summaryrefslogtreecommitdiff
path: root/Documentation/filesystems
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2012-05-22 19:22:50 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2012-05-22 19:22:50 -0700
commite8650a08232e75274304b812ff04cfce9af9671c (patch)
tree0609c942e6ca99016e788ff2ee2bbed1bb9215a4 /Documentation/filesystems
parent3c2c4b73aa79e4a1b601710b59e092441175f4bb (diff)
parentf70d4a95edc7da87f39cd8b603ba131df2c198ed (diff)
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
Pull trivial updates from Jiri Kosina: "As usual, it's mostly typo fixes, redundant code elimination and some documentation updates." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (57 commits) edac, mips: don't change code that has been removed in edac/mips tree xtensa: Change mail addresses of Hannes Weiner and Oskar Schirmer lib: Change mail address of Oskar Schirmer net: Change mail address of Oskar Schirmer arm/m68k: Change mail address of Sebastian Hess i2c: Change mail address of Oskar Schirmer net: Fix tcp_build_and_update_options comment in struct tcp_sock atomic64_32.h: fix parameter naming mismatch Kconfig: replace "--- help ---" with "---help---" c2port: fix bogus Kconfig "default no" edac: Fix spelling errors. qla1280: Remove redundant NULL check before release_firmware() call remoteproc: remove redundant NULL check before release_firmware() qla2xxx: Remove redundant NULL check before release_firmware() call. aic94xx: Get rid of redundant NULL check before release_firmware() call tehuti: delete redundant NULL check before release_firmware() qlogic: get rid of a redundant test for NULL before call to release_firmware() bna: remove redundant NULL test before release_firmware() tg3: remove redundant NULL test before release_firmware() call typhoon: get rid of redundant conditional before all to release_firmware() ...
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r--Documentation/filesystems/nfs/pnfs.txt2
-rw-r--r--Documentation/filesystems/qnx6.txt28
2 files changed, 15 insertions, 15 deletions
diff --git a/Documentation/filesystems/nfs/pnfs.txt b/Documentation/filesystems/nfs/pnfs.txt
index c7919c6e3bea..52ae07f5f578 100644
--- a/Documentation/filesystems/nfs/pnfs.txt
+++ b/Documentation/filesystems/nfs/pnfs.txt
@@ -93,7 +93,7 @@ The API to the login script is as follows:
(allways exists)
(More protocols can be defined in the future.
The client does not interpret this string it is
- passed unchanged as recieved from the Server)
+ passed unchanged as received from the Server)
-o osdname of the requested target OSD
(Might be empty)
(A string which denotes the OSD name, there is a
diff --git a/Documentation/filesystems/qnx6.txt b/Documentation/filesystems/qnx6.txt
index 050223ea03c7..e59f2f09f56e 100644
--- a/Documentation/filesystems/qnx6.txt
+++ b/Documentation/filesystems/qnx6.txt
@@ -17,7 +17,7 @@ concepts of blocks, inodes and directories.
On QNX it is possible to create little endian and big endian qnx6 filesystems.
This feature makes it possible to create and use a different endianness fs
for the target (QNX is used on quite a range of embedded systems) plattform
-running on a different endianess.
+running on a different endianness.
The Linux driver handles endianness transparently. (LE and BE)
Blocks
@@ -26,7 +26,7 @@ Blocks
The space in the device or file is split up into blocks. These are a fixed
size of 512, 1024, 2048 or 4096, which is decided when the filesystem is
created.
-Blockpointers are 32bit, so the maximum space that can be adressed is
+Blockpointers are 32bit, so the maximum space that can be addressed is
2^32 * 4096 bytes or 16TB
The superblocks
@@ -47,16 +47,16 @@ inactive superblock.
Each superblock holds a set of root inodes for the different filesystem
parts. (Inode, Bitmap and Longfilenames)
Each of these root nodes holds information like total size of the stored
-data and the adressing levels in that specific tree.
-If the level value is 0, up to 16 direct blocks can be adressed by each
+data and the addressing levels in that specific tree.
+If the level value is 0, up to 16 direct blocks can be addressed by each
node.
-Level 1 adds an additional indirect adressing level where each indirect
-adressing block holds up to blocksize / 4 bytes pointers to data blocks.
-Level 2 adds an additional indirect adressig block level (so, already up
-to 16 * 256 * 256 = 1048576 blocks that can be adressed by such a tree)a
+Level 1 adds an additional indirect addressing level where each indirect
+addressing block holds up to blocksize / 4 bytes pointers to data blocks.
+Level 2 adds an additional indirect addressing block level (so, already up
+to 16 * 256 * 256 = 1048576 blocks that can be addressed by such a tree).
Unused block pointers are always set to ~0 - regardless of root node,
-indirect adressing blocks or inodes.
+indirect addressing blocks or inodes.
Data leaves are always on the lowest level. So no data is stored on upper
tree levels.
@@ -64,7 +64,7 @@ The first Superblock is located at 0x2000. (0x2000 is the bootblock size)
The Audi MMI 3G first superblock directly starts at byte 0.
Second superblock position can either be calculated from the superblock
information (total number of filesystem blocks) or by taking the highest
-device address, zeroing the last 3 bytes and then substracting 0x1000 from
+device address, zeroing the last 3 bytes and then subtracting 0x1000 from
that address.
0x1000 is the size reserved for each superblock - regardless of the
@@ -83,8 +83,8 @@ size, number of blocks used, access time, change time and modification time.
Object mode field is POSIX format. (which makes things easier)
There are also pointers to the first 16 blocks, if the object data can be
-adressed with 16 direct blocks.
-For more than 16 blocks an indirect adressing in form of another tree is
+addressed with 16 direct blocks.
+For more than 16 blocks an indirect addressing in form of another tree is
used. (scheme is the same as the one used for the superblock root nodes)
The filesize is stored 64bit. Inode counting starts with 1. (whilst long
@@ -118,13 +118,13 @@ no block pointers and the directory file record pointing to the target file
inode.
Character and block special devices do not exist in QNX as those files
-are handled by the QNX kernel/drivers and created in /dev independant of the
+are handled by the QNX kernel/drivers and created in /dev independent of the
underlaying filesystem.
Long filenames
--------------
-Long filenames are stored in a seperate adressing tree. The staring point
+Long filenames are stored in a separate addressing tree. The staring point
is the longfilename root node in the active superblock.
Each data block (tree leaves) holds one long filename. That filename is
limited to 510 bytes. The first two starting bytes are used as length field