diff options
author | Amerigo Wang <amwang@redhat.com> | 2009-07-10 15:02:44 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2009-07-10 19:10:32 -0700 |
commit | c368b4921bc6e309aba2fbee0efcbbc965008d9f (patch) | |
tree | 13d491981c48cfeb883ef23329810207f3e2167e /Documentation/exception.txt | |
parent | 3697cd9aa80125f7717c3c7e7253cfa49a39a388 (diff) |
Doc: move Documentation/exception.txt into x86 subdir
exception.txt only explains the code on x86, so it's better to
move it into Documentation/x86 directory.
And also rename it to exception-tables.txt which looks much
more reasonable.
This patch is on top of the previous one.
Signed-off-by: WANG Cong <amwang@redhat.com>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'Documentation/exception.txt')
-rw-r--r-- | Documentation/exception.txt | 292 |
1 files changed, 0 insertions, 292 deletions
diff --git a/Documentation/exception.txt b/Documentation/exception.txt deleted file mode 100644 index 32901aa36f0a..000000000000 --- a/Documentation/exception.txt +++ /dev/null @@ -1,292 +0,0 @@ - Kernel level exception handling in Linux - Commentary by Joerg Pommnitz <joerg@raleigh.ibm.com> - -When a process runs in kernel mode, it often has to access user -mode memory whose address has been passed by an untrusted program. -To protect itself the kernel has to verify this address. - -In older versions of Linux this was done with the -int verify_area(int type, const void * addr, unsigned long size) -function (which has since been replaced by access_ok()). - -This function verified that the memory area starting at address -'addr' and of size 'size' was accessible for the operation specified -in type (read or write). To do this, verify_read had to look up the -virtual memory area (vma) that contained the address addr. In the -normal case (correctly working program), this test was successful. -It only failed for a few buggy programs. In some kernel profiling -tests, this normally unneeded verification used up a considerable -amount of time. - -To overcome this situation, Linus decided to let the virtual memory -hardware present in every Linux-capable CPU handle this test. - -How does this work? - -Whenever the kernel tries to access an address that is currently not -accessible, the CPU generates a page fault exception and calls the -page fault handler - -void do_page_fault(struct pt_regs *regs, unsigned long error_code) - -in arch/x86/mm/fault.c. The parameters on the stack are set up by -the low level assembly glue in arch/x86/kernel/entry_32.S. The parameter -regs is a pointer to the saved registers on the stack, error_code -contains a reason code for the exception. - -do_page_fault first obtains the unaccessible address from the CPU -control register CR2. If the address is within the virtual address -space of the process, the fault probably occurred, because the page -was not swapped in, write protected or something similar. However, -we are interested in the other case: the address is not valid, there -is no vma that contains this address. In this case, the kernel jumps -to the bad_area label. - -There it uses the address of the instruction that caused the exception -(i.e. regs->eip) to find an address where the execution can continue -(fixup). If this search is successful, the fault handler modifies the -return address (again regs->eip) and returns. The execution will -continue at the address in fixup. - -Where does fixup point to? - -Since we jump to the contents of fixup, fixup obviously points -to executable code. This code is hidden inside the user access macros. -I have picked the get_user macro defined in arch/x86/include/asm/uaccess.h -as an example. The definition is somewhat hard to follow, so let's peek at -the code generated by the preprocessor and the compiler. I selected -the get_user call in drivers/char/sysrq.c for a detailed examination. - -The original code in sysrq.c line 587: - get_user(c, buf); - -The preprocessor output (edited to become somewhat readable): - -( - { - long __gu_err = - 14 , __gu_val = 0; - const __typeof__(*( ( buf ) )) *__gu_addr = ((buf)); - if (((((0 + current_set[0])->tss.segment) == 0x18 ) || - (((sizeof(*(buf))) <= 0xC0000000UL) && - ((unsigned long)(__gu_addr ) <= 0xC0000000UL - (sizeof(*(buf))))))) - do { - __gu_err = 0; - switch ((sizeof(*(buf)))) { - case 1: - __asm__ __volatile__( - "1: mov" "b" " %2,%" "b" "1\n" - "2:\n" - ".section .fixup,\"ax\"\n" - "3: movl %3,%0\n" - " xor" "b" " %" "b" "1,%" "b" "1\n" - " jmp 2b\n" - ".section __ex_table,\"a\"\n" - " .align 4\n" - " .long 1b,3b\n" - ".text" : "=r"(__gu_err), "=q" (__gu_val): "m"((*(struct __large_struct *) - ( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err )) ; - break; - case 2: - __asm__ __volatile__( - "1: mov" "w" " %2,%" "w" "1\n" - "2:\n" - ".section .fixup,\"ax\"\n" - "3: movl %3,%0\n" - " xor" "w" " %" "w" "1,%" "w" "1\n" - " jmp 2b\n" - ".section __ex_table,\"a\"\n" - " .align 4\n" - " .long 1b,3b\n" - ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *) - ( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err )); - break; - case 4: - __asm__ __volatile__( - "1: mov" "l" " %2,%" "" "1\n" - "2:\n" - ".section .fixup,\"ax\"\n" - "3: movl %3,%0\n" - " xor" "l" " %" "" "1,%" "" "1\n" - " jmp 2b\n" - ".section __ex_table,\"a\"\n" - " .align 4\n" " .long 1b,3b\n" - ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *) - ( __gu_addr )) ), "i"(- 14 ), "0"(__gu_err)); - break; - default: - (__gu_val) = __get_user_bad(); - } - } while (0) ; - ((c)) = (__typeof__(*((buf))))__gu_val; - __gu_err; - } -); - -WOW! Black GCC/assembly magic. This is impossible to follow, so let's -see what code gcc generates: - - > xorl %edx,%edx - > movl current_set,%eax - > cmpl $24,788(%eax) - > je .L1424 - > cmpl $-1073741825,64(%esp) - > ja .L1423 - > .L1424: - > movl %edx,%eax - > movl 64(%esp),%ebx - > #APP - > 1: movb (%ebx),%dl /* this is the actual user access */ - > 2: - > .section .fixup,"ax" - > 3: movl $-14,%eax - > xorb %dl,%dl - > jmp 2b - > .section __ex_table,"a" - > .align 4 - > .long 1b,3b - > .text - > #NO_APP - > .L1423: - > movzbl %dl,%esi - -The optimizer does a good job and gives us something we can actually -understand. Can we? The actual user access is quite obvious. Thanks -to the unified address space we can just access the address in user -memory. But what does the .section stuff do????? - -To understand this we have to look at the final kernel: - - > objdump --section-headers vmlinux - > - > vmlinux: file format elf32-i386 - > - > Sections: - > Idx Name Size VMA LMA File off Algn - > 0 .text 00098f40 c0100000 c0100000 00001000 2**4 - > CONTENTS, ALLOC, LOAD, READONLY, CODE - > 1 .fixup 000016bc c0198f40 c0198f40 00099f40 2**0 - > CONTENTS, ALLOC, LOAD, READONLY, CODE - > 2 .rodata 0000f127 c019a5fc c019a5fc 0009b5fc 2**2 - > CONTENTS, ALLOC, LOAD, READONLY, DATA - > 3 __ex_table 000015c0 c01a9724 c01a9724 000aa724 2**2 - > CONTENTS, ALLOC, LOAD, READONLY, DATA - > 4 .data 0000ea58 c01abcf0 c01abcf0 000abcf0 2**4 - > CONTENTS, ALLOC, LOAD, DATA - > 5 .bss 00018e21 c01ba748 c01ba748 000ba748 2**2 - > ALLOC - > 6 .comment 00000ec4 00000000 00000000 000ba748 2**0 - > CONTENTS, READONLY - > 7 .note 00001068 00000ec4 00000ec4 000bb60c 2**0 - > CONTENTS, READONLY - -There are obviously 2 non standard ELF sections in the generated object -file. But first we want to find out what happened to our code in the -final kernel executable: - - > objdump --disassemble --section=.text vmlinux - > - > c017e785 <do_con_write+c1> xorl %edx,%edx - > c017e787 <do_con_write+c3> movl 0xc01c7bec,%eax - > c017e78c <do_con_write+c8> cmpl $0x18,0x314(%eax) - > c017e793 <do_con_write+cf> je c017e79f <do_con_write+db> - > c017e795 <do_con_write+d1> cmpl $0xbfffffff,0x40(%esp,1) - > c017e79d <do_con_write+d9> ja c017e7a7 <do_con_write+e3> - > c017e79f <do_con_write+db> movl %edx,%eax - > c017e7a1 <do_con_write+dd> movl 0x40(%esp,1),%ebx - > c017e7a5 <do_con_write+e1> movb (%ebx),%dl - > c017e7a7 <do_con_write+e3> movzbl %dl,%esi - -The whole user memory access is reduced to 10 x86 machine instructions. -The instructions bracketed in the .section directives are no longer -in the normal execution path. They are located in a different section -of the executable file: - - > objdump --disassemble --section=.fixup vmlinux - > - > c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eax - > c0199ffa <.fixup+10ba> xorb %dl,%dl - > c0199ffc <.fixup+10bc> jmp c017e7a7 <do_con_write+e3> - -And finally: - > objdump --full-contents --section=__ex_table vmlinux - > - > c01aa7c4 93c017c0 e09f19c0 97c017c0 99c017c0 ................ - > c01aa7d4 f6c217c0 e99f19c0 a5e717c0 f59f19c0 ................ - > c01aa7e4 080a18c0 01a019c0 0a0a18c0 04a019c0 ................ - -or in human readable byte order: - - > c01aa7c4 c017c093 c0199fe0 c017c097 c017c099 ................ - > c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5 ................ - ^^^^^^^^^^^^^^^^^ - this is the interesting part! - > c01aa7e4 c0180a08 c019a001 c0180a0a c019a004 ................ - -What happened? The assembly directives - -.section .fixup,"ax" -.section __ex_table,"a" - -told the assembler to move the following code to the specified -sections in the ELF object file. So the instructions -3: movl $-14,%eax - xorb %dl,%dl - jmp 2b -ended up in the .fixup section of the object file and the addresses - .long 1b,3b -ended up in the __ex_table section of the object file. 1b and 3b -are local labels. The local label 1b (1b stands for next label 1 -backward) is the address of the instruction that might fault, i.e. -in our case the address of the label 1 is c017e7a5: -the original assembly code: > 1: movb (%ebx),%dl -and linked in vmlinux : > c017e7a5 <do_con_write+e1> movb (%ebx),%dl - -The local label 3 (backwards again) is the address of the code to handle -the fault, in our case the actual value is c0199ff5: -the original assembly code: > 3: movl $-14,%eax -and linked in vmlinux : > c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eax - -The assembly code - > .section __ex_table,"a" - > .align 4 - > .long 1b,3b - -becomes the value pair - > c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5 ................ - ^this is ^this is - 1b 3b -c017e7a5,c0199ff5 in the exception table of the kernel. - -So, what actually happens if a fault from kernel mode with no suitable -vma occurs? - -1.) access to invalid address: - > c017e7a5 <do_con_write+e1> movb (%ebx),%dl -2.) MMU generates exception -3.) CPU calls do_page_fault -4.) do page fault calls search_exception_table (regs->eip == c017e7a5); -5.) search_exception_table looks up the address c017e7a5 in the - exception table (i.e. the contents of the ELF section __ex_table) - and returns the address of the associated fault handle code c0199ff5. -6.) do_page_fault modifies its own return address to point to the fault - handle code and returns. -7.) execution continues in the fault handling code. -8.) 8a) EAX becomes -EFAULT (== -14) - 8b) DL becomes zero (the value we "read" from user space) - 8c) execution continues at local label 2 (address of the - instruction immediately after the faulting user access). - -The steps 8a to 8c in a certain way emulate the faulting instruction. - -That's it, mostly. If you look at our example, you might ask why -we set EAX to -EFAULT in the exception handler code. Well, the -get_user macro actually returns a value: 0, if the user access was -successful, -EFAULT on failure. Our original code did not test this -return value, however the inline assembly code in get_user tries to -return -EFAULT. GCC selected EAX to return this value. - -NOTE: -Due to the way that the exception table is built and needs to be ordered, -only use exceptions for code in the .text section. Any other section -will cause the exception table to not be sorted correctly, and the -exceptions will fail. |