev, DEQUEUE_SLEEP);
prev->on_rq = 0;
+ if (prev->in_iowait) {
+ atomic_inc(&rq->nr_iowait);
+ delayacct_blkio_start();
+ }
+
/*
* If a worker went to sleep, notify and ask workqueue
* whether it wants to wake up a task to maintain
@@ -3380,7 +3392,7 @@ static void __sched notrace __schedule(bool preempt)
to_wakeup = wq_worker_sleeping(prev);
if (to_wakeup)
- try_to_wake_up_local(to_wakeup, cookie);
+ try_to_wake_up_local(to_wakeup, &rf);
}
}
switch_count = &prev->nvcsw;
@@ -3389,10 +3401,9 @@ static void __sched notrace __schedule(bool preempt)
if (task_on_rq_queued(prev))
update_rq_clock(rq);
- next = pick_next_task(rq, prev, cookie);
+ next = pick_next_task(rq, prev, &rf);
clear_tsk_need_resched(prev);
clear_preempt_need_resched();
- rq->clock_skip_update = 0;
if (likely(prev != next)) {
rq->nr_switches++;
@@ -3400,9 +3411,12 @@ static void __sched notrace __schedule(bool preempt)
++*switch_count;
trace_sched_switch(preempt, prev, next);
- rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
+
+ /* Also unlocks the rq: */
+ rq = context_switch(rq, prev, next, &rf);
} else {
- lockdep_unpin_lock(&rq->lock, cookie);
+ rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
+ rq_unpin_lock(rq, &rf);
raw_spin_unlock_irq(&rq->lock);
}
@@ -3426,14 +3440,18 @@ void __noreturn do_task_dead(void)
smp_mb();
raw_spin_unlock_wait(&current->pi_lock);
- /* causes final put_task_struct in finish_task_switch(). */
+ /* Causes final put_task_struct in finish_task_switch(): */
__set_current_state(TASK_DEAD);
- current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
+
+ /* Tell freezer to ignore us: */
+ current->flags |= PF_NOFREEZE;
+
__schedule(false);
BUG();
- /* Avoid "noreturn function does return". */
+
+ /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
for (;;)
- cpu_relax(); /* For when BUG is null */
+ cpu_relax();
}
static inline void sched_submit_work(struct task_struct *tsk)
@@ -3651,6 +3669,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
BUG_ON(prio > MAX_PRIO);
rq = __task_rq_lock(p, &rf);
+ update_rq_clock(rq);
/*
* Idle task boosting is a nono in general. There is one
@@ -3725,7 +3744,8 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
check_class_changed(rq, p, prev_class, oldprio);
out_unlock:
- preempt_disable(); /* avoid rq from going away on us */
+ /* Avoid rq from going away on us: */
+ preempt_disable();
__task_rq_unlock(rq, &rf);
balance_callback(rq);
@@ -3747,6 +3767,8 @@ void set_user_nice(struct task_struct *p, long nice)
* the task might be in the middle of scheduling on another CPU.
*/
rq = task_rq_lock(p, &rf);
+ update_rq_clock(rq);
+
/*
* The RT priorities are set via sched_setscheduler(), but we still
* allow the 'normal' nice value to be set - but as expected
@@ -3793,7 +3815,7 @@ EXPORT_SYMBOL(set_user_nice);
*/
int can_nice(const struct task_struct *p, const int nice)
{
- /* convert nice value [19,-20] to rlimit style value [1,40] */
+ /* Convert nice value [19,-20] to rlimit style value [1,40]: */
int nice_rlim = nice_to_rlimit(nice);
return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
@@ -3849,7 +3871,7 @@ int task_prio(const struct task_struct *p)
}
/**
- * idle_cpu - is a given cpu idle currently?
+ * idle_cpu - is a given CPU idle currently?
* @cpu: the processor in question.
*
* Return: 1 if the CPU is currently idle. 0 otherwise.
@@ -3873,10 +3895,10 @@ int idle_cpu(int cpu)
}
/**
- * idle_task - return the idle task for a given cpu.
+ * idle_task - return the idle task for a given CPU.
* @cpu: the processor in question.
*
- * Return: The idle task for the cpu @cpu.
+ * Return: The idle task for the CPU @cpu.
*/
struct task_struct *idle_task(int cpu)
{
@@ -4042,7 +4064,7 @@ __checkparam_dl(const struct sched_attr *attr)
}
/*
- * check the target process has a UID that matches the current process's
+ * Check the target process has a UID that matches the current process's:
*/
static bool check_same_owner(struct task_struct *p)
{
@@ -4057,8 +4079,7 @@ static bool check_same_owner(struct task_struct *p)
return match;
}
-static bool dl_param_changed(struct task_struct *p,
- const struct sched_attr *attr)
+static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
{
struct sched_dl_entity *dl_se = &p->dl;
@@ -4085,10 +4106,10 @@ static int __sched_setscheduler(struct task_struct *p,
int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
struct rq *rq;
- /* may grab non-irq protected spin_locks */
+ /* May grab non-irq protected spin_locks: */
BUG_ON(in_interrupt());
recheck:
- /* double check policy once rq lock held */
+ /* Double check policy once rq lock held: */
if (policy < 0) {
reset_on_fork = p->sched_reset_on_fork;
policy = oldpolicy = p->policy;
@@ -4128,11 +4149,11 @@ recheck:
unsigned long rlim_rtprio =
task_rlimit(p, RLIMIT_RTPRIO);
- /* can't set/change the rt policy */
+ /* Can't set/change the rt policy: */
if (policy != p->policy && !rlim_rtprio)
return -EPERM;
- /* can't increase priority */
+ /* Can't increase priority: */
if (attr->sched_priority > p->rt_priority &&
attr->sched_priority > rlim_rtprio)
return -EPERM;
@@ -4156,11 +4177,11 @@ recheck:
return -EPERM;
}
- /* can't change other user's priorities */
+ /* Can't change other user's priorities: */
if (!check_same_owner(p))
return -EPERM;
- /* Normal users shall not reset the sched_reset_on_fork flag */
+ /* Normal users shall not reset the sched_reset_on_fork flag: */
if (p->sched_reset_on_fork && !reset_on_fork)
return -EPERM;
}
@@ -4172,16 +4193,17 @@ recheck:
}
/*
- * make sure no PI-waiters arrive (or leave) while we are
+ * Make sure no PI-waiters arrive (or leave) while we are
* changing the priority of the task:
*
* To be able to change p->policy safely, the appropriate
* runqueue lock must be held.
*/
rq = task_rq_lock(p, &rf);
+ update_rq_clock(rq);
/*
- * Changing the policy of the stop threads its a very bad idea
+ * Changing the policy of the stop threads its a very bad idea:
*/
if (p == rq->stop) {
task_rq_unlock(rq, p, &rf);
@@ -4237,7 +4259,7 @@ change:
#endif
}
- /* recheck policy now with rq lock held */
+ /* Re-check policy now with rq lock held: */
if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
policy = oldpolicy = -1;
task_rq_unlock(rq, p, &rf);
@@ -4294,15 +4316,15 @@ change:
set_curr_task(rq, p);
check_class_changed(rq, p, prev_class, oldprio);
- preempt_disable(); /* avoid rq from going away on us */
+
+ /* Avoid rq from going away on us: */
+ preempt_disable();
task_rq_unlock(rq, p, &rf);
if (pi)
rt_mutex_adjust_pi(p);
- /*
- * Run balance callbacks after we've adjusted the PI chain.
- */
+ /* Run balance callbacks after we've adjusted the PI chain: */
balance_callback(rq);
preempt_enable();
@@ -4395,8 +4417,7 @@ do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
/*
* Mimics kernel/events/core.c perf_copy_attr().
*/
-static int sched_copy_attr(struct sched_attr __user *uattr,
- struct sched_attr *attr)
+static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
{
u32 size;
int ret;
@@ -4404,19 +4425,19 @@ static int sched_copy_attr(struct sched_attr __user *uattr,
if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
return -EFAULT;
- /*
- * zero the full structure, so that a short copy will be nice.
- */
+ /* Zero the full structure, so that a short copy will be nice: */
memset(attr, 0, sizeof(*attr));
ret = get_user(size, &uattr->size);
if (ret)
return ret;
- if (size > PAGE_SIZE) /* silly large */
+ /* Bail out on silly large: */
+ if (size > PAGE_SIZE)
goto err_size;
- if (!size) /* abi compat */
+ /* ABI compatibility quirk: */
+ if (!size)
size = SCHED_ATTR_SIZE_VER0;
if (size < SCHED_ATTR_SIZE_VER0)
@@ -4451,7 +4472,7 @@ static int sched_copy_attr(struct sched_attr __user *uattr,
return -EFAULT;
/*
- * XXX: do we want to be lenient like existing syscalls; or do we want
+ * XXX: Do we want to be lenient like existing syscalls; or do we want
* to be strict and return an error on out-of-bounds values?
*/
attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
@@ -4471,10 +4492,8 @@ err_size:
*
* Return: 0 on success. An error code otherwise.
*/
-SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
- struct sched_param __user *, param)
+SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
{
- /* negative values for policy are not valid */
if (policy < 0)
return -EINVAL;
@@ -4784,10 +4803,10 @@ static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
}
/**
- * sys_sched_setaffinity - set the cpu affinity of a process
+ * sys_sched_setaffinity - set the CPU affinity of a process
* @pid: pid of the process
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to the new cpu mask
+ * @user_mask_ptr: user-space pointer to the new CPU mask
*
* Return: 0 on success. An error code otherwise.
*/
@@ -4835,10 +4854,10 @@ out_unlock:
}
/**
- * sys_sched_getaffinity - get the cpu affinity of a process
+ * sys_sched_getaffinity - get the CPU affinity of a process
* @pid: pid of the process
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to hold the current cpu mask
+ * @user_mask_ptr: user-space pointer to hold the current CPU mask
*
* Return: size of CPU mask copied to user_mask_ptr on success. An
* error code otherwise.
@@ -4966,7 +4985,7 @@ EXPORT_SYMBOL(__cond_resched_softirq);
* Typical broken usage is:
*
* while (!event)
- * yield();
+ * yield();
*
* where one assumes that yield() will let 'the other' process run that will
* make event true. If the current task is a SCHED_FIFO task that will never
@@ -5057,31 +5076,48 @@ out_irq:
}
EXPORT_SYMBOL_GPL(yield_to);
+int io_schedule_prepare(void)
+{
+ int old_iowait = current->in_iowait;
+
+ current->in_iowait = 1;
+ blk_schedule_flush_plug(current);
+
+ return old_iowait;
+}
+
+void io_schedule_finish(int token)
+{
+ current->in_iowait = token;
+}
+
/*
* This task is about to go to sleep on IO. Increment rq->nr_iowait so
* that process accounting knows that this is a task in IO wait state.
*/
long __sched io_schedule_timeout(long timeout)
{
- int old_iowait = current->in_iowait;
- struct rq *rq;
+ int token;
long ret;
- current->in_iowait = 1;
- blk_schedule_flush_plug(current);
-
- delayacct_blkio_start();
- rq = raw_rq();
- atomic_inc(&rq->nr_iowait);
+ token = io_schedule_prepare();
ret = schedule_timeout(timeout);
- current->in_iowait = old_iowait;
- atomic_dec(&rq->nr_iowait);
- delayacct_blkio_end();
+ io_schedule_finish(token);
return ret;
}
EXPORT_SYMBOL(io_schedule_timeout);
+void io_schedule(void)
+{
+ int token;
+
+ token = io_schedule_prepare();
+ schedule();
+ io_schedule_finish(token);
+}
+EXPORT_SYMBOL(io_schedule);
+
/**
* sys_sched_get_priority_max - return maximum RT priority.
* @policy: scheduling class.
@@ -5264,7 +5300,7 @@ void init_idle_bootup_task(struct task_struct *idle)
/**
* init_idle - set up an idle thread for a given CPU
* @idle: task in question
- * @cpu: cpu the idle task belongs to
+ * @cpu: CPU the idle task belongs to
*
* NOTE: this function does not set the idle thread's NEED_RESCHED
* flag, to make booting more robust.
@@ -5295,7 +5331,7 @@ void init_idle(struct task_struct *idle, int cpu)
#endif
/*
* We're having a chicken and egg problem, even though we are
- * holding rq->lock, the cpu isn't yet set to this cpu so the
+ * holding rq->lock, the CPU isn't yet set to this CPU so the
* lockdep check in task_group() will fail.
*
* Similar case to sched_fork(). / Alternatively we could
@@ -5360,7 +5396,7 @@ int task_can_attach(struct task_struct *p,
/*
* Kthreads which disallow setaffinity shouldn't be moved
- * to a new cpuset; we don't want to change their cpu
+ * to a new cpuset; we don't want to change their CPU
* affinity and isolating such threads by their set of
* allowed nodes is unnecessary. Thus, cpusets are not
* applicable for such threads. This prevents checking for
@@ -5409,7 +5445,7 @@ out:
#ifdef CONFIG_SMP
-static bool sched_smp_initialized __read_mostly;
+bool sched_smp_initialized __read_mostly;
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
@@ -5461,7 +5497,7 @@ void sched_setnuma(struct task_struct *p, int nid)
#ifdef CONFIG_HOTPLUG_CPU
/*
- * Ensures that the idle task is using init_mm right before its cpu goes
+ * Ensure that the idle task is using init_mm right before its CPU goes
* offline.
*/
void idle_task_exit(void)
@@ -5521,7 +5557,7 @@ static void migrate_tasks(struct rq *dead_rq)
{
struct rq *rq = dead_rq;
struct task_struct *next, *stop = rq->stop;
- struct pin_cookie cookie;
+ struct rq_flags rf, old_rf;
int dest_cpu;
/*
@@ -5545,16 +5581,16 @@ static void migrate_tasks(struct rq *dead_rq)
for (;;) {
/*
* There's this thread running, bail when that's the only
- * remaining thread.
+ * remaining thread:
*/
if (rq->nr_running == 1)
break;
/*
- * pick_next_task assumes pinned rq->lock.
+ * pick_next_task() assumes pinned rq->lock:
*/
- cookie = lockdep_pin_lock(&rq->lock);
- next = pick_next_task(rq, &fake_task, cookie);
+ rq_pin_lock(rq, &rf);
+ next = pick_next_task(rq, &fake_task, &rf);
BUG_ON(!next);
next->sched_class->put_prev_task(rq, next);
@@ -5567,7 +5603,7 @@ static void migrate_tasks(struct rq *dead_rq)
* because !cpu_active at this point, which means load-balance
* will not interfere. Also, stop-machine.
*/
- lockdep_unpin_lock(&rq->lock, cookie);
+ rq_unpin_lock(rq, &rf);
raw_spin_unlock(&rq->lock);
raw_spin_lock(&next->pi_lock);
raw_spin_lock(&rq->lock);
@@ -5582,6 +5618,13 @@ static void migrate_tasks(struct rq *dead_rq)
continue;
}
+ /*
+ * __migrate_task() may return with a different
+ * rq->lock held and a new cookie in 'rf', but we need
+ * to preserve rf::clock_update_flags for 'dead_rq'.
+ */
+ old_rf = rf;
+
/* Find suitable destination for @next, with force if needed. */
dest_cpu = select_fallback_rq(dead_rq->cpu, next);
@@ -5590,6 +5633,7 @@ static void migrate_tasks(struct rq *dead_rq)
raw_spin_unlock(&rq->lock);
rq = dead_rq;
raw_spin_lock(&rq->lock);
+ rf = old_rf;
}
raw_spin_unlock(&next->pi_lock);
}
@@ -5598,7 +5642,7 @@ static void migrate_tasks(struct rq *dead_rq)
}
#endif /* CONFIG_HOTPLUG_CPU */
-static void set_rq_online(struct rq *rq)
+void set_rq_online(struct rq *rq)
{
if (!rq->online) {
const struct sched_class *class;
@@ -5613,7 +5657,7 @@ static void set_rq_online(struct rq *rq)
}
}
-static void set_rq_offline(struct rq *rq)
+void set_rq_offline(struct rq *rq)
{
if (rq->online) {
const struct sched_class *class;
@@ -5635,1647 +5679,10 @@ static void set_cpu_rq_start_time(unsigned int cpu)
rq->age_stamp = sched_clock_cpu(cpu);
}
-static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
-
-#ifdef CONFIG_SCHED_DEBUG
-
-static __read_mostly int sched_debug_enabled;
-
-static int __init sched_debug_setup(char *str)
-{
- sched_debug_enabled = 1;
-
- return 0;
-}
-early_param("sched_debug", sched_debug_setup);
-
-static inline bool sched_debug(void)
-{
- return sched_debug_enabled;
-}
-
-static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
- struct cpumask *groupmask)
-{
- struct sched_group *group = sd->groups;
-
- cpumask_clear(groupmask);
-
- printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
-
- if (!(sd->flags & SD_LOAD_BALANCE)) {
- printk("does not load-balance\n");
- if (sd->parent)
- printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
- " has parent");
- return -1;
- }
-
- printk(KERN_CONT "span %*pbl level %s\n",
- cpumask_pr_args(sched_domain_span(sd)), sd->name);
-
- if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
- printk(KERN_ERR "ERROR: domain->span does not contain "
- "CPU%d\n", cpu);
- }
- if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
- printk(KERN_ERR "ERROR: domain->groups does not contain"
- " CPU%d\n", cpu);
- }
-
- printk(KERN_DEBUG "%*s groups:", level + 1, "");
- do {
- if (!group) {
- printk("\n");
- printk(KERN_ERR "ERROR: group is NULL\n");
- break;
- }
-
- if (!cpumask_weight(sched_group_cpus(group))) {
- printk(KERN_CONT "\n");
- printk(KERN_ERR "ERROR: empty group\n");
- break;
- }
-
- if (!(sd->flags & SD_OVERLAP) &&
- cpumask_intersects(groupmask, sched_group_cpus(group))) {
- printk(KERN_CONT "\n");
- printk(KERN_ERR "ERROR: repeated CPUs\n");
- break;
- }
-
- cpumask_or(groupmask, groupmask, sched_group_cpus(group));
-
- printk(KERN_CONT " %*pbl",
- cpumask_pr_args(sched_group_cpus(group)));
- if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
- printk(KERN_CONT " (cpu_capacity = %lu)",
- group->sgc->capacity);
- }
-
- group = group->next;
- } while (group != sd->groups);
- printk(KERN_CONT "\n");
-
- if (!cpumask_equal(sched_domain_span(sd), groupmask))
- printk(KERN_ERR "ERROR: groups don't span domain->span\n");
-
- if (sd->parent &&
- !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
- printk(KERN_ERR "ERROR: parent span is not a superset "
- "of domain->span\n");
- return 0;
-}
-
-static void sched_domain_debug(struct sched_domain *sd, int cpu)
-{
- int level = 0;
-
- if (!sched_debug_enabled)
- return;
-
- if (!sd) {
- printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
- return;
- }
-
- printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
-
- for (;;) {
- if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
- break;
- level++;
- sd = sd->parent;
- if (!sd)
- break;
- }
-}
-#else /* !CONFIG_SCHED_DEBUG */
-
-# define sched_debug_enabled 0
-# define sched_domain_debug(sd, cpu) do { } while (0)
-static inline bool sched_debug(void)
-{
- return false;
-}
-#endif /* CONFIG_SCHED_DEBUG */
-
-static int sd_degenerate(struct sched_domain *sd)
-{
- if (cpumask_weight(sched_domain_span(sd)) == 1)
- return 1;
-
- /* Following flags need at least 2 groups */
- if (sd->flags & (SD_LOAD_BALANCE |
- SD_BALANCE_NEWIDLE |
- SD_BALANCE_FORK |
- SD_BALANCE_EXEC |
- SD_SHARE_CPUCAPACITY |
- SD_ASYM_CPUCAPACITY |
- SD_SHARE_PKG_RESOURCES |
- SD_SHARE_POWERDOMAIN)) {
- if (sd->groups != sd->groups->next)
- return 0;
- }
-
- /* Following flags don't use groups */
- if (sd->flags & (SD_WAKE_AFFINE))
- return 0;
-
- return 1;
-}
-
-static int
-sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
-{
- unsigned long cflags = sd->flags, pflags = parent->flags;
-
- if (sd_degenerate(parent))
- return 1;
-
- if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
- return 0;
-
- /* Flags needing groups don't count if only 1 group in parent */
- if (parent->groups == parent->groups->next) {
- pflags &= ~(SD_LOAD_BALANCE |
- SD_BALANCE_NEWIDLE |
- SD_BALANCE_FORK |
- SD_BALANCE_EXEC |
- SD_ASYM_CPUCAPACITY |
- SD_SHARE_CPUCAPACITY |
- SD_SHARE_PKG_RESOURCES |
- SD_PREFER_SIBLING |
- SD_SHARE_POWERDOMAIN);
- if (nr_node_ids == 1)
- pflags &= ~SD_SERIALIZE;
- }
- if (~cflags & pflags)
- return 0;
-
- return 1;
-}
-
-static void free_rootdomain(struct rcu_head *rcu)
-{
- struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
-
- cpupri_cleanup(&rd->cpupri);
- cpudl_cleanup(&rd->cpudl);
- free_cpumask_var(rd->dlo_mask);
- free_cpumask_var(rd->rto_mask);
- free_cpumask_var(rd->online);
- free_cpumask_var(rd->span);
- kfree(rd);
-}
-
-static void rq_attach_root(struct rq *rq, struct root_domain *rd)
-{
- struct root_domain *old_rd = NULL;
- unsigned long flags;
-
- raw_spin_lock_irqsave(&rq->lock, flags);
-
- if (rq->rd) {
- old_rd = rq->rd;
-
- if (cpumask_test_cpu(rq->cpu, old_rd->online))
- set_rq_offline(rq);
-
- cpumask_clear_cpu(rq->cpu, old_rd->span);
-
- /*
- * If we dont want to free the old_rd yet then
- * set old_rd to NULL to skip the freeing later
- * in this function:
- */
- if (!atomic_dec_and_test(&old_rd->refcount))
- old_rd = NULL;
- }
-
- atomic_inc(&rd->refcount);
- rq->rd = rd;
-
- cpumask_set_cpu(rq->cpu, rd->span);
- if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
- set_rq_online(rq);
-
- raw_spin_unlock_irqrestore(&rq->lock, flags);
-
- if (old_rd)
- call_rcu_sched(&old_rd->rcu, free_rootdomain);
-}
-
-static int init_rootdomain(struct root_domain *rd)
-{
- memset(rd, 0, sizeof(*rd));
-
- if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
- goto out;
- if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
- goto free_span;
- if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
- goto free_online;
- if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
- goto free_dlo_mask;
-
- init_dl_bw(&rd->dl_bw);
- if (cpudl_init(&rd->cpudl) != 0)
- goto free_dlo_mask;
-
- if (cpupri_init(&rd->cpupri) != 0)
- goto free_rto_mask;
- return 0;
-
-free_rto_mask:
- free_cpumask_var(rd->rto_mask);
-free_dlo_mask:
- free_cpumask_var(rd->dlo_mask);
-free_online:
- free_cpumask_var(rd->online);
-free_span:
- free_cpumask_var(rd->span);
-out:
- return -ENOMEM;
-}
-
-/*
- * By default the system creates a single root-domain with all cpus as
- * members (mimicking the global state we have today).
