summaryrefslogtreecommitdiff
path: root/Documentation/networking
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2021-06-24 12:47:39 -0700
committerDavid S. Miller <davem@davemloft.net>2021-06-24 12:47:39 -0700
commit89bddde389a8a02b678dcb49bd8a10e341b018e5 (patch)
tree5ab2bdf930c1fda480dd06611e388706723c3cb1 /Documentation/networking
parent478890682ff7124bf4eaa6f0af382e9d2c937f73 (diff)
parent9b8dd5e5ea48bbb7532d20c4093a79d8283e4029 (diff)
Merge branch 'gve-dqo'
Bailey Forrest says: ==================== gve: Introduce DQO descriptor format DQO is the descriptor format for our next generation virtual NIC. The existing descriptor format will be referred to as "GQI" in the patch set. One major change with DQO is it uses dual descriptor rings for both TX and RX queues. The TX path uses a TX queue to send descriptors to HW, and receives packet completion events on a TX completion queue. The RX path posts buffers to HW using an RX buffer queue and receives incoming packets on an RX queue. One important note is that DQO descriptors and doorbells are little endian. We continue to use the existing big endian control plane infrastructure. The general format of the patch series is: - Refactor existing code/data structures to be shared by DQO - Expand admin queues to support DQO device setup - Expand data structures and device setup to support DQO - Add logic to setup DQO queues - Implement datapath ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'Documentation/networking')
-rw-r--r--Documentation/networking/device_drivers/ethernet/google/gve.rst53
1 files changed, 48 insertions, 5 deletions
diff --git a/Documentation/networking/device_drivers/ethernet/google/gve.rst b/Documentation/networking/device_drivers/ethernet/google/gve.rst
index 793693cef6e3..6d73ee78f3d7 100644
--- a/Documentation/networking/device_drivers/ethernet/google/gve.rst
+++ b/Documentation/networking/device_drivers/ethernet/google/gve.rst
@@ -47,13 +47,24 @@ The driver interacts with the device in the following ways:
- Transmit and Receive Queues
- See description below
+Descriptor Formats
+------------------
+GVE supports two descriptor formats: GQI and DQO. These two formats have
+entirely different descriptors, which will be described below.
+
Registers
---------
-All registers are MMIO and big endian.
+All registers are MMIO.
The registers are used for initializing and configuring the device as well as
querying device status in response to management interrupts.
+Endianness
+----------
+- Admin Queue messages and registers are all Big Endian.
+- GQI descriptors and datapath registers are Big Endian.
+- DQO descriptors and datapath registers are Little Endian.
+
Admin Queue (AQ)
----------------
The Admin Queue is a PAGE_SIZE memory block, treated as an array of AQ
@@ -97,10 +108,10 @@ the queues associated with that interrupt.
The handler for these irqs schedule the napi for that block to run
and poll the queues.
-Traffic Queues
---------------
-gVNIC's queues are composed of a descriptor ring and a buffer and are
-assigned to a notification block.
+GQI Traffic Queues
+------------------
+GQI queues are composed of a descriptor ring and a buffer and are assigned to a
+notification block.
The descriptor rings are power-of-two-sized ring buffers consisting of
fixed-size descriptors. They advance their head pointer using a __be32
@@ -121,3 +132,35 @@ Receive
The buffers for receive rings are put into a data ring that is the same
length as the descriptor ring and the head and tail pointers advance over
the rings together.
+
+DQO Traffic Queues
+------------------
+- Every TX and RX queue is assigned a notification block.
+
+- TX and RX buffers queues, which send descriptors to the device, use MMIO
+ doorbells to notify the device of new descriptors.
+
+- RX and TX completion queues, which receive descriptors from the device, use a
+ "generation bit" to know when a descriptor was populated by the device. The
+ driver initializes all bits with the "current generation". The device will
+ populate received descriptors with the "next generation" which is inverted
+ from the current generation. When the ring wraps, the current/next generation
+ are swapped.
+
+- It's the driver's responsibility to ensure that the RX and TX completion
+ queues are not overrun. This can be accomplished by limiting the number of
+ descriptors posted to HW.
+
+- TX packets have a 16 bit completion_tag and RX buffers have a 16 bit
+ buffer_id. These will be returned on the TX completion and RX queues
+ respectively to let the driver know which packet/buffer was completed.
+
+Transmit
+~~~~~~~~
+A packet's buffers are DMA mapped for the device to access before transmission.
+After the packet was successfully transmitted, the buffers are unmapped.
+
+Receive
+~~~~~~~
+The driver posts fixed sized buffers to HW on the RX buffer queue. The packet
+received on the associated RX queue may span multiple descriptors.