summaryrefslogtreecommitdiff
path: root/Documentation/memory-barriers.txt
diff options
context:
space:
mode:
authorPaul E. McKenney <paulmck@linux.vnet.ibm.com>2016-01-15 09:30:42 -0800
committerPaul E. McKenney <paulmck@linux.vnet.ibm.com>2016-03-14 15:52:18 -0700
commitc535cc92924baf68e238bd1b5ff8d74883f88b9b (patch)
tree7659bf6bc6c43ba024700015f89a4b7b77b3b758 /Documentation/memory-barriers.txt
parent92a84dd210b8263f765882d3ee1a1d5cd348c16a (diff)
documentation: Distinguish between local and global transitivity
The introduction of smp_load_acquire() and smp_store_release() had the side effect of introducing a weaker notion of transitivity: The transitivity of full smp_mb() barriers is global, but that of smp_store_release()/smp_load_acquire() chains is local. This commit therefore introduces the notion of local transitivity and gives an example. Reported-by: Peter Zijlstra <peterz@infradead.org> Reported-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Diffstat (limited to 'Documentation/memory-barriers.txt')
-rw-r--r--Documentation/memory-barriers.txt78
1 files changed, 76 insertions, 2 deletions
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index e9ebeb3b1077..ae9d306725ba 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -1318,8 +1318,82 @@ or a level of cache, CPU 2 might have early access to CPU 1's writes.
General barriers are therefore required to ensure that all CPUs agree
on the combined order of CPU 1's and CPU 2's accesses.
-To reiterate, if your code requires transitivity, use general barriers
-throughout.
+General barriers provide "global transitivity", so that all CPUs will
+agree on the order of operations. In contrast, a chain of release-acquire
+pairs provides only "local transitivity", so that only those CPUs on
+the chain are guaranteed to agree on the combined order of the accesses.
+For example, switching to C code in deference to Herman Hollerith:
+
+ int u, v, x, y, z;
+
+ void cpu0(void)
+ {
+ r0 = smp_load_acquire(&x);
+ WRITE_ONCE(u, 1);
+ smp_store_release(&y, 1);
+ }
+
+ void cpu1(void)
+ {
+ r1 = smp_load_acquire(&y);
+ r4 = READ_ONCE(v);
+ r5 = READ_ONCE(u);
+ smp_store_release(&z, 1);
+ }
+
+ void cpu2(void)
+ {
+ r2 = smp_load_acquire(&z);
+ smp_store_release(&x, 1);
+ }
+
+ void cpu3(void)
+ {
+ WRITE_ONCE(v, 1);
+ smp_mb();
+ r3 = READ_ONCE(u);
+ }
+
+Because cpu0(), cpu1(), and cpu2() participate in a local transitive
+chain of smp_store_release()/smp_load_acquire() pairs, the following
+outcome is prohibited:
+
+ r0 == 1 && r1 == 1 && r2 == 1
+
+Furthermore, because of the release-acquire relationship between cpu0()
+and cpu1(), cpu1() must see cpu0()'s writes, so that the following
+outcome is prohibited:
+
+ r1 == 1 && r5 == 0
+
+However, the transitivity of release-acquire is local to the participating
+CPUs and does not apply to cpu3(). Therefore, the following outcome
+is possible:
+
+ r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0
+
+Although cpu0(), cpu1(), and cpu2() will see their respective reads and
+writes in order, CPUs not involved in the release-acquire chain might
+well disagree on the order. This disagreement stems from the fact that
+the weak memory-barrier instructions used to implement smp_load_acquire()
+and smp_store_release() are not required to order prior stores against
+subsequent loads in all cases. This means that cpu3() can see cpu0()'s
+store to u as happening -after- cpu1()'s load from v, even though
+both cpu0() and cpu1() agree that these two operations occurred in the
+intended order.
+
+However, please keep in mind that smp_load_acquire() is not magic.
+In particular, it simply reads from its argument with ordering. It does
+-not- ensure that any particular value will be read. Therefore, the
+following outcome is possible:
+
+ r0 == 0 && r1 == 0 && r2 == 0 && r5 == 0
+
+Note that this outcome can happen even on a mythical sequentially
+consistent system where nothing is ever reordered.
+
+To reiterate, if your code requires global transitivity, use general
+barriers throughout.
========================