- */
-struct root_domain def_root_domain;
-
-static void init_defrootdomain(void)
-{
- init_rootdomain(&def_root_domain);
-
- atomic_set(&def_root_domain.refcount, 1);
-}
-
-static struct root_domain *alloc_rootdomain(void)
-{
- struct root_domain *rd;
-
- rd = kmalloc(sizeof(*rd), GFP_KERNEL);
- if (!rd)
- return NULL;
-
- if (init_rootdomain(rd) != 0) {
- kfree(rd);
- return NULL;
- }
-
- return rd;
-}
-
-static void free_sched_groups(struct sched_group *sg, int free_sgc)
-{
- struct sched_group *tmp, *first;
-
- if (!sg)
- return;
-
- first = sg;
- do {
- tmp = sg->next;
-
- if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
- kfree(sg->sgc);
-
- kfree(sg);
- sg = tmp;
- } while (sg != first);
-}
-
-static void destroy_sched_domain(struct sched_domain *sd)
-{
- /*
- * If its an overlapping domain it has private groups, iterate and
- * nuke them all.
- */
- if (sd->flags & SD_OVERLAP) {
- free_sched_groups(sd->groups, 1);
- } else if (atomic_dec_and_test(&sd->groups->ref)) {
- kfree(sd->groups->sgc);
- kfree(sd->groups);
- }
- if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
- kfree(sd->shared);
- kfree(sd);
-}
-
-static void destroy_sched_domains_rcu(struct rcu_head *rcu)
-{
- struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
-
- while (sd) {
- struct sched_domain *parent = sd->parent;
- destroy_sched_domain(sd);
- sd = parent;
- }
-}
-
-static void destroy_sched_domains(struct sched_domain *sd)
-{
- if (sd)
- call_rcu(&sd->rcu, destroy_sched_domains_rcu);
-}
-
-/*
- * Keep a special pointer to the highest sched_domain that has
- * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
- * allows us to avoid some pointer chasing select_idle_sibling().
- *
- * Also keep a unique ID per domain (we use the first cpu number in
- * the cpumask of the domain), this allows us to quickly tell if
- * two cpus are in the same cache domain, see cpus_share_cache().
- */
-DEFINE_PER_CPU(struct sched_domain *, sd_llc);
-DEFINE_PER_CPU(int, sd_llc_size);
-DEFINE_PER_CPU(int, sd_llc_id);
-DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
-DEFINE_PER_CPU(struct sched_domain *, sd_numa);
-DEFINE_PER_CPU(struct sched_domain *, sd_asym);
-
-static void update_top_cache_domain(int cpu)
-{
- struct sched_domain_shared *sds = NULL;
- struct sched_domain *sd;
- int id = cpu;
- int size = 1;
-
- sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
- if (sd) {
- id = cpumask_first(sched_domain_span(sd));
- size = cpumask_weight(sched_domain_span(sd));
- sds = sd->shared;
- }
-
- rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
- per_cpu(sd_llc_size, cpu) = size;
- per_cpu(sd_llc_id, cpu) = id;
- rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
-
- sd = lowest_flag_domain(cpu, SD_NUMA);
- rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
-
- sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
- rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
-}
-
-/*
- * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
- * hold the hotplug lock.
- */
-static void
-cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
-{
- struct rq *rq = cpu_rq(cpu);
- struct sched_domain *tmp;
-
- /* Remove the sched domains which do not contribute to scheduling. */
- for (tmp = sd; tmp; ) {
- struct sched_domain *parent = tmp->parent;
- if (!parent)
- break;
-
- if (sd_parent_degenerate(tmp, parent)) {
- tmp->parent = parent->parent;
- if (parent->parent)
- parent->parent->child = tmp;
- /*
- * Transfer SD_PREFER_SIBLING down in case of a
- * degenerate parent; the spans match for this
- * so the property transfers.
- */
- if (parent->flags & SD_PREFER_SIBLING)
- tmp->flags |= SD_PREFER_SIBLING;
- destroy_sched_domain(parent);
- } else
- tmp = tmp->parent;
- }
-
- if (sd && sd_degenerate(sd)) {
- tmp = sd;
- sd = sd->parent;
- destroy_sched_domain(tmp);
- if (sd)
- sd->child = NULL;
- }
-
- sched_domain_debug(sd, cpu);
-
- rq_attach_root(rq, rd);
- tmp = rq->sd;
- rcu_assign_pointer(rq->sd, sd);
- destroy_sched_domains(tmp);
-
- update_top_cache_domain(cpu);
-}
-
-/* Setup the mask of cpus configured for isolated domains */
-static int __init isolated_cpu_setup(char *str)
-{
- int ret;
-
- alloc_bootmem_cpumask_var(&cpu_isolated_map);
- ret = cpulist_parse(str, cpu_isolated_map);
- if (ret) {
- pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
- return 0;
- }
- return 1;
-}
-__setup("isolcpus=", isolated_cpu_setup);
-
-struct s_data {
- struct sched_domain ** __percpu sd;
- struct root_domain *rd;
-};
-
-enum s_alloc {
- sa_rootdomain,
- sa_sd,
- sa_sd_storage,
- sa_none,
-};
-
-/*
- * Build an iteration mask that can exclude certain CPUs from the upwards
- * domain traversal.
- *
- * Asymmetric node setups can result in situations where the domain tree is of
- * unequal depth, make sure to skip domains that already cover the entire
- * range.
- *
- * In that case build_sched_domains() will have terminated the iteration early
- * and our sibling sd spans will be empty. Domains should always include the
- * cpu they're built on, so check that.
- *
- */
-static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
-{
- const struct cpumask *span = sched_domain_span(sd);
- struct sd_data *sdd = sd->private;
- struct sched_domain *sibling;
- int i;
-
- for_each_cpu(i, span) {
- sibling = *per_cpu_ptr(sdd->sd, i);
- if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
- continue;
-
- cpumask_set_cpu(i, sched_group_mask(sg));
- }
-}
-
-/*
- * Return the canonical balance cpu for this group, this is the first cpu
- * of this group that's also in the iteration mask.
- */
-int group_balance_cpu(struct sched_group *sg)
-{
- return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
-}
-
-static int
-build_overlap_sched_groups(struct sched_domain *sd, int cpu)
-{
- struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
- const struct cpumask *span = sched_domain_span(sd);
- struct cpumask *covered = sched_domains_tmpmask;
- struct sd_data *sdd = sd->private;
- struct sched_domain *sibling;
- int i;
-
- cpumask_clear(covered);
-
- for_each_cpu(i, span) {
- struct cpumask *sg_span;
-
- if (cpumask_test_cpu(i, covered))
- continue;
-
- sibling = *per_cpu_ptr(sdd->sd, i);
-
- /* See the comment near build_group_mask(). */
- if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
- continue;
-
- sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(cpu));
-
- if (!sg)
- goto fail;
-
- sg_span = sched_group_cpus(sg);
- if (sibling->child)
- cpumask_copy(sg_span, sched_domain_span(sibling->child));
- else
- cpumask_set_cpu(i, sg_span);
-
- cpumask_or(covered, covered, sg_span);
-
- sg->sgc = *per_cpu_ptr(sdd->sgc, i);
- if (atomic_inc_return(&sg->sgc->ref) == 1)
- build_group_mask(sd, sg);
-
- /*
- * Initialize sgc->capacity such that even if we mess up the
- * domains and no possible iteration will get us here, we won't
- * die on a /0 trap.
- */
- sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
- sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
-
- /*
- * Make sure the first group of this domain contains the
- * canonical balance cpu. Otherwise the sched_domain iteration
- * breaks. See update_sg_lb_stats().
- */
- if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
- group_balance_cpu(sg) == cpu)
- groups = sg;
-
- if (!first)
- first = sg;
- if (last)
- last->next = sg;
- last = sg;
- last->next = first;
- }
- sd->groups = groups;
-
- return 0;
-
-fail:
- free_sched_groups(first, 0);
-
- return -ENOMEM;
-}
-
-static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
-{
- struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
- struct sched_domain *child = sd->child;
-
- if (child)
- cpu = cpumask_first(sched_domain_span(child));
-
- if (sg) {
- *sg = *per_cpu_ptr(sdd->sg, cpu);
- (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
- atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
- }
-
- return cpu;
-}
-
-/*
- * build_sched_groups will build a circular linked list of the groups
- * covered by the given span, and will set each group's ->cpumask correctly,
- * and ->cpu_capacity to 0.
- *
- * Assumes the sched_domain tree is fully constructed
- */
-static int
-build_sched_groups(struct sched_domain *sd, int cpu)
-{
- struct sched_group *first = NULL, *last = NULL;
- struct sd_data *sdd = sd->private;
- const struct cpumask *span = sched_domain_span(sd);
- struct cpumask *covered;
- int i;
-
- get_group(cpu, sdd, &sd->groups);
- atomic_inc(&sd->groups->ref);
-
- if (cpu != cpumask_first(span))
- return 0;
-
- lockdep_assert_held(&sched_domains_mutex);
- covered = sched_domains_tmpmask;
-
- cpumask_clear(covered);
-
- for_each_cpu(i, span) {
- struct sched_group *sg;
- int group, j;
-
- if (cpumask_test_cpu(i, covered))
- continue;
-
- group = get_group(i, sdd, &sg);
- cpumask_setall(sched_group_mask(sg));
-
- for_each_cpu(j, span) {
- if (get_group(j, sdd, NULL) != group)
- continue;
-
- cpumask_set_cpu(j, covered);
- cpumask_set_cpu(j, sched_group_cpus(sg));
- }
-
- if (!first)
- first = sg;
- if (last)
- last->next = sg;
- last = sg;
- }
- last->next = first;
-
- return 0;
-}
-
-/*
- * Initialize sched groups cpu_capacity.
- *
- * cpu_capacity indicates the capacity of sched group, which is used while
- * distributing the load between different sched groups in a sched domain.
- * Typically cpu_capacity for all the groups in a sched domain will be same
- * unless there are asymmetries in the topology. If there are asymmetries,
- * group having more cpu_capacity will pickup more load compared to the
- * group having less cpu_capacity.
- */
-static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
-{
- struct sched_group *sg = sd->groups;
-
- WARN_ON(!sg);
-
- do {
- int cpu, max_cpu = -1;
-
- sg->group_weight = cpumask_weight(sched_group_cpus(sg));
-
- if (!(sd->flags & SD_ASYM_PACKING))
- goto next;
-
- for_each_cpu(cpu, sched_group_cpus(sg)) {
- if (max_cpu < 0)
- max_cpu = cpu;
- else if (sched_asym_prefer(cpu, max_cpu))
- max_cpu = cpu;
- }
- sg->asym_prefer_cpu = max_cpu;
-
-next:
- sg = sg->next;
- } while (sg != sd->groups);
-
- if (cpu != group_balance_cpu(sg))
- return;
-
- update_group_capacity(sd, cpu);
-}
-
-/*
- * Initializers for schedule domains
- * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
- */
-
-static int default_relax_domain_level = -1;
-int sched_domain_level_max;
-
-static int __init setup_relax_domain_level(char *str)
-{
- if (kstrtoint(str, 0, &default_relax_domain_level))
- pr_warn("Unable to set relax_domain_level\n");
-
- return 1;
-}
-__setup("relax_domain_level=", setup_relax_domain_level);
-
-static void set_domain_attribute(struct sched_domain *sd,
- struct sched_domain_attr *attr)
-{
- int request;
-
- if (!attr || attr->relax_domain_level < 0) {
- if (default_relax_domain_level < 0)
- return;
- else
- request = default_relax_domain_level;
- } else
- request = attr->relax_domain_level;
- if (request < sd->level) {
- /* turn off idle balance on this domain */
- sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
- } else {
- /* turn on idle balance on this domain */
- sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
- }
-}
-
-static void __sdt_free(const struct cpumask *cpu_map);
-static int __sdt_alloc(const struct cpumask *cpu_map);
-
-static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
- const struct cpumask *cpu_map)
-{
- switch (what) {
- case sa_rootdomain:
- if (!atomic_read(&d->rd->refcount))
- free_rootdomain(&d->rd->rcu); /* fall through */
- case sa_sd:
- free_percpu(d->sd); /* fall through */
- case sa_sd_storage:
- __sdt_free(cpu_map); /* fall through */
- case sa_none:
- break;
- }
-}
-
-static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
- const struct cpumask *cpu_map)
-{
- memset(d, 0, sizeof(*d));
-
- if (__sdt_alloc(cpu_map))
- return sa_sd_storage;
- d->sd = alloc_percpu(struct sched_domain *);
- if (!d->sd)
- return sa_sd_storage;
- d->rd = alloc_rootdomain();
- if (!d->rd)
- return sa_sd;
- return sa_rootdomain;
-}
-
-/*
- * NULL the sd_data elements we've used to build the sched_domain and
- * sched_group structure so that the subsequent __free_domain_allocs()
- * will not free the data we're using.
- */
-static void claim_allocations(int cpu, struct sched_domain *sd)
-{
- struct sd_data *sdd = sd->private;
-
- WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
- *per_cpu_ptr(sdd->sd, cpu) = NULL;
-
- if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
- *per_cpu_ptr(sdd->sds, cpu) = NULL;
-
- if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
- *per_cpu_ptr(sdd->sg, cpu) = NULL;
-
- if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
- *per_cpu_ptr(sdd->sgc, cpu) = NULL;
-}
-
-#ifdef CONFIG_NUMA
-static int sched_domains_numa_levels;
-enum numa_topology_type sched_numa_topology_type;
-static int *sched_domains_numa_distance;
-int sched_max_numa_distance;
-static struct cpumask ***sched_domains_numa_masks;
-static int sched_domains_curr_level;
-#endif
-
-/*
- * SD_flags allowed in topology descriptions.
- *
- * These flags are purely descriptive of the topology and do not prescribe
- * behaviour. Behaviour is artificial and mapped in the below sd_init()
- * function:
- *
- * SD_SHARE_CPUCAPACITY - describes SMT topologies
- * SD_SHARE_PKG_RESOURCES - describes shared caches
- * SD_NUMA - describes NUMA topologies
- * SD_SHARE_POWERDOMAIN - describes shared power domain
- * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
- *
- * Odd one out, which beside describing the topology has a quirk also
- * prescribes the desired behaviour that goes along with it:
- *
- * SD_ASYM_PACKING - describes SMT quirks
- */
-#define TOPOLOGY_SD_FLAGS \
- (SD_SHARE_CPUCAPACITY | \
- SD_SHARE_PKG_RESOURCES | \
- SD_NUMA | \
- SD_ASYM_PACKING | \
- SD_ASYM_CPUCAPACITY | \
- SD_SHARE_POWERDOMAIN)
-
-static struct sched_domain *
-sd_init(struct sched_domain_topology_level *tl,
- const struct cpumask *cpu_map,
- struct sched_domain *child, int cpu)
-{
- struct sd_data *sdd = &tl->data;
- struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
- int sd_id, sd_weight, sd_flags = 0;
-
-#ifdef CONFIG_NUMA
- /*
- * Ugly hack to pass state to sd_numa_mask()...
- */
- sched_domains_curr_level = tl->numa_level;
-#endif
-
- sd_weight = cpumask_weight(tl->mask(cpu));
-
- if (tl->sd_flags)
- sd_flags = (*tl->sd_flags)();
- if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
- "wrong sd_flags in topology description\n"))
- sd_flags &= ~TOPOLOGY_SD_FLAGS;
-
- *sd = (struct sched_domain){
- .min_interval = sd_weight,
- .max_interval = 2*sd_weight,
- .busy_factor = 32,
- .imbalance_pct = 125,
-
- .cache_nice_tries = 0,
- .busy_idx = 0,
- .idle_idx = 0,
- .newidle_idx = 0,
- .wake_idx = 0,
- .forkexec_idx = 0,
-
- .flags = 1*SD_LOAD_BALANCE
- | 1*SD_BALANCE_NEWIDLE
- | 1*SD_BALANCE_EXEC
- | 1*SD_BALANCE_FORK
- | 0*SD_BALANCE_WAKE
- | 1*SD_WAKE_AFFINE
- | 0*SD_SHARE_CPUCAPACITY
- | 0*SD_SHARE_PKG_RESOURCES
- | 0*SD_SERIALIZE
- | 0*SD_PREFER_SIBLING
- | 0*SD_NUMA
- | sd_flags
- ,
-
- .last_balance = jiffies,
- .balance_interval = sd_weight,
- .smt_gain = 0,
- .max_newidle_lb_cost = 0,
- .next_decay_max_lb_cost = jiffies,
- .child = child,
-#ifdef CONFIG_SCHED_DEBUG
- .name = tl->name,
-#endif
- };
-
- cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
- sd_id = cpumask_first(sched_domain_span(sd));
-
- /*
- * Convert topological properties into behaviour.
- */
-
- if (sd->flags & SD_ASYM_CPUCAPACITY) {
- struct sched_domain *t = sd;
-
- for_each_lower_domain(t)
- t->flags |= SD_BALANCE_WAKE;
- }
-
- if (sd->flags & SD_SHARE_CPUCAPACITY) {
- sd->flags |= SD_PREFER_SIBLING;
- sd->imbalance_pct = 110;
- sd->smt_gain = 1178; /* ~15% */
-
- } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
- sd->imbalance_pct = 117;
- sd->cache_nice_tries = 1;
- sd->busy_idx = 2;
-
-#ifdef CONFIG_NUMA
- } else if (sd->flags & SD_NUMA) {
- sd->cache_nice_tries = 2;
- sd->busy_idx = 3;
- sd->idle_idx = 2;
-
- sd->flags |= SD_SERIALIZE;
- if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
- sd->flags &= ~(SD_BALANCE_EXEC |
- SD_BALANCE_FORK |
- SD_WAKE_AFFINE);
- }
-
-#endif
- } else {
- sd->flags |= SD_PREFER_SIBLING;
- sd->cache_nice_tries = 1;
- sd->busy_idx = 2;
- sd->idle_idx = 1;
- }
-
- /*
- * For all levels sharing cache; connect a sched_domain_shared
- * instance.
- */
- if (sd->flags & SD_SHARE_PKG_RESOURCES) {
- sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
- atomic_inc(&sd->shared->ref);
- atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
- }
-
- sd->private = sdd;
-
- return sd;
-}
-
-/*
- * Topology list, bottom-up.
- */
-static struct sched_domain_topology_level default_topology[] = {
-#ifdef CONFIG_SCHED_SMT
- { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
-#endif
-#ifdef CONFIG_SCHED_MC
- { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
-#endif
- { cpu_cpu_mask, SD_INIT_NAME(DIE) },
- { NULL, },
-};
-
-static struct sched_domain_topology_level *sched_domain_topology =
- default_topology;
-
-#define for_each_sd_topology(tl) \
- for (tl = sched_domain_topology; tl->mask; tl++)
-
-void set_sched_topology(struct sched_domain_topology_level *tl)
-{
- if (WARN_ON_ONCE(sched_smp_initialized))
- return;
-
- sched_domain_topology = tl;
-}
-
-#ifdef CONFIG_NUMA
-
-static const struct cpumask *sd_numa_mask(int cpu)
-{
- return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
-}
-
-static void sched_numa_warn(const char *str)
-{
- static int done = false;
- int i,j;
-
- if (done)
- return;
-
- done = true;
-
- printk(KERN_WARNING "ERROR: %s\n\n", str);
-
- for (i = 0; i < nr_node_ids; i++) {
- printk(KERN_WARNING " ");
- for (j = 0; j < nr_node_ids; j++)
- printk(KERN_CONT "%02d ", node_distance(i,j));
- printk(KERN_CONT "\n");
- }
- printk(KERN_WARNING "\n");
-}
-
-bool find_numa_distance(int distance)
-{
- int i;
-
- if (distance == node_distance(0, 0))
- return true;
-
- for (i = 0; i < sched_domains_numa_levels; i++) {
- if (sched_domains_numa_distance[i] == distance)
- return true;
- }
-
- return false;
-}
-
-/*
- * A system can have three types of NUMA topology:
- * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
- * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
- * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
- *
- * The difference between a glueless mesh topology and a backplane
- * topology lies in whether communication between not directly
- * connected nodes goes through intermediary nodes (where programs
- * could run), or through backplane controllers. This affects
- * placement of programs.
- *
- * The type of topology can be discerned with the following tests:
- * - If the maximum distance between any nodes is 1 hop, the system
- * is directly connected.
- * - If for two nodes A and B, located N > 1 hops away from each other,
- * there is an intermediary node C, which is < N hops away from both
- * nodes A and B, the system is a glueless mesh.
- */
-static void init_numa_topology_type(void)
-{
- int a, b, c, n;
-
- n = sched_max_numa_distance;
-
- if (sched_domains_numa_levels <= 1) {
- sched_numa_topology_type = NUMA_DIRECT;
- return;
- }
-
- for_each_online_node(a) {
- for_each_online_node(b) {
- /* Find two nodes furthest removed from each other. */
- if (node_distance(a, b) < n)
- continue;
-
- /* Is there an intermediary node between a and b? */
- for_each_online_node(c) {
- if (node_distance(a, c) < n &&
- node_distance(b, c) < n) {
- sched_numa_topology_type =
- NUMA_GLUELESS_MESH;
- return;
- }
- }
-
- sched_numa_topology_type = NUMA_BACKPLANE;
- return;
- }
- }
-}
-
-static void sched_init_numa(void)
-{
- int next_distance, curr_distance = node_distance(0, 0);
- struct sched_domain_topology_level *tl;
- int level = 0;
- int i, j, k;
-
- sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
- if (!sched_domains_numa_distance)
- return;
-
- /*
- * O(nr_nodes^2) deduplicating selection sort -- in order to find the
- * unique distances in the node_distance() table.
- *
- * Assumes node_distance(0,j) includes all distances in
- * node_distance(i,j) in order to avoid cubic time.
- */
- next_distance = curr_distance;
- for (i = 0; i < nr_node_ids; i++) {
- for (j = 0; j < nr_node_ids; j++) {
- for (k = 0; k < nr_node_ids; k++) {
- int distance = node_distance(i, k);
-
- if (distance > curr_distance &&
- (distance < next_distance ||
- next_distance == curr_distance))
- next_distance = distance;
-
- /*
- * While not a strong assumption it would be nice to know
- * about cases where if node A is connected to B, B is not
- * equally connected to A.
- */
- if (sched_debug() && node_distance(k, i) != distance)
- sched_numa_warn("Node-distance not symmetric");
-
- if (sched_debug() && i && !find_numa_distance(distance))
- sched_numa_warn("Node-0 not representative");
- }
- if (next_distance != curr_distance) {
- sched_domains_numa_distance[level++] = next_distance;
- sched_domains_numa_levels = level;
- curr_distance = next_distance;
- } else break;
- }
-
- /*
- * In case of sched_debug() we verify the above assumption.
- */
- if (!sched_debug())
- break;
- }
-
- if (!level)
- return;
-
- /*
- * 'level' contains the number of unique distances, excluding the
- * identity distance node_distance(i,i).
- *
- * The sched_domains_numa_distance[] array includes the actual distance
- * numbers.
- */
-
- /*
- * Here, we should temporarily reset sched_domains_numa_levels to 0.
- * If it fails to allocate memory for array sched_domains_numa_masks[][],
- * the array will contain less then 'level' members. This could be
- * dangerous when we use it to iterate array sched_domains_numa_masks[][]
- * in other functions.
- *
- * We reset it to 'level' at the end of this function.
- */
- sched_domains_numa_levels = 0;
-
- sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
- if (!sched_domains_numa_masks)
- return;
-
- /*
- * Now for each level, construct a mask per node which contains all
- * cpus of nodes that are that many hops away from us.
- */
- for (i = 0; i < level; i++) {
- sched_domains_numa_masks[i] =
- kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
- if (!sched_domains_numa_masks[i])
- return;
-
- for (j = 0; j < nr_node_ids; j++) {
- struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
- if (!mask)
- return;
-
- sched_domains_numa_masks[i][j] = mask;
-
- for_each_node(k) {
- if (node_distance(j, k) > sched_domains_numa_distance[i])
- continue;
-
- cpumask_or(mask, mask, cpumask_of_node(k));
- }
- }
- }
-
- /* Compute default topology size */
- for (i = 0; sched_domain_topology[i].mask; i++);
-
- tl = kzalloc((i + level + 1) *
- sizeof(struct sched_domain_topology_level), GFP_KERNEL);
- if (!tl)
- return;
-
- /*
- * Copy the default topology bits..
- */
- for (i = 0; sched_domain_topology[i].mask; i++)
- tl[i] = sched_domain_topology[i];
-
- /*
- * .. and append 'j' levels of NUMA goodness.
- */
- for (j = 0; j < level; i++, j++) {
- tl[i] = (struct sched_domain_topology_level){
- .mask = sd_numa_mask,
- .sd_flags = cpu_numa_flags,
- .flags = SDTL_OVERLAP,
- .numa_level = j,
- SD_INIT_NAME(NUMA)
- };
- }
-
- sched_domain_topology = tl;
-
- sched_domains_numa_levels = level;
- sched_max_numa_distance = sched_domains_numa_distance[level - 1];
-
- init_numa_topology_type();
-}
-
-static void sched_domains_numa_masks_set(unsigned int cpu)
-{
- int node = cpu_to_node(cpu);
- int i, j;
-
- for (i = 0; i < sched_domains_numa_levels; i++) {
- for (j = 0; j < nr_node_ids; j++) {
- if (node_distance(j, node) <= sched_domains_numa_distance[i])
- cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
- }
- }
-}
-
-static void sched_domains_numa_masks_clear(unsigned int cpu)
-{
- int i, j;
-
- for (i = 0; i < sched_domains_numa_levels; i++) {
- for (j = 0; j < nr_node_ids; j++)
- cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
- }
-}
-
-#else
-static inline void sched_init_numa(void) { }
-static void sched_domains_numa_masks_set(unsigned int cpu) { }
-static void sched_domains_numa_masks_clear(unsigned int cpu) { }
-#endif /* CONFIG_NUMA */
-
-static int __sdt_alloc(const struct cpumask *cpu_map)
-{
- struct sched_domain_topology_level *tl;
- int j;
-
- for_each_sd_topology(tl) {
- struct sd_data *sdd = &tl->data;
-
- sdd->sd = alloc_percpu(struct sched_domain *);
- if (!sdd->sd)
- return -ENOMEM;
-
- sdd->sds = alloc_percpu(struct sched_domain_shared *);
- if (!sdd->sds)
- return -ENOMEM;
-
- sdd->sg = alloc_percpu(struct sched_group *);
- if (!sdd->sg)
- return -ENOMEM;
-
- sdd->sgc = alloc_percpu(struct sched_group_capacity *);
- if (!sdd->sgc)
- return -ENOMEM;
-
- for_each_cpu(j, cpu_map) {
- struct sched_domain *sd;
- struct sched_domain_shared *sds;
- struct sched_group *sg;
- struct sched_group_capacity *sgc;
-
- sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(j));
- if (!sd)
- return -ENOMEM;
-
- *per_cpu_ptr(sdd->sd, j) = sd;
-
- sds = kzalloc_node(sizeof(struct sched_domain_shared),
- GFP_KERNEL, cpu_to_node(j));
- if (!sds)
- return -ENOMEM;
-
- *per_cpu_ptr(sdd->sds, j) = sds;
-
- sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(j));
- if (!sg)
- return -ENOMEM;
-
- sg->next = sg;
-
- *per_cpu_ptr(sdd->sg, j) = sg;
-
- sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(j));
- if (!sgc)
- return -ENOMEM;
-
- *per_cpu_ptr(sdd->sgc, j) = sgc;
- }
- }
-
- return 0;
-}
-
-static void __sdt_free(const struct cpumask *cpu_map)
-{
- struct sched_domain_topology_level *tl;
- int j;
-
- for_each_sd_topology(tl) {
- struct sd_data *sdd = &tl->data;
-
- for_each_cpu(j, cpu_map) {
- struct sched_domain *sd;
-
- if (sdd->sd) {
- sd = *per_cpu_ptr(sdd->sd, j);
- if (sd && (sd->flags & SD_OVERLAP))
- free_sched_groups(sd->groups, 0);
- kfree(*per_cpu_ptr(sdd->sd, j));
- }
-
- if (sdd->sds)
- kfree(*per_cpu_ptr(sdd->sds, j));
- if (sdd->sg)
- kfree(*per_cpu_ptr(sdd->sg, j));
- if (sdd->sgc)
- kfree(*per_cpu_ptr(sdd->sgc, j));
- }
- free_percpu(sdd->sd);
- sdd->sd = NULL;
- free_percpu(sdd->sds);
- sdd->sds = NULL;
- free_percpu(sdd->sg);
- sdd->sg = NULL;
- free_percpu(sdd->sgc);
- sdd->sgc = NULL;
- }
-}
-
-struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
- const struct cpumask *cpu_map, struct sched_domain_attr *attr,
- struct sched_domain *child, int cpu)
-{
- struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
-
- if (child) {
- sd->level = child->level + 1;
- sched_domain_level_max = max(sched_domain_level_max, sd->level);
- child->parent = sd;
-
- if (!cpumask_subset(sched_domain_span(child),
- sched_domain_span(sd))) {
- pr_err("BUG: arch topology borken\n");
-#ifdef CONFIG_SCHED_DEBUG
- pr_err(" the %s domain not a subset of the %s domain\n",
- child->name, sd->name);
-#endif
- /* Fixup, ensure @sd has at least @child cpus. */
- cpumask_or(sched_domain_span(sd),
- sched_domain_span(sd),
- sched_domain_span(child));
- }
-
- }
- set_domain_attribute(sd, attr);
-
- return sd;
-}
-
/*
- * Build sched domains for a given set of cpus and attach the sched domains
- * to the individual cpus
+ * used to mark begin/end of suspend/resume:
*/
-static int build_sched_domains(const struct cpumask *cpu_map,
- struct sched_domain_attr *attr)
-{
- enum s_alloc alloc_state;
- struct sched_domain *sd;
- struct s_data d;
- struct rq *rq = NULL;
- int i, ret = -ENOMEM;
-
- alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
- if (alloc_state != sa_rootdomain)
- goto error;
-
- /* Set up domains for cpus specified by the cpu_map. */
- for_each_cpu(i, cpu_map) {
- struct sched_domain_topology_level *tl;
-
- sd = NULL;
- for_each_sd_topology(tl) {
- sd = build_sched_domain(tl, cpu_map, attr, sd, i);
- if (tl == sched_domain_topology)
- *per_cpu_ptr(d.sd, i) = sd;
- if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
- sd->flags |= SD_OVERLAP;
- if (cpumask_equal(cpu_map, sched_domain_span(sd)))
- break;
- }
- }
-
- /* Build the groups for the domains */
- for_each_cpu(i, cpu_map) {
- for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
- sd->span_weight = cpumask_weight(sched_domain_span(sd));
- if (sd->flags & SD_OVERLAP) {
- if (build_overlap_sched_groups(sd, i))
- goto error;
- } else {
- if (build_sched_groups(sd, i))
- goto error;
- }
- }
- }
-
- /* Calculate CPU capacity for physical packages and nodes */
- for (i = nr_cpumask_bits-1; i >= 0; i--) {
- if (!cpumask_test_cpu(i, cpu_map))
- continue;
-
- for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
- claim_allocations(i, sd);
- init_sched_groups_capacity(i, sd);
- }
- }
-
- /* Attach the domains */
- rcu_read_lock();
- for_each_cpu(i, cpu_map) {
- rq = cpu_rq(i);
- sd = *per_cpu_ptr(d.sd, i);
-
- /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
- if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
- WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
-
- cpu_attach_domain(sd, d.rd, i);
- }
- rcu_read_unlock();
-
- if (rq && sched_debug_enabled) {
- pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
- cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
- }
-
- ret = 0;
-error:
- __free_domain_allocs(&d, alloc_state, cpu_map);
- return ret;
-}
-
-static cpumask_var_t *doms_cur; /* current sched domains */
-static int ndoms_cur; /* number of sched domains in 'doms_cur' */
-static struct sched_domain_attr *dattr_cur;
- /* attribues of custom domains in 'doms_cur' */
-
-/*
- * Special case: If a kmalloc of a doms_cur partition (array of
- * cpumask) fails, then fallback to a single sched domain,
- * as determined by the single cpumask fallback_doms.
- */
-static cpumask_var_t fallback_doms;
-
-/*
- * arch_update_cpu_topology lets virtualized architectures update the
- * cpu core maps. It is supposed to return 1 if the topology changed
- * or 0 if it stayed the same.
- */
-int __weak arch_update_cpu_topology(void)
-{
- return 0;
-}
-
-cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
-{
- int i;
- cpumask_var_t *doms;
-
- doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
- if (!doms)
- return NULL;
- for (i = 0; i < ndoms; i++) {
- if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
- free_sched_domains(doms, i);
- return NULL;
- }
- }
- return doms;
-}
-
-void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
-{
- unsigned int i;
- for (i = 0; i < ndoms; i++)
- free_cpumask_var(doms[i]);
- kfree(doms);
-}
-
-/*
- * Set up scheduler domains and groups. Callers must hold the hotplug lock.
- * For now this just excludes isolated cpus, but could be used to
- * exclude other special cases in the future.
- */
-static int init_sched_domains(const struct cpumask *cpu_map)
-{
- int err;
-
- arch_update_cpu_topology();
- ndoms_cur = 1;
- doms_cur = alloc_sched_domains(ndoms_cur);
- if (!doms_cur)
- doms_cur = &fallback_doms;
- cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
- err = build_sched_domains(doms_cur[0], NULL);
- register_sched_domain_sysctl();
-
- return err;
-}
-
-/*
- * Detach sched domains from a group of cpus specified in cpu_map
- * These cpus will now be attached to the NULL domain
- */
-static void detach_destroy_domains(const struct cpumask *cpu_map)
-{
- int i;
-
- rcu_read_lock();
- for_each_cpu(i, cpu_map)
- cpu_attach_domain(NULL, &def_root_domain, i);
- rcu_read_unlock();
-}
-
-/* handle null as "default" */
-static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
- struct sched_domain_attr *new, int idx_new)
-{
- struct sched_domain_attr tmp;
-
- /* fast path */
- if (!new && !cur)
- return 1;
-
- tmp = SD_ATTR_INIT;
- return !memcmp(cur ? (cur + idx_cur) : &tmp,
- new ? (new + idx_new) : &tmp,
- sizeof(struct sched_domain_attr));
-}
-
-/*
- * Partition sched domains as specified by the 'ndoms_new'
- * cpumasks in the array doms_new[] of cpumasks. This compares
- * doms_new[] to the current sched domain partitioning, doms_cur[].
- * It destroys each deleted domain and builds each new domain.
- *
- * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
- * The masks don't intersect (don't overlap.) We should setup one
- * sched domain for each mask. CPUs not in any of the cpumasks will
- * not be load balanced. If the same cpumask appears both in the
- * current 'doms_cur' domains and in the new 'doms_new', we can leave
- * it as it is.
- *
- * The passed in 'doms_new' should be allocated using
- * alloc_sched_domains. This routine takes ownership of it and will
- * free_sched_domains it when done with it. If the caller failed the
- * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
- * and partition_sched_domains() will fallback to the single partition
- * 'fallback_doms', it also forces the domains to be rebuilt.
- *
- * If doms_new == NULL it will be replaced with cpu_online_mask.
- * ndoms_new == 0 is a special case for destroying existing domains,
- * and it will not create the default domain.
- *
- * Call with hotplug lock held
- */
-void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
- struct sched_domain_attr *dattr_new)
-{
- int i, j, n;
- int new_topology;
-
- mutex_lock(&sched_domains_mutex);
-
- /* always unregister in case we don't destroy any domains */
- unregister_sched_domain_sysctl();
-
- /* Let architecture update cpu core mappings. */
- new_topology = arch_update_cpu_topology();
-
- n = doms_new ? ndoms_new : 0;
-
- /* Destroy deleted domains */
- for (i = 0; i < ndoms_cur; i++) {
- for (j = 0; j < n && !new_topology; j++) {
- if (cpumask_equal(doms_cur[i], doms_new[j])
- && dattrs_equal(dattr_cur, i, dattr_new, j))
- goto match1;
- }
- /* no match - a current sched domain not in new doms_new[] */
- detach_destroy_domains(doms_cur[i]);
-match1:
- ;
- }
-
- n = ndoms_cur;
- if (doms_new == NULL) {
- n = 0;
- doms_new = &fallback_doms;
- cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
- WARN_ON_ONCE(dattr_new);
- }
-
- /* Build new domains */
- for (i = 0; i < ndoms_new; i++) {
- for (j = 0; j < n && !new_topology; j++) {
- if (cpumask_equal(doms_new[i], doms_cur[j])
- && dattrs_equal(dattr_new, i, dattr_cur, j))
- goto match2;
- }
- /* no match - add a new doms_new */
- build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
-match2:
- ;
- }
-
- /* Remember the new sched domains */
- if (doms_cur != &fallback_doms)
- free_sched_domains(doms_cur, ndoms_cur);
- kfree(dattr_cur); /* kfree(NULL) is safe */
- doms_cur = doms_new;
- dattr_cur = dattr_new;
- ndoms_cur = ndoms_new;
-
- register_sched_domain_sysctl();
-
- mutex_unlock(&sched_domains_mutex);
-}
-
-static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
+static int num_cpus_frozen;
/*
* Update cpusets according to cpu_active mask. If cpusets are
@@ -7352,7 +5759,7 @@ int sched_cpu_activate(unsigned int cpu)
* Put the rq online, if not already. This happens:
*
* 1) In the early boot process, because we build the real domains
- * after all cpus have been brought up.
+ * after all CPUs have been brought up.
*
* 2) At runtime, if cpuset_cpu_active() fails to rebuild the
* domains.
@@ -7467,7 +5874,7 @@ void __init sched_init_smp(void)
/*
* There's no userspace yet to cause hotplug operations; hence all the
- * cpu masks are stable and all blatant races in the below code cannot
+ * CPU masks are stable and all blatant races in the below code cannot
* happen.
*/
mutex_lock(&sched_domains_mutex);
@@ -7487,6 +5894,7 @@ void __init sched_init_smp(void)
init_sched_dl_class();
sched_init_smt();
+ sched_clock_init_late();
sched_smp_initialized = true;
}
@@ -7502,6 +5910,7 @@ early_initcall(migration_init);
void __init sched_init_smp(void)
{
sched_init_granularity();
+ sched_clock_init_late();
}
#endif /* CONFIG_SMP */
@@ -7545,6 +5954,8 @@ void __init sched_init(void)
int i, j;
unsigned long alloc_size = 0, ptr;
+ sched_clock_init();
+
for (i = 0; i < WAIT_TABLE_SIZE; i++)
init_waitqueue_head(bit_wait_table + i);
@@ -7583,10 +5994,8 @@ void __init sched_init(void)
}
#endif /* CONFIG_CPUMASK_OFFSTACK */
- init_rt_bandwidth(&def_rt_bandwidth,
- global_rt_period(), global_rt_runtime());
- init_dl_bandwidth(&def_dl_bandwidth,
- global_rt_period(), global_rt_runtime());
+ init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
+ init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
#ifdef CONFIG_SMP
init_defrootdomain();
@@ -7622,18 +6031,18 @@ void __init sched_init(void)
INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
/*
- * How much cpu bandwidth does root_task_group get?
+ * How much CPU bandwidth does root_task_group get?
*
* In case of task-groups formed thr' the cgroup filesystem, it
- * gets 100% of the cpu resources in the system. This overall
- * system cpu resource is divided among the tasks of
+ * gets 100% of the CPU resources in the system. This overall
+ * system CPU resource is divided among the tasks of
* root_task_group and its child task-groups in a fair manner,
* based on each entity's (task or task-group's) weight
* (se->load.weight).
*
* In other words, if root_task_group has 10 tasks of weight
* 1024) and two child groups A0 and A1 (of weight 1024 each),
- * then A0's share of the cpu resource is:
+ * then A0's share of the CPU resource is:
*
* A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
*
@@ -7742,10 +6151,14 @@ EXPORT_SYMBOL(__might_sleep);
void ___might_sleep(const char *file, int line, int preempt_offset)
{
- static unsigned long prev_jiffy; /* ratelimiting */
+ /* Ratelimiting timestamp: */
+ static unsigned long prev_jiffy;
+
unsigned long preempt_disable_ip;
- rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
+ /* WARN_ON_ONCE() by default, no rate limit required: */
+ rcu_sleep_check();
+
if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
!is_idle_task(current)) ||
system_state != SYSTEM_RUNNING || oops_in_progress)
@@ -7754,7 +6167,7 @@ void ___might_sleep(const char *file, int line, int preempt_offset)
return;
prev_jiffy = jiffies;
- /* Save this before calling printk(), since that will clobber it */
+ /* Save this before calling printk(), since that will clobber it: */
preempt_disable_ip = get_preempt_disable_ip(current);
printk(KERN_ERR
@@ -7833,7 +6246,7 @@ void normalize_rt_tasks(void)
*/
/**
- * curr_task - return the current task for a given cpu.
+ * curr_task - return the current task for a given CPU.
* @cpu: the processor in question.
*
* ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
@@ -7849,13 +6262,13 @@ struct task_struct *curr_task(int cpu)
#ifdef CONFIG_IA64
/**
- * set_curr_task - set the current task for a given cpu.
+ * set_curr_task - set the current task for a given CPU.
* @cpu: the processor in question.
* @p: the task pointer to set.
*
* Description: This function must only be used when non-maskable interrupts
* are serviced on a separate stack. It allows the architecture to switch the
- * notion of the current task on a cpu in a non-blocking manner. This function
+ * notion of the current task on a CPU in a non-blocking manner. This function
* must be called with all CPU's synchronized, and interrupts disabled, the
* and caller must save the original value of the current task (see
* curr_task() above) and restore that value before reenabling interrupts and
@@ -7911,7 +6324,8 @@ void sched_online_group(struct task_group *tg, struct task_group *parent)
spin_lock_irqsave(&task_group_lock, flags);
list_add_rcu(&tg->list, &task_groups);
- WARN_ON(!parent); /* root should already exist */
+ /* Root should already exist: */
+ WARN_ON(!parent);
tg->parent = parent;
INIT_LIST_HEAD(&tg->children);
@@ -7924,13 +6338,13 @@ void sched_online_group(struct task_group *tg, struct task_group *parent)
/* rcu callback to free various structures associated with a task group */
static void sched_free_group_rcu(struct rcu_head *rhp)
{
- /* now it should be safe to free those cfs_rqs */
+ /* Now it should be safe to free those cfs_rqs: */
sched_free_group(container_of(rhp, struct task_group, rcu));
}
void sched_destroy_group(struct task_group *tg)
{
- /* wait for possible concurrent references to cfs_rqs complete */
+ /* Wait for possible concurrent references to cfs_rqs complete: */
call_rcu(&tg->rcu, sched_free_group_rcu);
}
@@ -7938,7 +6352,7 @@ void sched_offline_group(struct task_group *tg)
{
unsigned long flags;
- /* end participation in shares distribution */
+ /* End participation in shares distribution: */
unregister_fair_sched_group(tg);
spin_lock_irqsave(&task_group_lock, flags);
@@ -7983,20 +6397,21 @@ void sched_move_task(struct task_struct *tsk)
struct rq *rq;
rq = task_rq_lock(tsk, &rf);
+ update_rq_clock(rq);
running = task_current(rq, tsk);
queued = task_on_rq_queued(tsk);
if (queued)
dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
- if (unlikely(running))
+ if (running)
put_prev_task(rq, tsk);
sched_change_group(tsk, TASK_MOVE_GROUP);
if (queued)
enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
- if (unlikely(running))
+ if (running)
set_curr_task(rq, tsk);
task_rq_unlock(rq, tsk, &rf);
@@ -8366,11 +6781,14 @@ int sched_rr_handler(struct ctl_table *table, int write,
mutex_lock(&mutex);
ret = proc_dointvec(table, write, buffer, lenp, ppos);
- /* make sure that internally we keep jiffies */
- /* also, writing zero resets timeslice to default */
+ /*
+ * Make sure that internally we keep jiffies.
+ * Also, writing zero resets the timeslice to default:
+ */
if (!ret && write) {
- sched_rr_timeslice = sched_rr_timeslice <= 0 ?
- RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
+ sched_rr_timeslice =
+ sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
+ msecs_to_jiffies(sysctl_sched_rr_timeslice);
}
mutex_unlock(&mutex);
return ret;
@@ -8431,6 +6849,7 @@ static void cpu_cgroup_fork(struct task_struct *task)
rq = task_rq_lock(task, &rf);
+ update_rq_clock(rq);
sched_change_group(task, TASK_SET_GROUP);
task_rq_unlock(rq, task, &rf);
@@ -8550,9 +6969,11 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
cfs_b->quota = quota;
__refill_cfs_bandwidth_runtime(cfs_b);
- /* restart the period timer (if active) to handle new period expiry */
+
+ /* Restart the period timer (if active) to handle new period expiry: */
if (runtime_enabled)
start_cfs_bandwidth(cfs_b);
+
raw_spin_unlock_irq(&cfs_b->lock);
for_each_online_cpu(i) {
@@ -8690,8 +7111,8 @@ static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
parent_quota = parent_b->hierarchical_quota;
/*
- * ensure max(child_quota) <= parent_quota, inherit when no
- * limit is set
+ * Ensure max(child_quota) <= parent_quota, inherit when no
+ * limit is set:
*/
if (quota == RUNTIME_INF)
quota = parent_quota;
@@ -8800,7 +7221,7 @@ static struct cftype cpu_files[] = {
.write_u64 = cpu_rt_period_write_uint,
},
#endif
- { } /* terminate */
+ { } /* Terminate */
};
struct cgroup_subsys cpu_cgrp_subsys = {
diff --git a/kernel/sched/cpuacct.c b/kernel/sched/cpuacct.c
index 9add206b5608..f95ab29a45d0 100644
--- a/kernel/sched/cpuacct.c
+++ b/kernel/sched/cpuacct.c
@@ -297,7 +297,7 @@ static int cpuacct_stats_show(struct seq_file *sf, void *v)
for (stat = 0; stat < CPUACCT_STAT_NSTATS; stat++) {
seq_printf(sf, "%s %lld\n",
cpuacct_stat_desc[stat],
- (long long)cputime64_to_clock_t(val[stat]));
+ (long long)nsec_to_clock_t(val[stat]));
}
return 0;
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index 7700a9cba335..2ecec3a4f1ee 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -4,6 +4,7 @@
#include <linux/kernel_stat.h>
#include <linux/static_key.h>
#include <linux/context_tracking.h>
+#include <linux/cputime.h>
#include "sched.h"
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
@@ -44,6 +45,7 @@ void disable_sched_clock_irqtime(void)
void irqtime_account_irq(struct task_struct *curr)
{
struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
+ u64 *cpustat = kcpustat_this_cpu->cpustat;
s64 delta;
int cpu;
@@ -61,49 +63,34 @@ void irqtime_account_irq(struct task_struct *curr)
* in that case, so as not to confuse scheduler with a special task
* that do not consume any time, but still wants to run.
*/
- if (hardirq_count())
- irqtime->hardirq_time += delta;
- else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
- irqtime->softirq_time += delta;
+ if (hardirq_count()) {
+ cpustat[CPUTIME_IRQ] += delta;
+ irqtime->tick_delta += delta;
+ } else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) {
+ cpustat[CPUTIME_SOFTIRQ] += delta;
+ irqtime->tick_delta += delta;
+ }
u64_stats_update_end(&irqtime->sync);
}
EXPORT_SYMBOL_GPL(irqtime_account_irq);
-static cputime_t irqtime_account_update(u64 irqtime, int idx, cputime_t maxtime)
+static u64 irqtime_tick_accounted(u64 maxtime)
{
- u64 *cpustat = kcpustat_this_cpu->cpustat;
- cputime_t irq_cputime;
-
- irq_cputime = nsecs_to_cputime64(irqtime) - cpustat[idx];
- irq_cputime = min(irq_cputime, maxtime);
- cpustat[idx] += irq_cputime;
+ struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
+ u64 delta;
- return irq_cputime;
-}
+ delta = min(irqtime->tick_delta, maxtime);
+ irqtime->tick_delta -= delta;
-static cputime_t irqtime_account_hi_update(cputime_t maxtime)
-{
- return irqtime_account_update(__this_cpu_read(cpu_irqtime.hardirq_time),
- CPUTIME_IRQ, maxtime);
-}
-
-static cputime_t irqtime_account_si_update(cputime_t maxtime)
-{
- return irqtime_account_update(__this_cpu_read(cpu_irqtime.softirq_time),
- CPUTIME_SOFTIRQ, maxtime);
+ return delta;
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
#define sched_clock_irqtime (0)
-static cputime_t irqtime_account_hi_update(cputime_t dummy)
-{
- return 0;
-}
-
-static cputime_t irqtime_account_si_update(cputime_t dummy)
+static u64 irqtime_tick_accounted(u64 dummy)
{
return 0;
}
@@ -129,7 +116,7 @@ static inline void task_group_account_field(struct task_struct *p, int index,
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in user space since the last update
*/
-void account_user_time(struct task_struct *p, cputime_t cputime)
+void account_user_time(struct task_struct *p, u64 cputime)
{
int index;
@@ -140,7 +127,7 @@ void account_user_time(struct task_struct *p, cputime_t cputime)
index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
/* Add user time to cpustat. */
- task_group_account_field(p, index, (__force u64) cputime);
+ task_group_account_field(p, index, cputime);
/* Account for user time used */
acct_account_cputime(p);
@@ -151,7 +138,7 @@ void account_user_time(struct task_struct *p, cputime_t cputime)
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in virtual machine since the last update
*/
-static void account_guest_time(struct task_struct *p, cputime_t cputime)
+void account_guest_time(struct task_struct *p, u64 cputime)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
@@ -162,11 +149,11 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime)
/* Add guest time to cpustat. */
if (task_nice(p) > 0) {
- cpustat[CPUTIME_NICE] += (__force u64) cputime;
- cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
+ cpustat[CPUTIME_NICE] += cputime;
+ cpustat[CPUTIME_GUEST_NICE] += cputime;
} else {
- cpustat[CPUTIME_USER] += (__force u64) cputime;
- cpustat[CPUTIME_GUEST] += (__force u64) cputime;
+ cpustat[CPUTIME_USER] += cputime;
+ cpustat[CPUTIME_GUEST] += cputime;
}
}
@@ -176,15 +163,15 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime)
* @cputime: the cpu time spent in kernel space since the last update
* @index: pointer to cpustat field that has to be updated
*/
-static inline
-void __account_system_time(struct task_struct *p, cputime_t cputime, int index)
+void account_system_index_time(struct task_struct *p,
+ u64 cputime, enum cpu_usage_stat index)
{
/* Add system time to process. */
p->stime += cputime;
account_group_system_time(p, cputime);
/* Add system time to cpustat. */
- task_group_account_field(p, index, (__force u64) cputime);
+ task_group_account_field(p, index, cputime);
/* Account for system time used */
acct_account_cputime(p);
@@ -196,8 +183,7 @@ void __account_system_time(struct task_struct *p, cputime_t cputime, int index)
* @hardirq_offset: the offset to subtract from hardirq_count()
* @cputime: the cpu time spent in kernel space since the last update
*/
-void account_system_time(struct task_struct *p, int hardirq_offset,
- cputime_t cputime)
+void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
{
int index;
@@ -213,33 +199,33 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
else
index = CPUTIME_SYSTEM;
- __account_system_time(p, cputime, index);
+ account_system_index_time(p, cputime, index);
}
/*
* Account for involuntary wait time.
* @cputime: the cpu time spent in involuntary wait
*/
-void account_steal_time(cputime_t cputime)
+void account_steal_time(u64 cputime)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
- cpustat[CPUTIME_STEAL] += (__force u64) cputime;
+ cpustat[CPUTIME_STEAL] += cputime;
}
/*
* Account for idle time.
* @cputime: the cpu time spent in idle wait
*/
-void account_idle_time(cputime_t cputime)
+void account_idle_time(u64 cputime)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
struct rq *rq = this_rq();
if (atomic_read(&rq->nr_iowait) > 0)
- cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
+ cpustat[CPUTIME_IOWAIT] += cputime;
else
- cpustat[CPUTIME_IDLE] += (__force u64) cputime;
+ cpustat[CPUTIME_IDLE] += cputime;
}
/*
@@ -247,21 +233,19 @@ void account_idle_time(cputime_t cputime)
* ticks are not redelivered later. Due to that, this function may on
* occasion account more time than the calling functions think elapsed.
*/
-static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
+static __always_inline u64 steal_account_process_time(u64 maxtime)
{
#ifdef CONFIG_PARAVIRT
if (static_key_false(&paravirt_steal_enabled)) {
- cputime_t steal_cputime;
u64 steal;
steal = paravirt_steal_clock(smp_processor_id());
steal -= this_rq()->prev_steal_time;
+ steal = min(steal, maxtime);
+ account_steal_time(steal);
+ this_rq()->prev_steal_time += steal;
- steal_cputime = min(nsecs_to_cputime(steal), maxtime);
- account_steal_time(steal_cputime);
- this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
-
- return steal_cputime;
+ return steal;
}
#endif
return 0;
@@ -270,9 +254,9 @@ static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
/*
* Account how much elapsed time was spent in steal, irq, or softirq time.
*/
-static inline cputime_t account_other_time(cputime_t max)
+static inline u64 account_other_time(u64 max)
{
- cputime_t accounted;
+ u64 accounted;
/* Shall be converted to a lockdep-enabled lightweight check */
WARN_ON_ONCE(!irqs_disabled());
@@ -280,10 +264,7 @@ static inline cputime_t account_other_time(cputime_t max)
accounted = steal_account_process_time(max);
if (accounted < max)
- accounted += irqtime_account_hi_update(max - accounted);
-
- if (accounted < max)
- accounted += irqtime_account_si_update(max - accounted);
+ accounted += irqtime_tick_accounted(max - accounted);
return accounted;
}
@@ -315,7 +296,7 @@ static u64 read_sum_exec_runtime(struct task_struct *t)
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
{
struct signal_struct *sig = tsk->signal;
- cputime_t utime, stime;
+ u64 utime, stime;
struct task_struct *t;
unsigned int seq, nextseq;
unsigned long flags;
@@ -379,8 +360,7 @@ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
struct rq *rq, int ticks)
{
- u64 cputime = (__force u64) cputime_one_jiffy * ticks;
- cputime_t other;
+ u64 other, cputime = TICK_NSEC * ticks;
/*
* When returning from idle, many ticks can get accounted at
@@ -392,6 +372,7 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
other = account_other_time(ULONG_MAX);
if (other >= cputime)
return;
+
cputime -= other;
if (this_cpu_ksoftirqd() == p) {
@@ -400,7 +381,7 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
* So, we have to handle it separately here.
* Also, p->stime needs to be updated for ksoftirqd.
*/
- __account_system_time(p, cputime, CPUTIME_SOFTIRQ);
+ account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
} else if (user_tick) {
account_user_time(p, cputime);
} else if (p == rq->idle) {
@@ -408,7 +389,7 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
} else if (p->flags & PF_VCPU) { /* System time or guest time */
account_guest_time(p, cputime);
} else {
- __account_system_time(p, cputime, CPUTIME_SYSTEM);
+ account_system_index_time(p, cputime, CPUTIME_SYSTEM);
}
}
@@ -437,9 +418,7 @@ void vtime_common_task_switch(struct task_struct *prev)
else
vtime_account_system(prev);
-#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
- vtime_account_user(prev);
-#endif
+ vtime_flush(prev);
arch_vtime_task_switch(prev);
}
#endif
@@ -467,14 +446,14 @@ void vtime_account_irq_enter(struct task_struct *tsk)
EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
#endif /* __ARCH_HAS_VTIME_ACCOUNT */
-void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
+void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
{
*ut = p->utime;
*st = p->stime;
}
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
-void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
+void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
{
struct task_cputime cputime;
@@ -491,7 +470,7 @@ void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime
*/
void account_process_tick(struct task_struct *p, int user_tick)
{
- cputime_t cputime, steal;
+ u64 cputime, steal;
struct rq *rq = this_rq();
if (vtime_accounting_cpu_enabled())
@@ -502,7 +481,7 @@ void account_process_tick(struct task_struct *p, int user_tick)
return;
}
- cputime = cputime_one_jiffy;
+ cputime = TICK_NSEC;
steal = steal_account_process_time(ULONG_MAX);
if (steal >= cputime)
@@ -524,14 +503,14 @@ void account_process_tick(struct task_struct *p, int user_tick)
*/
void account_idle_ticks(unsigned long ticks)
{
- cputime_t cputime, steal;
+ u64 cputime, steal;
if (sched_clock_irqtime) {
irqtime_account_idle_ticks(ticks);
return;
}
- cputime = jiffies_to_cputime(ticks);
+ cputime = ticks * TICK_NSEC;
steal = steal_account_process_time(ULONG_MAX);
if (steal >= cputime)
@@ -545,7 +524,7 @@ void account_idle_ticks(unsigned long ticks)
* Perform (stime * rtime) / total, but avoid multiplication overflow by
* loosing precision when the numbers are big.
*/
-static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
+static u64 scale_stime(u64 stime, u64 rtime, u64 total)
{
u64 scaled;
@@ -582,7 +561,7 @@ drop_precision:
* followed by a 64/32->64 divide.
*/
scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
- return (__force cputime_t) scaled;
+ return scaled;
}
/*
@@ -607,14 +586,14 @@ drop_precision:
*/
static void cputime_adjust(struct task_cputime *curr,
struct prev_cputime *prev,
- cputime_t *ut, cputime_t *st)
+ u64 *ut, u64 *st)
{
- cputime_t rtime, stime, utime;
+ u64 rtime, stime, utime;
unsigned long flags;
/* Serialize concurrent callers such that we can honour our guarantees */
raw_spin_lock_irqsave(&prev->lock, flags);
- rtime = nsecs_to_cputime(curr->sum_exec_runtime);
+ rtime = curr->sum_exec_runtime;
/*
* This is possible under two circumstances:
@@ -645,8 +624,7 @@ static void cputime_adjust(struct task_cputime *curr,
goto update;
}
- stime = scale_stime((__force u64)stime, (__force u64)rtime,
- (__force u64)(stime + utime));
+ stime = scale_stime(stime, rtime, stime + utime);
update:
/*
@@ -679,7 +657,7 @@ out:
raw_spin_unlock_irqrestore(&prev->lock, flags);
}
-void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
+void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
{
struct task_cputime cputime = {
.sum_exec_runtime = p->se.sum_exec_runtime,
@@ -690,7 +668,7 @@ void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
}
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
-void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
+void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
{
struct task_cputime cputime;
@@ -700,20 +678,20 @@ void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime
#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
-static cputime_t vtime_delta(struct task_struct *tsk)
+static u64 vtime_delta(struct task_struct *tsk)
{
unsigned long now = READ_ONCE(jiffies);
if (time_before(now, (unsigned long)tsk->vtime_snap))
return 0;
- return jiffies_to_cputime(now - tsk->vtime_snap);
+ return jiffies_to_nsecs(now - tsk->vtime_snap);
}
-static cputime_t get_vtime_delta(struct task_struct *tsk)
+static u64 get_vtime_delta(struct task_struct *tsk)
{
unsigned long now = READ_ONCE(jiffies);
- cputime_t delta, other;
+ u64 delta, other;
/*
* Unlike tick based timing, vtime based timing never has lost
@@ -722,7 +700,7 @@ static cputime_t get_vtime_delta(struct task_struct *tsk)
* elapsed time. Limit account_other_time to prevent rounding
* errors from causing elapsed vtime to go negative.
*/
- delta = jiffies_to_cputime(now - tsk->vtime_snap);
+ delta = jiffies_to_nsecs(now - tsk->vtime_snap);
other = account_other_time(delta);
WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
tsk->vtime_snap = now;
@@ -732,9 +710,7 @@ static cputime_t get_vtime_delta(struct task_struct *tsk)
static void __vtime_account_system(struct task_struct *tsk)
{
- cputime_t delta_cpu = get_vtime_delta(tsk);
-
- account_system_time(tsk, irq_count(), delta_cpu);
+ account_system_time(tsk, irq_count(), get_vtime_delta(tsk));
}
void vtime_account_system(struct task_struct *tsk)
@@ -749,14 +725,10 @@ void vtime_account_system(struct task_struct *tsk)
void vtime_account_user(struct task_struct *tsk)
{
- cputime_t delta_cpu;
-
write_seqcount_begin(&tsk->vtime_seqcount);
tsk->vtime_snap_whence = VTIME_SYS;
- if (vtime_delta(tsk)) {
- delta_cpu = get_vtime_delta(tsk);
- account_user_time(tsk, delta_cpu);
- }
+ if (vtime_delta(tsk))
+ account_user_time(tsk, get_vtime_delta(tsk));
write_seqcount_end(&tsk->vtime_seqcount);
}
@@ -797,9 +769,7 @@ EXPORT_SYMBOL_GPL(vtime_guest_exit);
void vtime_account_idle(struct task_struct *tsk)
{
- cputime_t delta_cpu = get_vtime_delta(tsk);
-
- account_idle_time(delta_cpu);
+ account_idle_time(get_vtime_delta(tsk));
}
void arch_vtime_task_switch(struct task_struct *prev)
@@ -826,10 +796,10 @@ void vtime_init_idle(struct task_struct *t, int cpu)
local_irq_restore(flags);
}
-cputime_t task_gtime(struct task_struct *t)
+u64 task_gtime(struct task_struct *t)
{
unsigned int seq;
- cputime_t gtime;
+ u64 gtime;
if (!vtime_accounting_enabled())
return t->gtime;
@@ -851,9 +821,9 @@ cputime_t task_gtime(struct task_struct *t)
* add up the pending nohz execution time since the last
* cputime snapshot.
*/
-void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
+void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
{
- cputime_t delta;
+ u64 delta;
unsigned int seq;
if (!vtime_accounting_enabled()) {
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index 70ef2b1901e4..27737f34757d 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -663,9 +663,9 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
* Nothing relies on rq->lock after this, so its safe to drop
* rq->lock.
*/
- lockdep_unpin_lock(&rq->lock, rf.cookie);
+ rq_unpin_lock(rq, &rf);
push_dl_task(rq);
- lockdep_repin_lock(&rq->lock, rf.cookie);
+ rq_repin_lock(rq, &rf);
}
#endif
@@ -1118,7 +1118,7 @@ static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
}
struct task_struct *
-pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
+pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
struct sched_dl_entity *dl_se;
struct task_struct *p;
@@ -1133,9 +1133,9 @@ pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie coo
* disabled avoiding further scheduler activity on it and we're
* being very careful to re-start the picking loop.
*/
- lockdep_unpin_lock(&rq->lock, cookie);
+ rq_unpin_lock(rq, rf);
pull_dl_task(rq);
- lockdep_repin_lock(&rq->lock, cookie);
+ rq_repin_lock(rq, rf);
/*
* pull_dl_task() can drop (and re-acquire) rq->lock; this
* means a stop task can slip in, in which case we need to
@@ -1729,12 +1729,11 @@ static void switched_to_dl(struct rq *rq, struct task_struct *p)
#ifdef CONFIG_SMP
if (tsk_nr_cpus_allowed(p) > 1 && rq->dl.overloaded)
queue_push_tasks(rq);
-#else
+#endif
if (dl_task(rq->curr))
check_preempt_curr_dl(rq, p, 0);
else
resched_curr(rq);
-#endif
}
}
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index fa178b62ea79..109adc0e9cb9 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -953,6 +953,10 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
#endif
P(policy);
P(prio);
+ if (p->policy == SCHED_DEADLINE) {
+ P(dl.runtime);
+ P(dl.deadline);
+ }
#undef PN_SCHEDSTAT
#undef PN
#undef __PN
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 6559d197e08a..274c747a01ce 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -2657,6 +2657,18 @@ static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
if (tg_weight)
shares /= tg_weight;
+ /*
+ * MIN_SHARES has to be unscaled here to support per-CPU partitioning
+ * of a group with small tg->shares value. It is a floor value which is
+ * assigned as a minimum load.weight to the sched_entity representing
+ * the group on a CPU.
+ *
+ * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
+ * on an 8-core system with 8 tasks each runnable on one CPU shares has
+ * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
+ * case no task is runnable on a CPU MIN_SHARES=2 should be returned
+ * instead of 0.
+ */
if (shares < MIN_SHARES)
shares = MIN_SHARES;
if (shares > tg->shares)
@@ -2689,16 +2701,20 @@ static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
-static void update_cfs_shares(struct cfs_rq *cfs_rq)
+static void update_cfs_shares(struct sched_entity *se)
{
+ struct cfs_rq *cfs_rq = group_cfs_rq(se);
struct task_group *tg;
- struct sched_entity *se;
long shares;
- tg = cfs_rq->tg;
- se = tg->se[cpu_of(rq_of(cfs_rq))];
- if (!se || throttled_hierarchy(cfs_rq))
+ if (!cfs_rq)
+ return;
+
+ if (throttled_hierarchy(cfs_rq))
return;
+
+ tg = cfs_rq->tg;
+
#ifndef CONFIG_SMP
if (likely(se->load.weight == tg->shares))
return;
@@ -2707,8 +2723,9 @@ static void update_cfs_shares(struct cfs_rq *cfs_rq)
reweight_entity(cfs_rq_of(se), se, shares);
}
+
#else /* CONFIG_FAIR_GROUP_SCHED */
-static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
+static inline void update_cfs_shares(struct sched_entity *se)
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
@@ -3424,7 +3441,7 @@ static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
return cfs_rq->avg.load_avg;
}
-static int idle_balance(struct rq *this_rq);
+static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
#else /* CONFIG_SMP */
@@ -3453,7 +3470,7 @@ attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
-static inline int idle_balance(struct rq *rq)
+static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
{
return 0;
}
@@ -3582,10 +3599,18 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
if (renorm && !curr)
se->vruntime += cfs_rq->min_vruntime;
+ /*
+ * When enqueuing a sched_entity, we must:
+ * - Update loads to have both entity and cfs_rq synced with now.
+ * - Add its load to cfs_rq->runnable_avg
+ * - For group_entity, update its weight to reflect the new share of
+ * its group cfs_rq
+ * - Add its new weight to cfs_rq->load.weight
+ */
update_load_avg(se, UPDATE_TG);
enqueue_entity_load_avg(cfs_rq, se);
+ update_cfs_shares(se);
account_entity_enqueue(cfs_rq, se);
- update_cfs_shares(cfs_rq);
if (flags & ENQUEUE_WAKEUP)
place_entity(cfs_rq, se, 0);
@@ -3657,6 +3682,15 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
+
+ /*
+ * When dequeuing a sched_entity, we must:
+ * - Update loads to have both entity and cfs_rq synced with now.
+ * - Substract its load from the cfs_rq->runnable_avg.
+ * - Substract its previous weight from cfs_rq->load.weight.
+ * - For group entity, update its weight to reflect the new share
+ * of its group cfs_rq.
+ */
update_load_avg(se, UPDATE_TG);
dequeue_entity_load_avg(cfs_rq, se);
@@ -3681,7 +3715,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
/* return excess runtime on last dequeue */
return_cfs_rq_runtime(cfs_rq);
- update_cfs_shares(cfs_rq);
+ update_cfs_shares(se);
/*
* Now advance min_vruntime if @se was the entity holding it back,
@@ -3864,7 +3898,7 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
* Ensure that runnable average is periodically updated.
*/
update_load_avg(curr, UPDATE_TG);
- update_cfs_shares(cfs_rq);
+ update_cfs_shares(curr);
#ifdef CONFIG_SCHED_HRTICK
/*
@@ -4761,7 +4795,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
break;
update_load_avg(se, UPDATE_TG);
- update_cfs_shares(cfs_rq);
+ update_cfs_shares(se);
}
if (!se)
@@ -4820,7 +4854,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
break;
update_load_avg(se, UPDATE_TG);
- update_cfs_shares(cfs_rq);
+ update_cfs_shares(se);
}
if (!se)
@@ -6213,7 +6247,7 @@ preempt:
}
static struct task_struct *
-pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
+pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
struct cfs_rq *cfs_rq = &rq->cfs;
struct sched_entity *se;
@@ -6320,15 +6354,8 @@ simple:
return p;
idle:
- /*
- * This is OK, because current is on_cpu, which avoids it being picked
- * for load-balance and preemption/IRQs are still disabled avoiding
- * further scheduler activity on it and we're being very careful to
- * re-start the picking loop.
- */
- lockdep_unpin_lock(&rq->lock, cookie);
- new_tasks = idle_balance(rq);
- lockdep_repin_lock(&rq->lock, cookie);
+ new_tasks = idle_balance(rq, rf);
+
/*
* Because idle_balance() releases (and re-acquires) rq->lock, it is
* possible for any higher priority task to appear. In that case we
@@ -8077,6 +8104,7 @@ redo:
more_balance:
raw_spin_lock_irqsave(&busiest->lock, flags);
+ update_rq_clock(busiest);
/*
* cur_ld_moved - load moved in current iteration
@@ -8297,7 +8325,7 @@ update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
* idle_balance is called by schedule() if this_cpu is about to become
* idle. Attempts to pull tasks from other CPUs.
*/
-static int idle_balance(struct rq *this_rq)
+static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
{
unsigned long next_balance = jiffies + HZ;
int this_cpu = this_rq->cpu;
@@ -8311,6 +8339,14 @@ static int idle_balance(struct rq *this_rq)
*/
this_rq->idle_stamp = rq_clock(this_rq);
+ /*
+ * This is OK, because current is on_cpu, which avoids it being picked
+ * for load-balance and preemption/IRQs are still disabled avoiding
+ * further scheduler activity on it and we're being very careful to
+ * re-start the picking loop.
+ */
+ rq_unpin_lock(this_rq, rf);
+
if (this_rq->avg_idle < sysctl_sched_migration_cost ||
!this_rq->rd->overload) {
rcu_read_lock();
@@ -8388,6 +8424,8 @@ out:
if (pulled_task)
this_rq->idle_stamp = 0;
+ rq_repin_lock(this_rq, rf);
+
return pulled_task;
}
@@ -8443,6 +8481,7 @@ static int active_load_balance_cpu_stop(void *data)
};
schedstat_inc(sd->alb_count);
+ update_rq_clock(busiest_rq);
p = detach_one_task(&env);
if (p) {
@@ -9264,6 +9303,7 @@ void online_fair_sched_group(struct task_group *tg)
se = tg->se[i];
raw_spin_lock_irq(&rq->lock);
+ update_rq_clock(rq);
attach_entity_cfs_rq(se);
sync_throttle(tg, i);
raw_spin_unlock_irq(&rq->lock);
@@ -9356,8 +9396,10 @@ int sched_group_set_shares(struct task_group *tg, unsigned long shares)
/* Possible calls to update_curr() need rq clock */
update_rq_clock(rq);
- for_each_sched_entity(se)
- update_cfs_shares(group_cfs_rq(se));
+ for_each_sched_entity(se) {
+ update_load_avg(se, UPDATE_TG);
+ update_cfs_shares(se);
+ }
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
diff --git a/kernel/sched/idle_task.c b/kernel/sched/idle_task.c
index 5405d3feb112..0c00172db63e 100644
--- a/kernel/sched/idle_task.c
+++ b/kernel/sched/idle_task.c
@@ -24,7 +24,7 @@ static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int fl
}
static struct task_struct *
-pick_next_task_idle(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
+pick_next_task_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
put_prev_task(rq, prev);
update_idle_core(rq);
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index a688a8206727..e8836cfc4cdb 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -9,6 +9,7 @@
#include <linux/irq_work.h>
int sched_rr_timeslice = RR_TIMESLICE;
+int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
@@ -1523,7 +1524,7 @@ static struct task_struct *_pick_next_task_rt(struct rq *rq)
}
static struct task_struct *
-pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
+pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
struct task_struct *p;
struct rt_rq *rt_rq = &rq->rt;
@@ -1535,9 +1536,9 @@ pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct pin_cookie coo
* disabled avoiding further scheduler activity on it and we're
* being very careful to re-start the picking loop.
*/
- lockdep_unpin_lock(&rq->lock, cookie);
+ rq_unpin_lock(rq, rf);
pull_rt_task(rq);
- lockdep_repin_lock(&rq->lock, cookie);
+ rq_repin_lock(rq, rf);
/*
* pull_rt_task() can drop (and re-acquire) rq->lock; this
* means a dl or stop task can slip in, in which case we need
@@ -2198,10 +2199,9 @@ static void switched_to_rt(struct rq *rq, struct task_struct *p)
#ifdef CONFIG_SMP
if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
queue_push_tasks(rq);
-#else
+#endif /* CONFIG_SMP */
if (p->prio < rq->curr->prio)
resched_curr(rq);
-#endif /* CONFIG_SMP */
}
}
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 7b34c7826ca5..71b10a9b73cf 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -4,6 +4,7 @@
#include <linux/sched/rt.h>
#include <linux/u64_stats_sync.h>
#include <linux/sched/deadline.h>
+#include <linux/kernel_stat.h>
#include <linux/binfmts.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
@@ -222,7 +223,7 @@ bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}
-extern struct mutex sched_domains_mutex;
+extern void init_dl_bw(struct dl_bw *dl_b);
#ifdef CONFIG_CGROUP_SCHED
@@ -583,6 +584,13 @@ struct root_domain {
};
extern struct root_domain def_root_domain;
+extern struct mutex sched_domains_mutex;
+extern cpumask_var_t fallback_doms;
+extern cpumask_var_t sched_domains_tmpmask;
+
+extern void init_defrootdomain(void);
+extern int init_sched_domains(const struct cpumask *cpu_map);
+extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
#endif /* CONFIG_SMP */
@@ -644,7 +652,7 @@ struct rq {
unsigned long next_balance;
struct mm_struct *prev_mm;
- unsigned int clock_skip_update;
+ unsigned int clock_update_flags;
u64 clock;
u64 clock_task;
@@ -768,28 +776,110 @@ static inline u64 __rq_clock_broken(struct rq *rq)
return READ_ONCE(rq->clock);
}
+/*
+ * rq::clock_update_flags bits
+ *
+ * %RQCF_REQ_SKIP - will request skipping of clock update on the next
+ * call to __schedule(). This is an optimisation to avoid
+ * neighbouring rq clock updates.
+ *
+ * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
+ * in effect and calls to update_rq_clock() are being ignored.
+ *
+ * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
+ * made to update_rq_clock() since the last time rq::lock was pinned.
+ *
+ * If inside of __schedule(), clock_update_flags will have been
+ * shifted left (a left shift is a cheap operation for the fast path
+ * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
+ *
+ * if (rq-clock_update_flags >= RQCF_UPDATED)
+ *
+ * to check if %RQCF_UPADTED is set. It'll never be shifted more than
+ * one position though, because the next rq_unpin_lock() will shift it
+ * back.
+ */
+#define RQCF_REQ_SKIP 0x01
+#define RQCF_ACT_SKIP 0x02
+#define RQCF_UPDATED 0x04
+
+static inline void assert_clock_updated(struct rq *rq)
+{
+ /*
+ * The only reason for not seeing a clock update since the
+ * last rq_pin_lock() is if we're currently skipping updates.
+ */
+ SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
+}
+
static inline u64 rq_clock(struct rq *rq)
{
lockdep_assert_held(&rq->lock);
+ assert_clock_updated(rq);
+
return rq->clock;
}
static inline u64 rq_clock_task(struct rq *rq)
{
lockdep_assert_held(&rq->lock);
+ assert_clock_updated(rq);
+
return rq->clock_task;
}
-#define RQCF_REQ_SKIP 0x01
-#define RQCF_ACT_SKIP 0x02
-
static inline void rq_clock_skip_update(struct rq *rq, bool skip)
{
lockdep_assert_held(&rq->lock);
if (skip)
- rq->clock_skip_update |= RQCF_REQ_SKIP;
+ rq->clock_update_flags |= RQCF_REQ_SKIP;
else
- rq->clock_skip_update &= ~RQCF_REQ_SKIP;
+ rq->clock_update_flags &= ~RQCF_REQ_SKIP;
+}
+
+struct rq_flags {
+ unsigned long flags;
+ struct pin_cookie cookie;
+#ifdef CONFIG_SCHED_DEBUG
+ /*
+ * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
+ * current pin context is stashed here in case it needs to be
+ * restored in rq_repin_lock().
+ */
+ unsigned int clock_update_flags;
+#endif
+};
+
+static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
+{
+ rf->cookie = lockdep_pin_lock(&rq->lock);
+
+#ifdef CONFIG_SCHED_DEBUG
+ rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
+ rf->clock_update_flags = 0;
+#endif
+}
+
+static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
+{
+#ifdef CONFIG_SCHED_DEBUG
+ if (rq->clock_update_flags > RQCF_ACT_SKIP)
+ rf->clock_update_flags = RQCF_UPDATED;
+#endif
+
+ lockdep_unpin_lock(&rq->lock, rf->cookie);
+}
+
+static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
+{
+ lockdep_repin_lock(&rq->lock, rf->cookie);
+
+#ifdef CONFIG_SCHED_DEBUG
+ /*
+ * Restore the value we stashed in @rf for this pin context.
+ */
+ rq->clock_update_flags |= rf->clock_update_flags;
+#endif
}
#ifdef CONFIG_NUMA
@@ -803,6 +893,16 @@ extern int sched_max_numa_distance;
extern bool find_numa_distance(int distance);
#endif
+#ifdef CONFIG_NUMA
+extern void sched_init_numa(void);
+extern void sched_domains_numa_masks_set(unsigned int cpu);
+extern void sched_domains_numa_masks_clear(unsigned int cpu);
+#else
+static inline void sched_init_numa(void) { }
+static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
+static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
+#endif
+
#ifdef CONFIG_NUMA_BALANCING
/* The regions in numa_faults array from task_struct */
enum numa_faults_stats {
@@ -969,7 +1069,7 @@ static inline void sched_ttwu_pending(void) { }
#endif /* CONFIG_SMP */
#include "stats.h"
-#include "auto_group.h"
+#include "autogroup.h"
#ifdef CONFIG_CGROUP_SCHED
@@ -1245,7 +1345,7 @@ struct sched_class {
*/
struct task_struct * (*pick_next_task) (struct rq *rq,
struct task_struct *prev,
- struct pin_cookie cookie);
+ struct rq_flags *rf);
void (*put_prev_task) (struct rq *rq, struct task_struct *p);
#ifdef CONFIG_SMP
@@ -1501,11 +1601,6 @@ static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
static inline void sched_avg_update(struct rq *rq) { }
#endif
-struct rq_flags {
- unsigned long flags;
- struct pin_cookie cookie;
-};
-
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
__acquires(rq->lock);
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
@@ -1515,7 +1610,7 @@ struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
__releases(rq->lock)
{
- lockdep_unpin_lock(&rq->lock, rf->cookie);
+ rq_unpin_lock(rq, rf);
raw_spin_unlock(&rq->lock);
}
@@ -1524,7 +1619,7 @@ task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
__releases(rq->lock)
__releases(p->pi_lock)
{
- lockdep_unpin_lock(&rq->lock, rf->cookie);
+ rq_unpin_lock(rq, rf);
raw_spin_unlock(&rq->lock);
raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
}
@@ -1674,6 +1769,10 @@ static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
__release(rq2->lock);
}
+extern void set_rq_online (struct rq *rq);
+extern void set_rq_offline(struct rq *rq);
+extern bool sched_smp_initialized;
+
#else /* CONFIG_SMP */
/*
@@ -1750,8 +1849,7 @@ static inline void nohz_balance_exit_idle(unsigned int cpu) { }
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
struct irqtime {
- u64 hardirq_time;
- u64 softirq_time;
+ u64 tick_delta;
u64 irq_start_time;
struct u64_stats_sync sync;
};
@@ -1761,12 +1859,13 @@ DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
static inline u64 irq_time_read(int cpu)
{
struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
+ u64 *cpustat = kcpustat_cpu(cpu).cpustat;
unsigned int seq;
u64 total;
do {
seq = __u64_stats_fetch_begin(&irqtime->sync);
- total = irqtime->softirq_time + irqtime->hardirq_time;
+ total = cpustat[CPUTIME_SOFTIRQ] + cpustat[CPUTIME_IRQ];
} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
return total;
diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h
index c69a9870ab79..bf0da0aa0a14 100644
--- a/kernel/sched/stats.h
+++ b/kernel/sched/stats.h
@@ -224,7 +224,7 @@ struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk)
* running CPU and update the utime field there.
*/
static inline void account_group_user_time(struct task_struct *tsk,
- cputime_t cputime)
+ u64 cputime)
{
struct thread_group_cputimer *cputimer = get_running_cputimer(tsk);
@@ -245,7 +245,7 @@ static inline void account_group_user_time(struct task_struct *tsk,
* running CPU and update the stime field there.
*/
static inline void account_group_system_time(struct task_struct *tsk,
- cputime_t cputime)
+ u64 cputime)
{
struct thread_group_cputimer *cputimer = get_running_cputimer(tsk);
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c
index 604297a08b3a..9f69fb630853 100644
--- a/kernel/sched/stop_task.c
+++ b/kernel/sched/stop_task.c
@@ -24,7 +24,7 @@ check_preempt_curr_stop(struct rq *rq, struct task_struct *p, int flags)
}
static struct task_struct *
-pick_next_task_stop(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
+pick_next_task_stop(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
struct task_struct *stop = rq->stop;
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
new file mode 100644
index 000000000000..1b0b4fb12837
--- /dev/null
+++ b/kernel/sched/topology.c
@@ -0,0 +1,1658 @@
+/*
+ * Scheduler topology setup/handling methods
+ */
+#include <linux/sched.h>
+#include <linux/mutex.h>
+
+#include "sched.h"
+
+DEFINE_MUTEX(sched_domains_mutex);
+
+/* Protected by sched_domains_mutex: */
+cpumask_var_t sched_domains_tmpmask;
+
+#ifdef CONFIG_SCHED_DEBUG
+
+static __read_mostly int sched_debug_enabled;
+
+static int __init sched_debug_setup(char *str)
+{
+ sched_debug_enabled = 1;
+
+ return 0;
+}
+early_param("sched_debug", sched_debug_setup);
+
+static inline bool sched_debug(void)
+{
+ return sched_debug_enabled;
+}
+
+static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
+ struct cpumask *groupmask)
+{
+ struct sched_group *group = sd->groups;
+
+ cpumask_clear(groupmask);
+
+ printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
+
+ if (!(sd->flags & SD_LOAD_BALANCE)) {
+ printk("does not load-balance\n");
+ if (sd->parent)
+ printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
+ " has parent");
+ return -1;
+ }
+
+ printk(KERN_CONT "span %*pbl level %s\n",
+ cpumask_pr_args(sched_domain_span(sd)), sd->name);
+
+ if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
+ printk(KERN_ERR "ERROR: domain->span does not contain "
+ "CPU%d\n", cpu);
+ }
+ if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
+ printk(KERN_ERR "ERROR: domain->groups does not contain"
+ " CPU%d\n", cpu);
+ }
+
+ printk(KERN_DEBUG "%*s groups:", level + 1, "");
+ do {
+ if (!group) {
+ printk("\n");
+ printk(KERN_ERR "ERROR: group is NULL\n");
+ break;
+ }
+
+ if (!cpumask_weight(sched_group_cpus(group))) {
+ printk(KERN_CONT "\n");
+ printk(KERN_ERR "ERROR: empty group\n");
+ break;
+ }
+
+ if (!(sd->flags & SD_OVERLAP) &&
+ cpumask_intersects(groupmask, sched_group_cpus(group))) {
+ printk(KERN_CONT "\n");
+ printk(KERN_ERR "ERROR: repeated CPUs\n");
+ break;
+ }
+
+ cpumask_or(groupmask, groupmask, sched_group_cpus(group));
+
+ printk(KERN_CONT " %*pbl",
+ cpumask_pr_args(sched_group_cpus(group)));
+ if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
+ printk(KERN_CONT " (cpu_capacity = %lu)",
+ group->sgc->capacity);
+ }
+
+ group = group->next;
+ } while (group != sd->groups);
+ printk(KERN_CONT "\n");
+
+ if (!cpumask_equal(sched_domain_span(sd), groupmask))
+ printk(KERN_ERR "ERROR: groups don't span domain->span\n");
+
+ if (sd->parent &&
+ !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
+ printk(KERN_ERR "ERROR: parent span is not a superset "
+ "of domain->span\n");
+ return 0;
+}
+
+static void sched_domain_debug(struct sched_domain *sd, int cpu)
+{
+ int level = 0;
+
+ if (!sched_debug_enabled)
+ return;
+
+ if (!sd) {
+ printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
+ return;
+ }
+
+ printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
+
+ for (;;) {
+ if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
+ break;
+ level++;
+ sd = sd->parent;
+ if (!sd)
+ break;
+ }
+}
+#else /* !CONFIG_SCHED_DEBUG */
+
+# define sched_debug_enabled 0
+# define sched_domain_debug(sd, cpu) do { } while (0)
+static inline bool sched_debug(void)
+{
+ return false;
+}
+#endif /* CONFIG_SCHED_DEBUG */
+
+static int sd_degenerate(struct sched_domain *sd)
+{
+ if (cpumask_weight(sched_domain_span(sd)) == 1)
+ return 1;
+
+ /* Following flags need at least 2 groups */
+ if (sd->flags & (SD_LOAD_BALANCE |
+ SD_BALANCE_NEWIDLE |
+ SD_BALANCE_FORK |
+ SD_BALANCE_EXEC |
+ SD_SHARE_CPUCAPACITY |
+ SD_ASYM_CPUCAPACITY |
+ SD_SHARE_PKG_RESOURCES |
+ SD_SHARE_POWERDOMAIN)) {
+ if (sd->groups != sd->groups->next)
+ return 0;
+ }
+
+ /* Following flags don't use groups */
+ if (sd->flags & (SD_WAKE_AFFINE))
+ return 0;
+
+ return 1;
+}
+
+static int
+sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
+{
+ unsigned long cflags = sd->flags, pflags = parent->flags;
+
+ if (sd_degenerate(parent))
+ return 1;
+
+ if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
+ return 0;
+
+ /* Flags needing groups don't count if only 1 group in parent */
+ if (parent->groups == parent->groups->next) {
+ pflags &= ~(SD_LOAD_BALANCE |
+ SD_BALANCE_NEWIDLE |
+ SD_BALANCE_FORK |
+ SD_BALANCE_EXEC |
+ SD_ASYM_CPUCAPACITY |
+ SD_SHARE_CPUCAPACITY |
+ SD_SHARE_PKG_RESOURCES |
+ SD_PREFER_SIBLING |
+ SD_SHARE_POWERDOMAIN);
+ if (nr_node_ids == 1)
+ pflags &= ~SD_SERIALIZE;
+ }
+ if (~cflags & pflags)
+ return 0;
+
+ return 1;
+}
+
+static void free_rootdomain(struct rcu_head *rcu)
+{
+ struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
+
+ cpupri_cleanup(&rd->cpupri);
+ cpudl_cleanup(&rd->cpudl);
+ free_cpumask_var(rd->dlo_mask);
+ free_cpumask_var(rd->rto_mask);
+ free_cpumask_var(rd->online);
+ free_cpumask_var(rd->span);
+ kfree(rd);
+}
+
+void rq_attach_root(struct rq *rq, struct root_domain *rd)
+{
+ struct root_domain *old_rd = NULL;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&rq->lock, flags);
+
+ if (rq->rd) {
+ old_rd = rq->rd;
+
+ if (cpumask_test_cpu(rq->cpu, old_rd->online))
+ set_rq_offline(rq);
+
+ cpumask_clear_cpu(rq->cpu, old_rd->span);
+
+ /*
+ * If we dont want to free the old_rd yet then
+ * set old_rd to NULL to skip the freeing later
+ * in this function:
+ */
+ if (!atomic_dec_and_test(&old_rd->refcount))
+ old_rd = NULL;
+ }
+
+ atomic_inc(&rd->refcount);
+ rq->rd = rd;
+
+ cpumask_set_cpu(rq->cpu, rd->span);
+ if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
+ set_rq_online(rq);
+
+ raw_spin_unlock_irqrestore(&rq->lock, flags);
+
+ if (old_rd)
+ call_rcu_sched(&old_rd->rcu, free_rootdomain);
+}
+
+static int init_rootdomain(struct root_domain *rd)
+{
+ memset(rd, 0, sizeof(*rd));
+
+ if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
+ goto out;
+ if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
+ goto free_span;
+ if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
+ goto free_online;
+ if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
+ goto free_dlo_mask;
+
+ init_dl_bw(&rd->dl_bw);
+ if (cpudl_init(&rd->cpudl) != 0)
+ goto free_rto_mask;
+
+ if (cpupri_init(&rd->cpupri) != 0)
+ goto free_cpudl;
+ return 0;
+
+free_cpudl:
+ cpudl_cleanup(&rd->cpudl);
+free_rto_mask:
+ free_cpumask_var(rd->rto_mask);
+free_dlo_mask:
+ free_cpumask_var(rd->dlo_mask);
+free_online:
+ free_cpumask_var(rd->online);
+free_span:
+ free_cpumask_var(rd->span);
+out:
+ return -ENOMEM;
+}
+
+/*
+ * By default the system creates a single root-domain with all CPUs as
+ * members (mimicking the global state we have today).
+ */
+struct root_domain def_root_domain;
+
+void init_defrootdomain(void)
+{
+ init_rootdomain(&def_root_domain);
+
+ atomic_set(&def_root_domain.refcount, 1);
+}
+
+static struct root_domain *alloc_rootdomain(void)
+{
+ struct root_domain *rd;
+
+ rd = kmalloc(sizeof(*rd), GFP_KERNEL);
+ if (!rd)
+ return NULL;
+
+ if (init_rootdomain(rd) != 0) {
+ kfree(rd);
+ return NULL;
+ }
+
+ return rd;
+}
+
+static void free_sched_groups(struct sched_group *sg, int free_sgc)
+{
+ struct sched_group *tmp, *first;
+
+ if (!sg)
+ return;
+
+ first = sg;
+ do {
+ tmp = sg->next;
+
+ if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
+ kfree(sg->sgc);
+
+ kfree(sg);
+ sg = tmp;
+ } while (sg != first);
+}
+
+static void destroy_sched_domain(struct sched_domain *sd)
+{
+ /*
+ * If its an overlapping domain it has private groups, iterate and
+ * nuke them all.
+ */
+ if (sd->flags & SD_OVERLAP) {
+ free_sched_groups(sd->groups, 1);
+ } else if (atomic_dec_and_test(&sd->groups->ref)) {
+ kfree(sd->groups->sgc);
+ kfree(sd->groups);
+ }
+ if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
+ kfree(sd->shared);
+ kfree(sd);
+}
+
+static void destroy_sched_domains_rcu(struct rcu_head *rcu)
+{
+ struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
+
+ while (sd) {
+ struct sched_domain *parent = sd->parent;
+ destroy_sched_domain(sd);
+ sd = parent;
+ }
+}
+
+static void destroy_sched_domains(struct sched_domain *sd)
+{
+ if (sd)
+ call_rcu(&sd->rcu, destroy_sched_domains_rcu);
+}
+
+/*
+ * Keep a special pointer to the highest sched_domain that has
+ * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
+ * allows us to avoid some pointer chasing select_idle_sibling().
+ *
+ * Also keep a unique ID per domain (we use the first CPU number in
+ * the cpumask of the domain), this allows us to quickly tell if
+ * two CPUs are in the same cache domain, see cpus_share_cache().
+ */
+DEFINE_PER_CPU(struct sched_domain *, sd_llc);
+DEFINE_PER_CPU(int, sd_llc_size);
+DEFINE_PER_CPU(int, sd_llc_id);
+DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
+DEFINE_PER_CPU(struct sched_domain *, sd_numa);
+DEFINE_PER_CPU(struct sched_domain *, sd_asym);
+
+static void update_top_cache_domain(int cpu)
+{
+ struct sched_domain_shared *sds = NULL;
+ struct sched_domain *sd;
+ int id = cpu;
+ int size = 1;
+
+ sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
+ if (sd) {
+ id = cpumask_first(sched_domain_span(sd));
+ size = cpumask_weight(sched_domain_span(sd));
+ sds = sd->shared;
+ }
+
+ rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
+ per_cpu(sd_llc_size, cpu) = size;
+ per_cpu(sd_llc_id, cpu) = id;
+ rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
+
+ sd = lowest_flag_domain(cpu, SD_NUMA);
+ rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
+
+ sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
+ rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
+}
+
+/*
+ * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
+ * hold the hotplug lock.
+ */
+static void
+cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
+{
+ struct rq *rq = cpu_rq(cpu);
+ struct sched_domain *tmp;
+
+ /* Remove the sched domains which do not contribute to scheduling. */
+ for (tmp = sd; tmp; ) {
+ struct sched_domain *parent = tmp->parent;
+ if (!parent)
+ break;
+
+ if (sd_parent_degenerate(tmp, parent)) {
+ tmp->parent = parent->parent;
+ if (parent->parent)
+ parent->parent->child = tmp;
+ /*
+ * Transfer SD_PREFER_SIBLING down in case of a
+ * degenerate parent; the spans match for this
+ * so the property transfers.
+ */
+ if (parent->flags & SD_PREFER_SIBLING)
+ tmp->flags |= SD_PREFER_SIBLING;
+ destroy_sched_domain(parent);
+ } else
+ tmp = tmp->parent;
+ }
+
+ if (sd && sd_degenerate(sd)) {
+ tmp = sd;
+ sd = sd->parent;
+ destroy_sched_domain(tmp);
+ if (sd)
+ sd->child = NULL;
+ }
+
+ sched_domain_debug(sd, cpu);
+
+ rq_attach_root(rq, rd);
+ tmp = rq->sd;
+ rcu_assign_pointer(rq->sd, sd);
+ destroy_sched_domains(tmp);
+
+ update_top_cache_domain(cpu);
+}
+
+/* Setup the mask of CPUs configured for isolated domains */
+static int __init isolated_cpu_setup(char *str)
+{
+ int ret;
+
+ alloc_bootmem_cpumask_var(&cpu_isolated_map);
+ ret = cpulist_parse(str, cpu_isolated_map);
+ if (ret) {
+ pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
+ return 0;
+ }
+ return 1;
+}
+__setup("isolcpus=", isolated_cpu_setup);
+
+struct s_data {
+ struct sched_domain ** __percpu sd;
+ struct root_domain *rd;
+};
+
+enum s_alloc {
+ sa_rootdomain,
+ sa_sd,
+ sa_sd_storage,
+ sa_none,
+};
+
+/*
+ * Build an iteration mask that can exclude certain CPUs from the upwards
+ * domain traversal.
+ *
+ * Asymmetric node setups can result in situations where the domain tree is of
+ * unequal depth, make sure to skip domains that already cover the entire
+ * range.
+ *
+ * In that case build_sched_domains() will have terminated the iteration early
+ * and our sibling sd spans will be empty. Domains should always include the
+ * CPU they're built on, so check that.
+ */
+static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
+{
+ const struct cpumask *span = sched_domain_span(sd);
+ struct sd_data *sdd = sd->private;
+ struct sched_domain *sibling;
+ int i;
+
+ for_each_cpu(i, span) {
+ sibling = *per_cpu_ptr(sdd->sd, i);
+ if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
+ continue;
+
+ cpumask_set_cpu(i, sched_group_mask(sg));
+ }
+}
+
+/*
+ * Return the canonical balance CPU for this group, this is the first CPU
+ * of this group that's also in the iteration mask.
+ */
+int group_balance_cpu(struct sched_group *sg)
+{
+ return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
+}
+
+static int
+build_overlap_sched_groups(struct sched_domain *sd, int cpu)
+{
+ struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
+ const struct cpumask *span = sched_domain_span(sd);
+ struct cpumask *covered = sched_domains_tmpmask;
+ struct sd_data *sdd = sd->private;
+ struct sched_domain *sibling;
+ int i;
+
+ cpumask_clear(covered);
+
+ for_each_cpu(i, span) {
+ struct cpumask *sg_span;
+
+ if (cpumask_test_cpu(i, covered))
+ continue;
+
+ sibling = *per_cpu_ptr(sdd->sd, i);
+
+ /* See the comment near build_group_mask(). */
+ if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
+ continue;
+
+ sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
+ GFP_KERNEL, cpu_to_node(cpu));
+
+ if (!sg)
+ goto fail;
+
+ sg_span = sched_group_cpus(sg);
+ if (sibling->child)
+ cpumask_copy(sg_span, sched_domain_span(sibling->child));
+ else
+ cpumask_set_cpu(i, sg_span);
+
+ cpumask_or(covered, covered, sg_span);
+
+ sg->sgc = *per_cpu_ptr(sdd->sgc, i);
+ if (atomic_inc_return(&sg->sgc->ref) == 1)
+ build_group_mask(sd, sg);
+
+ /*
+ * Initialize sgc->capacity such that even if we mess up the
+ * domains and no possible iteration will get us here, we won't
+ * die on a /0 trap.
+ */
+ sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
+ sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
+
+ /*
+ * Make sure the first group of this domain contains the
+ * canonical balance CPU. Otherwise the sched_domain iteration
+ * breaks. See update_sg_lb_stats().
+ */
+ if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
+ group_balance_cpu(sg) == cpu)
+ groups = sg;
+
+ if (!first)
+ first = sg;
+ if (last)
+ last->next = sg;
+ last = sg;
+ last->next = first;
+ }
+ sd->groups = groups;
+
+ return 0;
+
+fail:
+ free_sched_groups(first, 0);
+
+ return -ENOMEM;
+}
+
+static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
+{
+ struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
+ struct sched_domain *child = sd->child;
+
+ if (child)
+ cpu = cpumask_first(sched_domain_span(child));
+
+ if (sg) {
+ *sg = *per_cpu_ptr(sdd->sg, cpu);
+ (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
+
+ /* For claim_allocations: */
+ atomic_set(&(*sg)->sgc->ref, 1);
+ }
+
+ return cpu;
+}
+
+/*
+ * build_sched_groups will build a circular linked list of the groups
+ * covered by the given span, and will set each group's ->cpumask correctly,
+ * and ->cpu_capacity to 0.
+ *
+ * Assumes the sched_domain tree is fully constructed
+ */
+static int
+build_sched_groups(struct sched_domain *sd, int cpu)
+{
+ struct sched_group *first = NULL, *last = NULL;
+ struct sd_data *sdd = sd->private;
+ const struct cpumask *span = sched_domain_span(sd);
+ struct cpumask *covered;
+ int i;
+
+ get_group(cpu, sdd, &sd->groups);
+ atomic_inc(&sd->groups->ref);
+
+ if (cpu != cpumask_first(span))
+ return 0;
+
+ lockdep_assert_held(&sched_domains_mutex);
+ covered = sched_domains_tmpmask;
+
+ cpumask_clear(covered);
+
+ for_each_cpu(i, span) {
+ struct sched_group *sg;
+ int group, j;
+
+ if (cpumask_test_cpu(i, covered))
+ continue;
+
+ group = get_group(i, sdd, &sg);
+ cpumask_setall(sched_group_mask(sg));
+
+ for_each_cpu(j, span) {
+ if (get_group(j, sdd, NULL) != group)
+ continue;
+
+ cpumask_set_cpu(j, covered);
+ cpumask_set_cpu(j, sched_group_cpus(sg));
+ }
+
+ if (!first)
+ first = sg;
+ if (last)
+ last->next = sg;
+ last = sg;
+ }
+ last->next = first;
+
+ return 0;
+}
+
+/*
+ * Initialize sched groups cpu_capacity.
+ *
+ * cpu_capacity indicates the capacity of sched group, which is used while
+ * distributing the load between different sched groups in a sched domain.
+ * Typically cpu_capacity for all the groups in a sched domain will be same
+ * unless there are asymmetries in the topology. If there are asymmetries,
+ * group having more cpu_capacity will pickup more load compared to the
+ * group having less cpu_capacity.
+ */
+static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
+{
+ struct sched_group *sg = sd->groups;
+
+ WARN_ON(!sg);
+
+ do {
+ int cpu, max_cpu = -1;
+
+ sg->group_weight = cpumask_weight(sched_group_cpus(sg));
+
+ if (!(sd->flags & SD_ASYM_PACKING))
+ goto next;
+
+ for_each_cpu(cpu, sched_group_cpus(sg)) {
+ if (max_cpu < 0)
+ max_cpu = cpu;
+ else if (sched_asym_prefer(cpu, max_cpu))
+ max_cpu = cpu;
+ }
+ sg->asym_prefer_cpu = max_cpu;
+
+next:
+ sg = sg->next;
+ } while (sg != sd->groups);
+
+ if (cpu != group_balance_cpu(sg))
+ return;
+
+ update_group_capacity(sd, cpu);
+}
+
+/*
+ * Initializers for schedule domains
+ * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
+ */
+
+static int default_relax_domain_level = -1;
+int sched_domain_level_max;
+
+static int __init setup_relax_domain_level(char *str)
+{
+ if (kstrtoint(str, 0, &default_relax_domain_level))
+ pr_warn("Unable to set relax_domain_level\n");
+
+ return 1;
+}
+__setup("relax_domain_level=", setup_relax_domain_level);
+
+static void set_domain_attribute(struct sched_domain *sd,
+ struct sched_domain_attr *attr)
+{
+ int request;
+
+ if (!attr || attr->relax_domain_level < 0) {
+ if (default_relax_domain_level < 0)
+ return;
+ else
+ request = default_relax_domain_level;
+ } else
+ request = attr->relax_domain_level;
+ if (request < sd->level) {
+ /* Turn off idle balance on this domain: */
+ sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
+ } else {
+ /* Turn on idle balance on this domain: */
+ sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
+ }
+}
+
+static void __sdt_free(const struct cpumask *cpu_map);
+static int __sdt_alloc(const struct cpumask *cpu_map);
+
+static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
+ const struct cpumask *cpu_map)
+{
+ switch (what) {
+ case sa_rootdomain:
+ if (!atomic_read(&d->rd->refcount))
+ free_rootdomain(&d->rd->rcu);
+ /* Fall through */
+ case sa_sd:
+ free_percpu(d->sd);
+ /* Fall through */
+ case sa_sd_storage:
+ __sdt_free(cpu_map);
+ /* Fall through */
+ case sa_none:
+ break;
+ }
+}
+
+static enum s_alloc
+__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
+{
+ memset(d, 0, sizeof(*d));
+
+ if (__sdt_alloc(cpu_map))
+ return sa_sd_storage;
+ d->sd = alloc_percpu(struct sched_domain *);
+ if (!d->sd)
+ return sa_sd_storage;
+ d->rd = alloc_rootdomain();
+ if (!d->rd)
+ return sa_sd;
+ return sa_rootdomain;
+}
+
+/*
+ * NULL the sd_data elements we've used to build the sched_domain and
+ * sched_group structure so that the subsequent __free_domain_allocs()
+ * will not free the data we're using.
+ */
+static void claim_allocations(int cpu, struct sched_domain *sd)
+{
+ struct sd_data *sdd = sd->private;
+
+ WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
+ *per_cpu_ptr(sdd->sd, cpu) = NULL;
+
+ if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
+ *per_cpu_ptr(sdd->sds, cpu) = NULL;
+
+ if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
+ *per_cpu_ptr(sdd->sg, cpu) = NULL;
+
+ if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
+ *per_cpu_ptr(sdd->sgc, cpu) = NULL;
+}
+
+#ifdef CONFIG_NUMA
+static int sched_domains_numa_levels;
+enum numa_topology_type sched_numa_topology_type;
+static int *sched_domains_numa_distance;
+int sched_max_numa_distance;
+static struct cpumask ***sched_domains_numa_masks;
+static int sched_domains_curr_level;
+#endif
+
+/*
+ * SD_flags allowed in topology descriptions.
+ *
+ * These flags are purely descriptive of the topology and do not prescribe
+ * behaviour. Behaviour is artificial and mapped in the below sd_init()
+ * function:
+ *
+ * SD_SHARE_CPUCAPACITY - describes SMT topologies
+ * SD_SHARE_PKG_RESOURCES - describes shared caches
+ * SD_NUMA - describes NUMA topologies
+ * SD_SHARE_POWERDOMAIN - describes shared power domain
+ * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
+ *
+ * Odd one out, which beside describing the topology has a quirk also
+ * prescribes the desired behaviour that goes along with it:
+ *
+ * SD_ASYM_PACKING - describes SMT quirks
+ */
+#define TOPOLOGY_SD_FLAGS \
+ (SD_SHARE_CPUCAPACITY | \
+ SD_SHARE_PKG_RESOURCES | \
+ SD_NUMA | \
+ SD_ASYM_PACKING | \
+ SD_ASYM_CPUCAPACITY | \
+ SD_SHARE_POWERDOMAIN)
+
+static struct sched_domain *
+sd_init(struct sched_domain_topology_level *tl,
+ const struct cpumask *cpu_map,
+ struct sched_domain *child, int cpu)
+{
+ struct sd_data *sdd = &tl->data;
+ struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
+ int sd_id, sd_weight, sd_flags = 0;
+
+#ifdef CONFIG_NUMA
+ /*
+ * Ugly hack to pass state to sd_numa_mask()...
+ */
+ sched_domains_curr_level = tl->numa_level;
+#endif
+
+ sd_weight = cpumask_weight(tl->mask(cpu));
+
+ if (tl->sd_flags)
+ sd_flags = (*tl->sd_flags)();
+ if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
+ "wrong sd_flags in topology description\n"))
+ sd_flags &= ~TOPOLOGY_SD_FLAGS;
+
+ *sd = (struct sched_domain){
+ .min_interval = sd_weight,
+ .max_interval = 2*sd_weight,
+ .busy_factor = 32,
+ .imbalance_pct = 125,
+
+ .cache_nice_tries = 0,
+ .busy_idx = 0,
+ .idle_idx = 0,
+ .newidle_idx = 0,
+ .wake_idx = 0,
+ .forkexec_idx = 0,
+
+ .flags = 1*SD_LOAD_BALANCE
+ | 1*SD_BALANCE_NEWIDLE
+ | 1*SD_BALANCE_EXEC
+ | 1*SD_BALANCE_FORK
+ | 0*SD_BALANCE_WAKE
+ | 1*SD_WAKE_AFFINE
+ | 0*SD_SHARE_CPUCAPACITY
+ | 0*SD_SHARE_PKG_RESOURCES
+ | 0*SD_SERIALIZE
+ | 0*SD_PREFER_SIBLING
+ | 0*SD_NUMA
+ | sd_flags
+ ,
+
+ .last_balance = jiffies,
+ .balance_interval = sd_weight,
+ .smt_gain = 0,
+ .max_newidle_lb_cost = 0,
+ .next_decay_max_lb_cost = jiffies,
+ .child = child,
+#ifdef CONFIG_SCHED_DEBUG
+ .name = tl->name,
+#endif
+ };
+
+ cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
+ sd_id = cpumask_first(sched_domain_span(sd));
+
+ /*
+ * Convert topological properties into behaviour.
+ */
+
+ if (sd->flags & SD_ASYM_CPUCAPACITY) {
+ struct sched_domain *t = sd;
+
+ for_each_lower_domain(t)
+ t->flags |= SD_BALANCE_WAKE;
+ }
+
+ if (sd->flags & SD_SHARE_CPUCAPACITY) {
+ sd->flags |= SD_PREFER_SIBLING;
+ sd->imbalance_pct = 110;
+ sd->smt_gain = 1178; /* ~15% */
+
+ } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
+ sd->imbalance_pct = 117;
+ sd->cache_nice_tries = 1;
+ sd->busy_idx = 2;
+
+#ifdef CONFIG_NUMA
+ } else if (sd->flags & SD_NUMA) {
+ sd->cache_nice_tries = 2;
+ sd->busy_idx = 3;
+ sd->idle_idx = 2;
+
+ sd->flags |= SD_SERIALIZE;
+ if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
+ sd->flags &= ~(SD_BALANCE_EXEC |
+ SD_BALANCE_FORK |
+ SD_WAKE_AFFINE);
+ }
+
+#endif
+ } else {
+ sd->flags |= SD_PREFER_SIBLING;
+ sd->cache_nice_tries = 1;
+ sd->busy_idx = 2;
+ sd->idle_idx = 1;
+ }
+
+ /*
+ * For all levels sharing cache; connect a sched_domain_shared
+ * instance.
+ */
+ if (sd->flags & SD_SHARE_PKG_RESOURCES) {
+ sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
+ atomic_inc(&sd->shared->ref);
+ atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
+ }
+
+ sd->private = sdd;
+
+ return sd;
+}
+
+/*
+ * Topology list, bottom-up.
+ */
+static struct sched_domain_topology_level default_topology[] = {
+#ifdef CONFIG_SCHED_SMT
+ { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
+#endif
+#ifdef CONFIG_SCHED_MC
+ { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
+#endif
+ { cpu_cpu_mask, SD_INIT_NAME(DIE) },
+ { NULL, },
+};
+
+static struct sched_domain_topology_level *sched_domain_topology =
+ default_topology;
+
+#define for_each_sd_topology(tl) \
+ for (tl = sched_domain_topology; tl->mask; tl++)
+
+void set_sched_topology(struct sched_domain_topology_level *tl)
+{
+ if (WARN_ON_ONCE(sched_smp_initialized))
+ return;
+
+ sched_domain_topology = tl;
+}
+
+#ifdef CONFIG_NUMA
+
+static const struct cpumask *sd_numa_mask(int cpu)
+{
+ return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
+}
+
+static void sched_numa_warn(const char *str)
+{
+ static int done = false;
+ int i,j;
+
+ if (done)
+ return;
+
+ done = true;
+
+ printk(KERN_WARNING "ERROR: %s\n\n", str);
+
+ for (i = 0; i < nr_node_ids; i++) {
+ printk(KERN_WARNING " ");
+ for (j = 0; j < nr_node_ids; j++)
+ printk(KERN_CONT "%02d ", node_distance(i,j));
+ printk(KERN_CONT "\n");
+ }
+ printk(KERN_WARNING "\n");
+}
+
+bool find_numa_distance(int distance)
+{
+ int i;
+
+ if (distance == node_distance(0, 0))
+ return true;
+
+ for (i = 0; i < sched_domains_numa_levels; i++) {
+ if (sched_domains_numa_distance[i] == distance)
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * A system can have three types of NUMA topology:
+ * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
+ * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
+ * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
+ *
+ * The difference between a glueless mesh topology and a backplane
+ * topology lies in whether communication between not directly
+ * connected nodes goes through intermediary nodes (where programs
+ * could run), or through backplane controllers. This affects
+ * placement of programs.
+ *
+ * The type of topology can be discerned with the following tests:
+ * - If the maximum distance between any nodes is 1 hop, the system
+ * is directly connected.
+ * - If for two nodes A and B, located N > 1 hops away from each other,
+ * there is an intermediary node C, which is < N hops away from both
+ * nodes A and B, the system is a glueless mesh.
+ */
+static void init_numa_topology_type(void)
+{
+ int a, b, c, n;
+
+ n = sched_max_numa_distance;
+
+ if (sched_domains_numa_levels <= 1) {
+ sched_numa_topology_type = NUMA_DIRECT;
+ return;
+ }
+
+ for_each_online_node(a) {
+ for_each_online_node(b) {
+ /* Find two nodes furthest removed from each other. */
+ if (node_distance(a, b) < n)
+ continue;
+
+ /* Is there an intermediary node between a and b? */
+ for_each_online_node(c) {
+ if (node_distance(a, c) < n &&
+ node_distance(b, c) < n) {
+ sched_numa_topology_type =
+ NUMA_GLUELESS_MESH;
+ return;
+ }
+ }
+
+ sched_numa_topology_type = NUMA_BACKPLANE;
+ return;
+ }
+ }
+}
+
+void sched_init_numa(void)
+{
+ int next_distance, curr_distance = node_distance(0, 0);
+ struct sched_domain_topology_level *tl;
+ int level = 0;
+ int i, j, k;
+
+ sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
+ if (!sched_domains_numa_distance)
+ return;
+
+ /*
+ * O(nr_nodes^2) deduplicating selection sort -- in order to find the
+ * unique distances in the node_distance() table.
+ *
+ * Assumes node_distance(0,j) includes all distances in
+ * node_distance(i,j) in order to avoid cubic time.
+ */
+ next_distance = curr_distance;
+ for (i = 0; i < nr_node_ids; i++) {
+ for (j = 0; j < nr_node_ids; j++) {
+ for (k = 0; k < nr_node_ids; k++) {
+ int distance = node_distance(i, k);
+
+ if (distance > curr_distance &&
+ (distance < next_distance ||
+ next_distance == curr_distance))
+ next_distance = distance;
+
+ /*
+ * While not a strong assumption it would be nice to know
+ * about cases where if node A is connected to B, B is not
+ * equally connected to A.
+ */
+ if (sched_debug() && node_distance(k, i) != distance)
+ sched_numa_warn("Node-distance not symmetric");
+
+ if (sched_debug() && i && !find_numa_distance(distance))
+ sched_numa_warn("Node-0 not representative");
+ }
+ if (next_distance != curr_distance) {
+ sched_domains_numa_distance[level++] = next_distance;
+ sched_domains_numa_levels = level;
+ curr_distance = next_distance;
+ } else break;
+ }
+
+ /*
+ * In case of sched_debug() we verify the above assumption.
+ */
+ if (!sched_debug())
+ break;
+ }
+
+ if (!level)
+ return;
+
+ /*
+ * 'level' contains the number of unique distances, excluding the
+ * identity distance node_distance(i,i).
+ *
+ * The sched_domains_numa_distance[] array includes the actual distance
+ * numbers.
+ */
+
+ /*
+ * Here, we should temporarily reset sched_domains_numa_levels to 0.
+ * If it fails to allocate memory for array sched_domains_numa_masks[][],
+ * the array will contain less then 'level' members. This could be
+ * dangerous when we use it to iterate array sched_domains_numa_masks[][]
+ * in other functions.
+ *
+ * We reset it to 'level' at the end of this function.
+ */
+ sched_domains_numa_levels = 0;
+
+ sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
+ if (!sched_domains_numa_masks)
+ return;
+
+ /*
+ * Now for each level, construct a mask per node which contains all
+ * CPUs of nodes that are that many hops away from us.
+ */
+ for (i = 0; i < level; i++) {
+ sched_domains_numa_masks[i] =
+ kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
+ if (!sched_domains_numa_masks[i])
+ return;
+
+ for (j = 0; j < nr_node_ids; j++) {
+ struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
+ if (!mask)
+ return;
+
+ sched_domains_numa_masks[i][j] = mask;
+
+ for_each_node(k) {
+ if (node_distance(j, k) > sched_domains_numa_distance[i])
+ continue;
+
+ cpumask_or(mask, mask, cpumask_of_node(k));
+ }
+ }
+ }
+
+ /* Compute default topology size */
+ for (i = 0; sched_domain_topology[i].mask; i++);
+
+ tl = kzalloc((i + level + 1) *
+ sizeof(struct sched_domain_topology_level), GFP_KERNEL);
+ if (!tl)
+ return;
+
+ /*
+ * Copy the default topology bits..
+ */
+ for (i = 0; sched_domain_topology[i].mask; i++)
+ tl[i] = sched_domain_topology[i];
+
+ /*
+ * .. and append 'j' levels of NUMA goodness.
+ */
+ for (j = 0; j < level; i++, j++) {
+ tl[i] = (struct sched_domain_topology_level){
+ .mask = sd_numa_mask,
+ .sd_flags = cpu_numa_flags,
+ .flags = SDTL_OVERLAP,
+ .numa_level = j,
+ SD_INIT_NAME(NUMA)
+ };
+ }
+
+ sched_domain_topology = tl;
+
+ sched_domains_numa_levels = level;
+ sched_max_numa_distance = sched_domains_numa_distance[level - 1];
+
+ init_numa_topology_type();
+}
+
+void sched_domains_numa_masks_set(unsigned int cpu)
+{
+ int node = cpu_to_node(cpu);
+ int i, j;
+
+ for (i = 0; i < sched_domains_numa_levels; i++) {
+ for (j = 0; j < nr_node_ids; j++) {
+ if (node_distance(j, node) <= sched_domains_numa_distance[i])
+ cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
+ }
+ }
+}
+
+void sched_domains_numa_masks_clear(unsigned int cpu)
+{
+ int i, j;
+
+ for (i = 0; i < sched_domains_numa_levels; i++) {
+ for (j = 0; j < nr_node_ids; j++)
+ cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
+ }
+}
+
+#endif /* CONFIG_NUMA */
+
+static int __sdt_alloc(const struct cpumask *cpu_map)
+{
+ struct sched_domain_topology_level *tl;
+ int j;
+
+ for_each_sd_topology(tl) {
+ struct sd_data *sdd = &tl->data;
+
+ sdd->sd = alloc_percpu(struct sched_domain *);
+ if (!sdd->sd)
+ return -ENOMEM;
+
+ sdd->sds = alloc_percpu(struct sched_domain_shared *);
+ if (!sdd->sds)
+ return -ENOMEM;
+
+ sdd->sg = alloc_percpu(struct sched_group *);
+ if (!sdd->sg)
+ return -ENOMEM;
+
+ sdd->sgc = alloc_percpu(struct sched_group_capacity *);
+ if (!sdd->sgc)
+ return -ENOMEM;
+
+ for_each_cpu(j, cpu_map) {
+ struct sched_domain *sd;
+ struct sched_domain_shared *sds;
+ struct sched_group *sg;
+ struct sched_group_capacity *sgc;
+
+ sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
+ GFP_KERNEL, cpu_to_node(j));
+ if (!sd)
+ return -ENOMEM;
+
+ *per_cpu_ptr(sdd->sd, j) = sd;
+
+ sds = kzalloc_node(sizeof(struct sched_domain_shared),
+ GFP_KERNEL, cpu_to_node(j));
+ if (!sds)
+ return -ENOMEM;
+
+ *per_cpu_ptr(sdd->sds, j) = sds;
+
+ sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
+ GFP_KERNEL, cpu_to_node(j));
+ if (!sg)
+ return -ENOMEM;
+
+ sg->next = sg;
+
+ *per_cpu_ptr(sdd->sg, j) = sg;
+
+ sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
+ GFP_KERNEL, cpu_to_node(j));
+ if (!sgc)
+ return -ENOMEM;
+
+ *per_cpu_ptr(sdd->sgc, j) = sgc;
+ }
+ }
+
+ return 0;
+}
+
+static void __sdt_free(const struct cpumask *cpu_map)
+{
+ struct sched_domain_topology_level *tl;
+ int j;
+
+ for_each_sd_topology(tl) {
+ struct sd_data *sdd = &tl->data;
+
+ for_each_cpu(j, cpu_map) {
+ struct sched_domain *sd;
+
+ if (sdd->sd) {
+ sd = *per_cpu_ptr(sdd->sd, j);
+ if (sd && (sd->flags & SD_OVERLAP))
+ free_sched_groups(sd->groups, 0);
+ kfree(*per_cpu_ptr(sdd->sd, j));
+ }
+
+ if (sdd->sds)
+ kfree(*per_cpu_ptr(sdd->sds, j));
+ if (sdd->sg)
+ kfree(*per_cpu_ptr(sdd->sg, j));
+ if (sdd->sgc)
+ kfree(*per_cpu_ptr(sdd->sgc, j));
+ }
+ free_percpu(sdd->sd);
+ sdd->sd = NULL;
+ free_percpu(sdd->sds);
+ sdd->sds = NULL;
+ free_percpu(sdd->sg);
+ sdd->sg = NULL;
+ free_percpu(sdd->sgc);
+ sdd->sgc = NULL;
+ }
+}
+
+struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
+ const struct cpumask *cpu_map, struct sched_domain_attr *attr,
+ struct sched_domain *child, int cpu)
+{
+ struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
+
+ if (child) {
+ sd->level = child->level + 1;
+ sched_domain_level_max = max(sched_domain_level_max, sd->level);
+ child->parent = sd;
+
+ if (!cpumask_subset(sched_domain_span(child),
+ sched_domain_span(sd))) {
+ pr_err("BUG: arch topology borken\n");
+#ifdef CONFIG_SCHED_DEBUG
+ pr_err(" the %s domain not a subset of the %s domain\n",
+ child->name, sd->name);
+#endif
+ /* Fixup, ensure @sd has at least @child cpus. */
+ cpumask_or(sched_domain_span(sd),
+ sched_domain_span(sd),
+ sched_domain_span(child));
+ }
+
+ }
+ set_domain_attribute(sd, attr);
+
+ return sd;
+}
+
+/*
+ * Build sched domains for a given set of CPUs and attach the sched domains
+ * to the individual CPUs
+ */
+static int
+build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
+{
+ enum s_alloc alloc_state;
+ struct sched_domain *sd;
+ struct s_data d;
+ struct rq *rq = NULL;
+ int i, ret = -ENOMEM;
+
+ alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
+ if (alloc_state != sa_rootdomain)
+ goto error;
+
+ /* Set up domains for CPUs specified by the cpu_map: */
+ for_each_cpu(i, cpu_map) {
+ struct sched_domain_topology_level *tl;
+
+ sd = NULL;
+ for_each_sd_topology(tl) {
+ sd = build_sched_domain(tl, cpu_map, attr, sd, i);
+ if (tl == sched_domain_topology)
+ *per_cpu_ptr(d.sd, i) = sd;
+ if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
+ sd->flags |= SD_OVERLAP;
+ if (cpumask_equal(cpu_map, sched_domain_span(sd)))
+ break;
+ }
+ }
+
+ /* Build the groups for the domains */
+ for_each_cpu(i, cpu_map) {
+ for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
+ sd->span_weight = cpumask_weight(sched_domain_span(sd));
+ if (sd->flags & SD_OVERLAP) {
+ if (build_overlap_sched_groups(sd, i))
+ goto error;
+ } else {
+ if (build_sched_groups(sd, i))
+ goto error;
+ }
+ }
+ }
+
+ /* Calculate CPU capacity for physical packages and nodes */
+ for (i = nr_cpumask_bits-1; i >= 0; i--) {
+ if (!cpumask_test_cpu(i, cpu_map))
+ continue;
+
+ for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
+ claim_allocations(i, sd);
+ init_sched_groups_capacity(i, sd);
+ }
+ }
+
+ /* Attach the domains */
+ rcu_read_lock();
+ for_each_cpu(i, cpu_map) {
+ rq = cpu_rq(i);
+ sd = *per_cpu_ptr(d.sd, i);
+
+ /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
+ if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
+ WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
+
+ cpu_attach_domain(sd, d.rd, i);
+ }
+ rcu_read_unlock();
+
+ if (rq && sched_debug_enabled) {
+ pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
+ cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
+ }
+
+ ret = 0;
+error:
+ __free_domain_allocs(&d, alloc_state, cpu_map);
+ return ret;
+}
+
+/* Current sched domains: */
+static cpumask_var_t *doms_cur;
+
+/* Number of sched domains in 'doms_cur': */
+static int ndoms_cur;
+
+/* Attribues of custom domains in 'doms_cur' */
+static struct sched_domain_attr *dattr_cur;
+
+/*
+ * Special case: If a kmalloc() of a doms_cur partition (array of
+ * cpumask) fails, then fallback to a single sched domain,
+ * as determined by the single cpumask fallback_doms.
+ */
+cpumask_var_t fallback_doms;
+
+/*
+ * arch_update_cpu_topology lets virtualized architectures update the
+ * CPU core maps. It is supposed to return 1 if the topology changed
+ * or 0 if it stayed the same.
+ */
+int __weak arch_update_cpu_topology(void)
+{
+ return 0;
+}
+
+cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
+{
+ int i;
+ cpumask_var_t *doms;
+
+ doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
+ if (!doms)
+ return NULL;
+ for (i = 0; i < ndoms; i++) {
+ if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
+ free_sched_domains(doms, i);
+ return NULL;
+ }
+ }
+ return doms;
+}
+
+void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
+{
+ unsigned int i;
+ for (i = 0; i < ndoms; i++)
+ free_cpumask_var(doms[i]);
+ kfree(doms);
+}
+
+/*
+ * Set up scheduler domains and groups. Callers must hold the hotplug lock.
+ * For now this just excludes isolated CPUs, but could be used to
+ * exclude other special cases in the future.
+ */
+int init_sched_domains(const struct cpumask *cpu_map)
+{
+ int err;
+
+ arch_update_cpu_topology();
+ ndoms_cur = 1;
+ doms_cur = alloc_sched_domains(ndoms_cur);
+ if (!doms_cur)
+ doms_cur = &fallback_doms;
+ cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
+ err = build_sched_domains(doms_cur[0], NULL);
+ register_sched_domain_sysctl();
+
+ return err;
+}
+
+/*
+ * Detach sched domains from a group of CPUs specified in cpu_map
+ * These CPUs will now be attached to the NULL domain
+ */
+static void detach_destroy_domains(const struct cpumask *cpu_map)
+{
+ int i;
+
+ rcu_read_lock();
+ for_each_cpu(i, cpu_map)
+ cpu_attach_domain(NULL, &def_root_domain, i);
+ rcu_read_unlock();
+}
+
+/* handle null as "default" */
+static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
+ struct sched_domain_attr *new, int idx_new)
+{
+ struct sched_domain_attr tmp;
+
+ /* Fast path: */
+ if (!new && !cur)
+ return 1;
+
+ tmp = SD_ATTR_INIT;
+ return !memcmp(cur ? (cur + idx_cur) : &tmp,
+ new ? (new + idx_new) : &tmp,
+ sizeof(struct sched_domain_attr));
+}
+
+/*
+ * Partition sched domains as specified by the 'ndoms_new'
+ * cpumasks in the array doms_new[] of cpumasks. This compares
+ * doms_new[] to the current sched domain partitioning, doms_cur[].
+ * It destroys each deleted domain and builds each new domain.
+ *
+ * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
+ * The masks don't intersect (don't overlap.) We should setup one
+ * sched domain for each mask. CPUs not in any of the cpumasks will
+ * not be load balanced. If the same cpumask appears both in the
+ * current 'doms_cur' domains and in the new 'doms_new', we can leave
+ * it as it is.
+ *
+ * The passed in 'doms_new' should be allocated using
+ * alloc_sched_domains. This routine takes ownership of it and will
+ * free_sched_domains it when done with it. If the caller failed the
+ * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
+ * and partition_sched_domains() will fallback to the single partition
+ * 'fallback_doms', it also forces the domains to be rebuilt.
+ *
+ * If doms_new == NULL it will be replaced with cpu_online_mask.
+ * ndoms_new == 0 is a special case for destroying existing domains,
+ * and it will not create the default domain.
+ *
+ * Call with hotplug lock held
+ */
+void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
+ struct sched_domain_attr *dattr_new)
+{
+ int i, j, n;
+ int new_topology;
+
+ mutex_lock(&sched_domains_mutex);
+
+ /* Always unregister in case we don't destroy any domains: */
+ unregister_sched_domain_sysctl();
+
+ /* Let the architecture update CPU core mappings: */
+ new_topology = arch_update_cpu_topology();
+
+ n = doms_new ? ndoms_new : 0;
+
+ /* Destroy deleted domains: */
+ for (i = 0; i < ndoms_cur; i++) {
+ for (j = 0; j < n && !new_topology; j++) {
+ if (cpumask_equal(doms_cur[i], doms_new[j])
+ && dattrs_equal(dattr_cur, i, dattr_new, j))
+ goto match1;
+ }
+ /* No match - a current sched domain not in new doms_new[] */
+ detach_destroy_domains(doms_cur[i]);
+match1:
+ ;
+ }
+
+ n = ndoms_cur;
+ if (doms_new == NULL) {
+ n = 0;
+ doms_new = &fallback_doms;
+ cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
+ WARN_ON_ONCE(dattr_new);
+ }
+
+ /* Build new domains: */
+ for (i = 0; i < ndoms_new; i++) {
+ for (j = 0; j < n && !new_topology; j++) {
+ if (cpumask_equal(doms_new[i], doms_cur[j])
+ && dattrs_equal(dattr_new, i, dattr_cur, j))
+ goto match2;
+ }
+ /* No match - add a new doms_new */
+ build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
+match2:
+ ;
+ }
+
+ /* Remember the new sched domains: */
+ if (doms_cur != &fallback_doms)
+ free_sched_domains(doms_cur, ndoms_cur);
+
+ kfree(dattr_cur);
+ doms_cur = doms_new;
+ dattr_cur = dattr_new;
+ ndoms_cur = ndoms_new;
+
+ register_sched_domain_sysctl();
+
+ mutex_unlock(&sched_domains_mutex);
+}
+
diff --git a/kernel/signal.c b/kernel/signal.c
index 3603d93a1968..13f9def8b24a 100644
--- a/kernel/signal.c
+++ b/kernel/signal.c
@@ -1581,7 +1581,7 @@ bool do_notify_parent(struct task_struct *tsk, int sig)
unsigned long flags;
struct sighand_struct *psig;
bool autoreap = false;
- cputime_t utime, stime;
+ u64 utime, stime;
BUG_ON(sig == -1);
@@ -1620,8 +1620,8 @@ bool do_notify_parent(struct task_struct *tsk, int sig)
rcu_read_unlock();
task_cputime(tsk, &utime, &stime);
- info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
- info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
+ info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
+ info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
info.si_status = tsk->exit_code & 0x7f;
if (tsk->exit_code & 0x80)
@@ -1685,7 +1685,7 @@ static void do_notify_parent_cldstop(struct task_struct *tsk,
unsigned long flags;
struct task_struct *parent;
struct sighand_struct *sighand;
- cputime_t utime, stime;
+ u64 utime, stime;
if (for_ptracer) {
parent = tsk->parent;
@@ -1705,8 +1705,8 @@ static void do_notify_parent_cldstop(struct task_struct *tsk,
rcu_read_unlock();
task_cputime(tsk, &utime, &stime);
- info.si_utime = cputime_to_clock_t(utime);
- info.si_stime = cputime_to_clock_t(stime);
+ info.si_utime = nsec_to_clock_t(utime);
+ info.si_stime = nsec_to_clock_t(stime);
info.si_code = why;
switch (why) {
diff --git a/kernel/sys.c b/kernel/sys.c
index 842914ef7de4..7d4a9a6df956 100644
--- a/kernel/sys.c
+++ b/kernel/sys.c
@@ -881,15 +881,15 @@ SYSCALL_DEFINE0(getegid)
void do_sys_times(struct tms *tms)
{
- cputime_t tgutime, tgstime, cutime, cstime;
+ u64 tgutime, tgstime, cutime, cstime;
thread_group_cputime_adjusted(current, &tgutime, &tgstime);
cutime = current->signal->cutime;
cstime = current->signal->cstime;
- tms->tms_utime = cputime_to_clock_t(tgutime);
- tms->tms_stime = cputime_to_clock_t(tgstime);
- tms->tms_cutime = cputime_to_clock_t(cutime);
- tms->tms_cstime = cputime_to_clock_t(cstime);
+ tms->tms_utime = nsec_to_clock_t(tgutime);
+ tms->tms_stime = nsec_to_clock_t(tgstime);
+ tms->tms_cutime = nsec_to_clock_t(cutime);
+ tms->tms_cstime = nsec_to_clock_t(cstime);
}
SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
@@ -1544,7 +1544,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
{
struct task_struct *t;
unsigned long flags;
- cputime_t tgutime, tgstime, utime, stime;
+ u64 tgutime, tgstime, utime, stime;
unsigned long maxrss = 0;
memset((char *)r, 0, sizeof (*r));
@@ -1600,8 +1600,8 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
unlock_task_sighand(p, &flags);
out:
- cputime_to_timeval(utime, &r->ru_utime);
- cputime_to_timeval(stime, &r->ru_stime);
+ r->ru_utime = ns_to_timeval(utime);
+ r->ru_stime = ns_to_timeval(stime);
if (who != RUSAGE_CHILDREN) {
struct mm_struct *mm = get_task_mm(p);
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 1aea594a54db..bb260ceb3718 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -416,7 +416,7 @@ static struct ctl_table kern_table[] = {
},
{
.procname = "sched_rr_timeslice_ms",
- .data = &sched_rr_timeslice,
+ .data = &sysctl_sched_rr_timeslice,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = sched_rr_handler,
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index 665985b0a89a..93621ae718d3 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -141,6 +141,10 @@ static void __clocksource_unstable(struct clocksource *cs)
{
cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
cs->flags |= CLOCK_SOURCE_UNSTABLE;
+
+ if (cs->mark_unstable)
+ cs->mark_unstable(cs);
+
if (finished_booting)
schedule_work(&watchdog_work);
}
diff --git a/kernel/time/itimer.c b/kernel/time/itimer.c
index 8c89143f9ebf..a95f13c31464 100644
--- a/kernel/time/itimer.c
+++ b/kernel/time/itimer.c
@@ -45,16 +45,16 @@ static struct timeval itimer_get_remtime(struct hrtimer *timer)
static void get_cpu_itimer(struct task_struct *tsk, unsigned int clock_id,
struct itimerval *const value)
{
- cputime_t cval, cinterval;
+ u64 val, interval;
struct cpu_itimer *it = &tsk->signal->it[clock_id];
spin_lock_irq(&tsk->sighand->siglock);
- cval = it->expires;
- cinterval = it->incr;
- if (cval) {
+ val = it->expires;
+ interval = it->incr;
+ if (val) {
struct task_cputime cputime;
- cputime_t t;
+ u64 t;
thread_group_cputimer(tsk, &cputime);
if (clock_id == CPUCLOCK_PROF)
@@ -63,17 +63,17 @@ static void get_cpu_itimer(struct task_struct *tsk, unsigned int clock_id,
/* CPUCLOCK_VIRT */
t = cputime.utime;
- if (cval < t)
+ if (val < t)
/* about to fire */
- cval = cputime_one_jiffy;
+ val = TICK_NSEC;
else
- cval = cval - t;
+ val -= t;
}
spin_unlock_irq(&tsk->sighand->siglock);
- cputime_to_timeval(cval, &value->it_value);
- cputime_to_timeval(cinterval, &value->it_interval);
+ value->it_value = ns_to_timeval(val);
+ value->it_interval = ns_to_timeval(interval);
}
int do_getitimer(int which, struct itimerval *value)
@@ -129,55 +129,35 @@ enum hrtimer_restart it_real_fn(struct hrtimer *timer)
return HRTIMER_NORESTART;
}
-static inline u32 cputime_sub_ns(cputime_t ct, s64 real_ns)
-{
- struct timespec ts;
- s64 cpu_ns;
-
- cputime_to_timespec(ct, &ts);
- cpu_ns = timespec_to_ns(&ts);
-
- return (cpu_ns <= real_ns) ? 0 : cpu_ns - real_ns;
-}
-
static void set_cpu_itimer(struct task_struct *tsk, unsigned int clock_id,
const struct itimerval *const value,
struct itimerval *const ovalue)
{
- cputime_t cval, nval, cinterval, ninterval;
- s64 ns_ninterval, ns_nval;
- u32 error, incr_error;
+ u64 oval, nval, ointerval, ninterval;
struct cpu_itimer *it = &tsk->signal->it[clock_id];
- nval = timeval_to_cputime(&value->it_value);
- ns_nval = timeval_to_ns(&value->it_value);
- ninterval = timeval_to_cputime(&value->it_interval);
- ns_ninterval = timeval_to_ns(&value->it_interval);
-
- error = cputime_sub_ns(nval, ns_nval);
- incr_error = cputime_sub_ns(ninterval, ns_ninterval);
+ nval = timeval_to_ns(&value->it_value);
+ ninterval = timeval_to_ns(&value->it_interval);
spin_lock_irq(&tsk->sighand->siglock);
- cval = it->expires;
- cinterval = it->incr;
- if (cval || nval) {
+ oval = it->expires;
+ ointerval = it->incr;
+ if (oval || nval) {
if (nval > 0)
- nval += cputime_one_jiffy;
- set_process_cpu_timer(tsk, clock_id, &nval, &cval);
+ nval += TICK_NSEC;
+ set_process_cpu_timer(tsk, clock_id, &nval, &oval);
}
it->expires = nval;
it->incr = ninterval;
- it->error = error;
- it->incr_error = incr_error;
trace_itimer_state(clock_id == CPUCLOCK_VIRT ?
ITIMER_VIRTUAL : ITIMER_PROF, value, nval);
spin_unlock_irq(&tsk->sighand->siglock);
if (ovalue) {
- cputime_to_timeval(cval, &ovalue->it_value);
- cputime_to_timeval(cinterval, &ovalue->it_interval);
+ ovalue->it_value = ns_to_timeval(oval);
+ ovalue->it_interval = ns_to_timeval(ointerval);
}
}
diff --git a/kernel/time/jiffies.c b/kernel/time/jiffies.c
index a4a0e478e44d..7906b3f0c41a 100644
--- a/kernel/time/jiffies.c
+++ b/kernel/time/jiffies.c
@@ -27,19 +27,8 @@
#include "timekeeping.h"
-/* The Jiffies based clocksource is the lowest common
- * denominator clock source which should function on
- * all systems. It has the same coarse resolution as
- * the timer interrupt frequency HZ and it suffers
- * inaccuracies caused by missed or lost timer
- * interrupts and the inability for the timer
- * interrupt hardware to accuratly tick at the
- * requested HZ value. It is also not recommended
- * for "tick-less" systems.
- */
-#define NSEC_PER_JIFFY ((NSEC_PER_SEC+HZ/2)/HZ)
-/* Since jiffies uses a simple NSEC_PER_JIFFY multiplier
+/* Since jiffies uses a simple TICK_NSEC multiplier
* conversion, the .shift value could be zero. However
* this would make NTP adjustments impossible as they are
* in units of 1/2^.shift. Thus we use JIFFIES_SHIFT to
@@ -47,8 +36,8 @@
* amount, and give ntp adjustments in units of 1/2^8
*
* The value 8 is somewhat carefully chosen, as anything
- * larger can result in overflows. NSEC_PER_JIFFY grows as
- * HZ shrinks, so values greater than 8 overflow 32bits when
+ * larger can result in overflows. TICK_NSEC grows as HZ
+ * shrinks, so values greater than 8 overflow 32bits when
* HZ=100.
*/
#if HZ < 34
@@ -64,12 +53,23 @@ static u64 jiffies_read(struct clocksource *cs)
return (u64) jiffies;
}
+/*
+ * The Jiffies based clocksource is the lowest common
+ * denominator clock source which should function on
+ * all systems. It has the same coarse resolution as
+ * the timer interrupt frequency HZ and it suffers
+ * inaccuracies caused by missed or lost timer
+ * interrupts and the inability for the timer
+ * interrupt hardware to accuratly tick at the
+ * requested HZ value. It is also not recommended
+ * for "tick-less" systems.
+ */
static struct clocksource clocksource_jiffies = {
.name = "jiffies",
.rating = 1, /* lowest valid rating*/
.read = jiffies_read,
.mask = CLOCKSOURCE_MASK(32),
- .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */
+ .mult = TICK_NSEC << JIFFIES_SHIFT, /* details above */
.shift = JIFFIES_SHIFT,
.max_cycles = 10,
};
@@ -125,7 +125,7 @@ int register_refined_jiffies(long cycles_per_second)
shift_hz += cycles_per_tick/2;
do_div(shift_hz, cycles_per_tick);
/* Calculate nsec_per_tick using shift_hz */
- nsec_per_tick = (u64)NSEC_PER_SEC << 8;
+ nsec_per_tick = (u64)TICK_NSEC << 8;
nsec_per_tick += (u32)shift_hz/2;
do_div(nsec_per_tick, (u32)shift_hz);
diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
index e9e8c10f0d9a..b4377a5e4269 100644
--- a/kernel/time/posix-cpu-timers.c
+++ b/kernel/time/posix-cpu-timers.c
@@ -20,10 +20,10 @@
*/
void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
{
- cputime_t cputime = secs_to_cputime(rlim_new);
+ u64 nsecs = rlim_new * NSEC_PER_SEC;
spin_lock_irq(&task->sighand->siglock);
- set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
+ set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
spin_unlock_irq(&task->sighand->siglock);
}
@@ -50,39 +50,14 @@ static int check_clock(const clockid_t which_clock)
return error;
}
-static inline unsigned long long
-timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
-{
- unsigned long long ret;
-
- ret = 0; /* high half always zero when .cpu used */
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
- ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
- } else {
- ret = cputime_to_expires(timespec_to_cputime(tp));
- }
- return ret;
-}
-
-static void sample_to_timespec(const clockid_t which_clock,
- unsigned long long expires,
- struct timespec *tp)
-{
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
- *tp = ns_to_timespec(expires);
- else
- cputime_to_timespec((__force cputime_t)expires, tp);
-}
-
/*
* Update expiry time from increment, and increase overrun count,
* given the current clock sample.
*/
-static void bump_cpu_timer(struct k_itimer *timer,
- unsigned long long now)
+static void bump_cpu_timer(struct k_itimer *timer, u64 now)
{
int i;
- unsigned long long delta, incr;
+ u64 delta, incr;
if (timer->it.cpu.incr == 0)
return;
@@ -122,21 +97,21 @@ static inline int task_cputime_zero(const struct task_cputime *cputime)
return 0;
}
-static inline unsigned long long prof_ticks(struct task_struct *p)
+static inline u64 prof_ticks(struct task_struct *p)
{
- cputime_t utime, stime;
+ u64 utime, stime;
task_cputime(p, &utime, &stime);
- return cputime_to_expires(utime + stime);
+ return utime + stime;
}
-static inline unsigned long long virt_ticks(struct task_struct *p)
+static inline u64 virt_ticks(struct task_struct *p)
{
- cputime_t utime, stime;
+ u64 utime, stime;
task_cputime(p, &utime, &stime);
- return cputime_to_expires(utime);
+ return utime;
}
static int
@@ -176,8 +151,8 @@ posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
/*
* Sample a per-thread clock for the given task.
*/
-static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
- unsigned long long *sample)
+static int cpu_clock_sample(const clockid_t which_clock,
+ struct task_struct *p, u64 *sample)
{
switch (CPUCLOCK_WHICH(which_clock)) {
default:
@@ -260,7 +235,7 @@ void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
*/
static int cpu_clock_sample_group(const clockid_t which_clock,
struct task_struct *p,
- unsigned long long *sample)
+ u64 *sample)
{
struct task_cputime cputime;
@@ -269,11 +244,11 @@ static int cpu_clock_sample_group(const clockid_t which_clock,
return -EINVAL;
case CPUCLOCK_PROF:
thread_group_cputime(p, &cputime);
- *sample = cputime_to_expires(cputime.utime + cputime.stime);
+ *sample = cputime.utime + cputime.stime;
break;
case CPUCLOCK_VIRT:
thread_group_cputime(p, &cputime);
- *sample = cputime_to_expires(cputime.utime);
+ *sample = cputime.utime;
break;
case CPUCLOCK_SCHED:
thread_group_cputime(p, &cputime);
@@ -288,7 +263,7 @@ static int posix_cpu_clock_get_task(struct task_struct *tsk,
struct timespec *tp)
{
int err = -EINVAL;
- unsigned long long rtn;
+ u64 rtn;
if (CPUCLOCK_PERTHREAD(which_clock)) {
if (same_thread_group(tsk, current))
@@ -299,7 +274,7 @@ static int posix_cpu_clock_get_task(struct task_struct *tsk,
}
if (!err)
- sample_to_timespec(which_clock, rtn, tp);
+ *tp = ns_to_timespec(rtn);
return err;
}
@@ -453,7 +428,7 @@ void posix_cpu_timers_exit_group(struct task_struct *tsk)
cleanup_timers(tsk->signal->cpu_timers);
}
-static inline int expires_gt(cputime_t expires, cputime_t new_exp)
+static inline int expires_gt(u64 expires, u64 new_exp)
{
return expires == 0 || expires > new_exp;
}
@@ -488,7 +463,7 @@ static void arm_timer(struct k_itimer *timer)
list_add(&nt->entry, listpos);
if (listpos == head) {
- unsigned long long exp = nt->expires;
+ u64 exp = nt->expires;
/*
* We are the new earliest-expiring POSIX 1.b timer, hence
@@ -499,16 +474,15 @@ static void arm_timer(struct k_itimer *timer)
switch (CPUCLOCK_WHICH(timer->it_clock)) {
case CPUCLOCK_PROF:
- if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
- cputime_expires->prof_exp = expires_to_cputime(exp);
+ if (expires_gt(cputime_expires->prof_exp, exp))
+ cputime_expires->prof_exp = exp;
break;
case CPUCLOCK_VIRT:
- if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
- cputime_expires->virt_exp = expires_to_cputime(exp);
+ if (expires_gt(cputime_expires->virt_exp, exp))
+ cputime_expires->virt_exp = exp;
break;
case CPUCLOCK_SCHED:
- if (cputime_expires->sched_exp == 0 ||
- cputime_expires->sched_exp > exp)
+ if (expires_gt(cputime_expires->sched_exp, exp))
cputime_expires->sched_exp = exp;
break;
}
@@ -559,8 +533,7 @@ static void cpu_timer_fire(struct k_itimer *timer)
* traversal.
*/
static int cpu_timer_sample_group(const clockid_t which_clock,
- struct task_struct *p,
- unsigned long long *sample)
+ struct task_struct *p, u64 *sample)
{
struct task_cputime cputime;
@@ -569,10 +542,10 @@ static int cpu_timer_sample_group(const clockid_t which_clock,
default:
return -EINVAL;
case CPUCLOCK_PROF:
- *sample = cputime_to_expires(cputime.utime + cputime.stime);
+ *sample = cputime.utime + cputime.stime;
break;
case CPUCLOCK_VIRT:
- *sample = cputime_to_expires(cputime.utime);
+ *sample = cputime.utime;
break;
case CPUCLOCK_SCHED:
*sample = cputime.sum_exec_runtime;
@@ -593,12 +566,12 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
unsigned long flags;
struct sighand_struct *sighand;
struct task_struct *p = timer->it.cpu.task;
- unsigned long long old_expires, new_expires, old_incr, val;
+ u64 old_expires, new_expires, old_incr, val;
int ret;
WARN_ON_ONCE(p == NULL);
- new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
+ new_expires = timespec_to_ns(&new->it_value);
/*
* Protect against sighand release/switch in exit/exec and p->cpu_timers
@@ -659,9 +632,7 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
bump_cpu_timer(timer, val);
if (val < timer->it.cpu.expires) {
old_expires = timer->it.cpu.expires - val;
- sample_to_timespec(timer->it_clock,
- old_expires,
- &old->it_value);
+ old->it_value = ns_to_timespec(old_expires);
} else {
old->it_value.tv_nsec = 1;
old->it_value.tv_sec = 0;
@@ -699,8 +670,7 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
* Install the new reload setting, and
* set up the signal and overrun bookkeeping.
*/
- timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
- &new->it_interval);
+ timer->it.cpu.incr = timespec_to_ns(&new->it_interval);
/*
* This acts as a modification timestamp for the timer,
@@ -723,17 +693,15 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
ret = 0;
out:
- if (old) {
- sample_to_timespec(timer->it_clock,
- old_incr, &old->it_interval);
- }
+ if (old)
+ old->it_interval = ns_to_timespec(old_incr);
return ret;
}
static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
{
- unsigned long long now;
+ u64 now;
struct task_struct *p = timer->it.cpu.task;
WARN_ON_ONCE(p == NULL);
@@ -741,8 +709,7 @@ static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
/*
* Easy part: convert the reload time.
*/
- sample_to_timespec(timer->it_clock,
- timer->it.cpu.incr, &itp->it_interval);
+ itp->it_interval = ns_to_timespec(timer->it.cpu.incr);
if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
@@ -771,8 +738,7 @@ static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
* Call the timer disarmed, nothing else to do.
*/
timer->it.cpu.expires = 0;
- sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
- &itp->it_value);
+ itp->it_value = ns_to_timespec(timer->it.cpu.expires);
return;
} else {
cpu_timer_sample_group(timer->it_clock, p, &now);
@@ -781,9 +747,7 @@ static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
}
if (now < timer->it.cpu.expires) {
- sample_to_timespec(timer->it_clock,
- timer->it.cpu.expires - now,
- &itp->it_value);
+ itp->it_value = ns_to_timespec(timer->it.cpu.expires - now);
} else {
/*
* The timer should have expired already, but the firing
@@ -827,7 +791,7 @@ static void check_thread_timers(struct task_struct *tsk,
struct list_head *timers = tsk->cpu_timers;
struct signal_struct *const sig = tsk->signal;
struct task_cputime *tsk_expires = &tsk->cputime_expires;
- unsigned long long expires;
+ u64 expires;
unsigned long soft;
/*
@@ -838,10 +802,10 @@ static void check_thread_timers(struct task_struct *tsk,
return;
expires = check_timers_list(timers, firing, prof_ticks(tsk));
- tsk_expires->prof_exp = expires_to_cputime(expires);
+ tsk_expires->prof_exp = expires;
expires = check_timers_list(++timers, firing, virt_ticks(tsk));
- tsk_expires->virt_exp = expires_to_cputime(expires);
+ tsk_expires->virt_exp = expires;
tsk_expires->sched_exp = check_timers_list(++timers, firing,
tsk->se.sum_exec_runtime);
@@ -890,26 +854,17 @@ static inline void stop_process_timers(struct signal_struct *sig)
tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
}
-static u32 onecputick;
-
static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
- unsigned long long *expires,
- unsigned long long cur_time, int signo)
+ u64 *expires, u64 cur_time, int signo)
{
if (!it->expires)
return;
if (cur_time >= it->expires) {
- if (it->incr) {
+ if (it->incr)
it->expires += it->incr;
- it->error += it->incr_error;
- if (it->error >= onecputick) {
- it->expires -= cputime_one_jiffy;
- it->error -= onecputick;
- }
- } else {
+ else
it->expires = 0;
- }
trace_itimer_expire(signo == SIGPROF ?
ITIMER_PROF : ITIMER_VIRTUAL,
@@ -917,9 +872,8 @@ static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
}
- if (it->expires && (!*expires || it->expires < *expires)) {
+ if (it->expires && (!*expires || it->expires < *expires))
*expires = it->expires;
- }
}
/*
@@ -931,8 +885,8 @@ static void check_process_timers(struct task_struct *tsk,
struct list_head *firing)
{
struct signal_struct *const sig = tsk->signal;
- unsigned long long utime, ptime, virt_expires, prof_expires;
- unsigned long long sum_sched_runtime, sched_expires;
+ u64 utime, ptime, virt_expires, prof_expires;
+ u64 sum_sched_runtime, sched_expires;
struct list_head *timers = sig->cpu_timers;
struct task_cputime cputime;
unsigned long soft;
@@ -954,8 +908,8 @@ static void check_process_timers(struct task_struct *tsk,
* Collect the current process totals.
*/
thread_group_cputimer(tsk, &cputime);
- utime = cputime_to_expires(cputime.utime);
- ptime = utime + cputime_to_expires(cputime.stime);
+ utime = cputime.utime;
+ ptime = utime + cputime.stime;
sum_sched_runtime = cputime.sum_exec_runtime;
prof_expires = check_timers_list(timers, firing, ptime);
@@ -971,10 +925,10 @@ static void check_process_timers(struct task_struct *tsk,
SIGVTALRM);
soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
if (soft != RLIM_INFINITY) {
- unsigned long psecs = cputime_to_secs(ptime);
+ unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
unsigned long hard =
READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
- cputime_t x;
+ u64 x;
if (psecs >= hard) {
/*
* At the hard limit, we just die.
@@ -993,14 +947,13 @@ static void check_process_timers(struct task_struct *tsk,
sig->rlim[RLIMIT_CPU].rlim_cur = soft;
}
}
- x = secs_to_cputime(soft);
- if (!prof_expires || x < prof_expires) {
+ x = soft * NSEC_PER_SEC;
+ if (!prof_expires || x < prof_expires)
prof_expires = x;
- }
}
- sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
- sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
+ sig->cputime_expires.prof_exp = prof_expires;
+ sig->cputime_expires.virt_exp = virt_expires;
sig->cputime_expires.sched_exp = sched_expires;
if (task_cputime_zero(&sig->cputime_expires))
stop_process_timers(sig);
@@ -1017,7 +970,7 @@ void posix_cpu_timer_schedule(struct k_itimer *timer)
struct sighand_struct *sighand;
unsigned long flags;
struct task_struct *p = timer->it.cpu.task;
- unsigned long long now;
+ u64 now;
WARN_ON_ONCE(p == NULL);
@@ -1214,9 +1167,9 @@ void run_posix_cpu_timers(struct task_struct *tsk)
* The tsk->sighand->siglock must be held by the caller.
*/
void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
- cputime_t *newval, cputime_t *oldval)
+ u64 *newval, u64 *oldval)
{
- unsigned long long now;
+ u64 now;
WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
cpu_timer_sample_group(clock_idx, tsk, &now);
@@ -1230,7 +1183,7 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
if (*oldval) {
if (*oldval <= now) {
/* Just about to fire. */
- *oldval = cputime_one_jiffy;
+ *oldval = TICK_NSEC;
} else {
*oldval -= now;
}
@@ -1310,7 +1263,7 @@ static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
/*
* We were interrupted by a signal.
*/
- sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
+ *rqtp = ns_to_timespec(timer.it.cpu.expires);
error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
if (!error) {
/*
@@ -1476,15 +1429,10 @@ static __init int init_posix_cpu_timers(void)
.clock_get = thread_cpu_clock_get,
.timer_create = thread_cpu_timer_create,
};
- struct timespec ts;
posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
- cputime_to_timespec(cputime_one_jiffy, &ts);
- onecputick = ts.tv_nsec;
- WARN_ON(ts.tv_sec != 0);
-
return 0;
}
__initcall(init_posix_cpu_timers);
diff --git a/kernel/time/time.c b/kernel/time/time.c
index a3a9a8a029dc..25bdd2504571 100644
--- a/kernel/time/time.c
+++ b/kernel/time/time.c
@@ -702,6 +702,16 @@ u64 nsec_to_clock_t(u64 x)
#endif
}
+u64 jiffies64_to_nsecs(u64 j)
+{
+#if !(NSEC_PER_SEC % HZ)
+ return (NSEC_PER_SEC / HZ) * j;
+# else
+ return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
+#endif
+}
+EXPORT_SYMBOL(jiffies64_to_nsecs);
+
/**
* nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
*
diff --git a/kernel/time/timeconst.bc b/kernel/time/timeconst.bc
index c48688904f9f..f83bbb81600b 100644
--- a/kernel/time/timeconst.bc
+++ b/kernel/time/timeconst.bc
@@ -98,6 +98,12 @@ define timeconst(hz) {
print "#define HZ_TO_USEC_DEN\t\t", hz/cd, "\n"
print "#define USEC_TO_HZ_NUM\t\t", hz/cd, "\n"
print "#define USEC_TO_HZ_DEN\t\t", 1000000/cd, "\n"
+
+ cd=gcd(hz,1000000000)
+ print "#define HZ_TO_NSEC_NUM\t\t", 1000000000/cd, "\n"
+ print "#define HZ_TO_NSEC_DEN\t\t", hz/cd, "\n"
+ print "#define NSEC_TO_HZ_NUM\t\t", hz/cd, "\n"
+ print "#define NSEC_TO_HZ_DEN\t\t", 1000000000/cd, "\n"
print "\n"
print "#endif /* KERNEL_TIMECONST_H */\n"
diff --git a/kernel/tsacct.c b/kernel/tsacct.c
index f8e26ab963ed..5c21f0535056 100644
--- a/kernel/tsacct.c
+++ b/kernel/tsacct.c
@@ -31,7 +31,7 @@ void bacct_add_tsk(struct user_namespace *user_ns,
struct taskstats *stats, struct task_struct *tsk)
{
const struct cred *tcred;
- cputime_t utime, stime, utimescaled, stimescaled;
+ u64 utime, stime, utimescaled, stimescaled;
u64 delta;
BUILD_BUG_ON(TS_COMM_LEN < TASK_COMM_LEN);
@@ -67,12 +67,12 @@ void bacct_add_tsk(struct user_namespace *user_ns,
rcu_read_unlock();
task_cputime(tsk, &utime, &stime);
- stats->ac_utime = cputime_to_usecs(utime);
- stats->ac_stime = cputime_to_usecs(stime);
+ stats->ac_utime = div_u64(utime, NSEC_PER_USEC);
+ stats->ac_stime = div_u64(stime, NSEC_PER_USEC);
task_cputime_scaled(tsk, &utimescaled, &stimescaled);
- stats->ac_utimescaled = cputime_to_usecs(utimescaled);
- stats->ac_stimescaled = cputime_to_usecs(stimescaled);
+ stats->ac_utimescaled = div_u64(utimescaled, NSEC_PER_USEC);
+ stats->ac_stimescaled = div_u64(stimescaled, NSEC_PER_USEC);
stats->ac_minflt = tsk->min_flt;
stats->ac_majflt = tsk->maj_flt;
@@ -123,18 +123,15 @@ void xacct_add_tsk(struct taskstats *stats, struct task_struct *p)
#undef MB
static void __acct_update_integrals(struct task_struct *tsk,
- cputime_t utime, cputime_t stime)
+ u64 utime, u64 stime)
{
- cputime_t time, dtime;
- u64 delta;
+ u64 time, delta;
if (!likely(tsk->mm))
return;
time = stime + utime;
- dtime = time - tsk->acct_timexpd;
- /* Avoid division: cputime_t is often in nanoseconds already. */
- delta = cputime_to_nsecs(dtime);
+ delta = time - tsk->acct_timexpd;
if (delta < TICK_NSEC)
return;
@@ -155,7 +152,7 @@ static void __acct_update_integrals(struct task_struct *tsk,
*/
void acct_update_integrals(struct task_struct *tsk)
{
- cputime_t utime, stime;
+ u64 utime, stime;
unsigned long flags;
local_irq_save(flags);