diff options
author | Randy Dunlap <randy.dunlap@oracle.com> | 2008-03-10 17:16:32 -0700 |
---|---|---|
committer | Greg Kroah-Hartman <gregkh@suse.de> | 2008-04-20 21:46:51 -0700 |
commit | 4b5ff469234b8ab5cd05f4a201cbb229896729d0 (patch) | |
tree | dc44c4e82be76ffc00cb981eb4606276fffa7e1e /Documentation/pci.txt | |
parent | 3925e6fc1f774048404fdd910b0345b06c699eb4 (diff) |
PCI: doc/pci: create Documentation/PCI/ and move files into it
Create Documentation/PCI/ and move PCI-related files to it.
Fix a few instances of trailing whitespace.
Update references to the new file locations.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Diffstat (limited to 'Documentation/pci.txt')
-rw-r--r-- | Documentation/pci.txt | 646 |
1 files changed, 0 insertions, 646 deletions
diff --git a/Documentation/pci.txt b/Documentation/pci.txt deleted file mode 100644 index d2c2e6e2b224..000000000000 --- a/Documentation/pci.txt +++ /dev/null @@ -1,646 +0,0 @@ - - How To Write Linux PCI Drivers - - by Martin Mares <mj@ucw.cz> on 07-Feb-2000 - updated by Grant Grundler <grundler@parisc-linux.org> on 23-Dec-2006 - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -The world of PCI is vast and full of (mostly unpleasant) surprises. -Since each CPU architecture implements different chip-sets and PCI devices -have different requirements (erm, "features"), the result is the PCI support -in the Linux kernel is not as trivial as one would wish. This short paper -tries to introduce all potential driver authors to Linux APIs for -PCI device drivers. - -A more complete resource is the third edition of "Linux Device Drivers" -by Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. -LDD3 is available for free (under Creative Commons License) from: - - http://lwn.net/Kernel/LDD3/ - -However, keep in mind that all documents are subject to "bit rot". -Refer to the source code if things are not working as described here. - -Please send questions/comments/patches about Linux PCI API to the -"Linux PCI" <linux-pci@atrey.karlin.mff.cuni.cz> mailing list. - - - -0. Structure of PCI drivers -~~~~~~~~~~~~~~~~~~~~~~~~~~~ -PCI drivers "discover" PCI devices in a system via pci_register_driver(). -Actually, it's the other way around. When the PCI generic code discovers -a new device, the driver with a matching "description" will be notified. -Details on this below. - -pci_register_driver() leaves most of the probing for devices to -the PCI layer and supports online insertion/removal of devices [thus -supporting hot-pluggable PCI, CardBus, and Express-Card in a single driver]. -pci_register_driver() call requires passing in a table of function -pointers and thus dictates the high level structure of a driver. - -Once the driver knows about a PCI device and takes ownership, the -driver generally needs to perform the following initialization: - - Enable the device - Request MMIO/IOP resources - Set the DMA mask size (for both coherent and streaming DMA) - Allocate and initialize shared control data (pci_allocate_coherent()) - Access device configuration space (if needed) - Register IRQ handler (request_irq()) - Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip) - Enable DMA/processing engines - -When done using the device, and perhaps the module needs to be unloaded, -the driver needs to take the follow steps: - Disable the device from generating IRQs - Release the IRQ (free_irq()) - Stop all DMA activity - Release DMA buffers (both streaming and coherent) - Unregister from other subsystems (e.g. scsi or netdev) - Release MMIO/IOP resources - Disable the device - -Most of these topics are covered in the following sections. -For the rest look at LDD3 or <linux/pci.h> . - -If the PCI subsystem is not configured (CONFIG_PCI is not set), most of -the PCI functions described below are defined as inline functions either -completely empty or just returning an appropriate error codes to avoid -lots of ifdefs in the drivers. - - - -1. pci_register_driver() call -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -PCI device drivers call pci_register_driver() during their -initialization with a pointer to a structure describing the driver -(struct pci_driver): - - field name Description - ---------- ------------------------------------------------------ - id_table Pointer to table of device ID's the driver is - interested in. Most drivers should export this - table using MODULE_DEVICE_TABLE(pci,...). - - probe This probing function gets called (during execution - of pci_register_driver() for already existing - devices or later if a new device gets inserted) for - all PCI devices which match the ID table and are not - "owned" by the other drivers yet. This function gets - passed a "struct pci_dev *" for each device whose - entry in the ID table matches the device. The probe - function returns zero when the driver chooses to - take "ownership" of the device or an error code - (negative number) otherwise. - The probe function always gets called from process - context, so it can sleep. - - remove The remove() function gets called whenever a device - being handled by this driver is removed (either during - deregistration of the driver or when it's manually - pulled out of a hot-pluggable slot). - The remove function always gets called from process - context, so it can sleep. - - suspend Put device into low power state. - suspend_late Put device into low power state. - - resume_early Wake device from low power state. - resume Wake device from low power state. - - (Please see Documentation/power/pci.txt for descriptions - of PCI Power Management and the related functions.) - - shutdown Hook into reboot_notifier_list (kernel/sys.c). - Intended to stop any idling DMA operations. - Useful for enabling wake-on-lan (NIC) or changing - the power state of a device before reboot. - e.g. drivers/net/e100.c. - - err_handler See Documentation/pci-error-recovery.txt - - -The ID table is an array of struct pci_device_id entries ending with an -all-zero entry; use of the macro DEFINE_PCI_DEVICE_TABLE is the preferred -method of declaring the table. Each entry consists of: - - vendor,device Vendor and device ID to match (or PCI_ANY_ID) - - subvendor, Subsystem vendor and device ID to match (or PCI_ANY_ID) - subdevice, - - class Device class, subclass, and "interface" to match. - See Appendix D of the PCI Local Bus Spec or - include/linux/pci_ids.h for a full list of classes. - Most drivers do not need to specify class/class_mask - as vendor/device is normally sufficient. - - class_mask limit which sub-fields of the class field are compared. - See drivers/scsi/sym53c8xx_2/ for example of usage. - - driver_data Data private to the driver. - Most drivers don't need to use driver_data field. - Best practice is to use driver_data as an index - into a static list of equivalent device types, - instead of using it as a pointer. - - -Most drivers only need PCI_DEVICE() or PCI_DEVICE_CLASS() to set up -a pci_device_id table. - -New PCI IDs may be added to a device driver pci_ids table at runtime -as shown below: - -echo "vendor device subvendor subdevice class class_mask driver_data" > \ -/sys/bus/pci/drivers/{driver}/new_id - -All fields are passed in as hexadecimal values (no leading 0x). -The vendor and device fields are mandatory, the others are optional. Users -need pass only as many optional fields as necessary: - o subvendor and subdevice fields default to PCI_ANY_ID (FFFFFFFF) - o class and classmask fields default to 0 - o driver_data defaults to 0UL. - -Once added, the driver probe routine will be invoked for any unclaimed -PCI devices listed in its (newly updated) pci_ids list. - -When the driver exits, it just calls pci_unregister_driver() and the PCI layer -automatically calls the remove hook for all devices handled by the driver. - - -1.1 "Attributes" for driver functions/data - -Please mark the initialization and cleanup functions where appropriate -(the corresponding macros are defined in <linux/init.h>): - - __init Initialization code. Thrown away after the driver - initializes. - __exit Exit code. Ignored for non-modular drivers. - - - __devinit Device initialization code. - Identical to __init if the kernel is not compiled - with CONFIG_HOTPLUG, normal function otherwise. - __devexit The same for __exit. - -Tips on when/where to use the above attributes: - o The module_init()/module_exit() functions (and all - initialization functions called _only_ from these) - should be marked __init/__exit. - - o Do not mark the struct pci_driver. - - o The ID table array should be marked __devinitconst; this is done - automatically if the table is declared with DEFINE_PCI_DEVICE_TABLE(). - - o The probe() and remove() functions should be marked __devinit - and __devexit respectively. All initialization functions - exclusively called by the probe() routine, can be marked __devinit. - Ditto for remove() and __devexit. - - o If mydriver_remove() is marked with __devexit(), then all address - references to mydriver_remove must use __devexit_p(mydriver_remove) - (in the struct pci_driver declaration for example). - __devexit_p() will generate the function name _or_ NULL if the - function will be discarded. For an example, see drivers/net/tg3.c. - - o Do NOT mark a function if you are not sure which mark to use. - Better to not mark the function than mark the function wrong. - - - -2. How to find PCI devices manually -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -PCI drivers should have a really good reason for not using the -pci_register_driver() interface to search for PCI devices. -The main reason PCI devices are controlled by multiple drivers -is because one PCI device implements several different HW services. -E.g. combined serial/parallel port/floppy controller. - -A manual search may be performed using the following constructs: - -Searching by vendor and device ID: - - struct pci_dev *dev = NULL; - while (dev = pci_get_device(VENDOR_ID, DEVICE_ID, dev)) - configure_device(dev); - -Searching by class ID (iterate in a similar way): - - pci_get_class(CLASS_ID, dev) - -Searching by both vendor/device and subsystem vendor/device ID: - - pci_get_subsys(VENDOR_ID,DEVICE_ID, SUBSYS_VENDOR_ID, SUBSYS_DEVICE_ID, dev). - -You can use the constant PCI_ANY_ID as a wildcard replacement for -VENDOR_ID or DEVICE_ID. This allows searching for any device from a -specific vendor, for example. - -These functions are hotplug-safe. They increment the reference count on -the pci_dev that they return. You must eventually (possibly at module unload) -decrement the reference count on these devices by calling pci_dev_put(). - - - -3. Device Initialization Steps -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -As noted in the introduction, most PCI drivers need the following steps -for device initialization: - - Enable the device - Request MMIO/IOP resources - Set the DMA mask size (for both coherent and streaming DMA) - Allocate and initialize shared control data (pci_allocate_coherent()) - Access device configuration space (if needed) - Register IRQ handler (request_irq()) - Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip) - Enable DMA/processing engines. - -The driver can access PCI config space registers at any time. -(Well, almost. When running BIST, config space can go away...but -that will just result in a PCI Bus Master Abort and config reads -will return garbage). - - -3.1 Enable the PCI device -~~~~~~~~~~~~~~~~~~~~~~~~~ -Before touching any device registers, the driver needs to enable -the PCI device by calling pci_enable_device(). This will: - o wake up the device if it was in suspended state, - o allocate I/O and memory regions of the device (if BIOS did not), - o allocate an IRQ (if BIOS did not). - -NOTE: pci_enable_device() can fail! Check the return value. - -[ OS BUG: we don't check resource allocations before enabling those - resources. The sequence would make more sense if we called - pci_request_resources() before calling pci_enable_device(). - Currently, the device drivers can't detect the bug when when two - devices have been allocated the same range. This is not a common - problem and unlikely to get fixed soon. - - This has been discussed before but not changed as of 2.6.19: - http://lkml.org/lkml/2006/3/2/194 -] - -pci_set_master() will enable DMA by setting the bus master bit -in the PCI_COMMAND register. It also fixes the latency timer value if -it's set to something bogus by the BIOS. - -If the PCI device can use the PCI Memory-Write-Invalidate transaction, -call pci_set_mwi(). This enables the PCI_COMMAND bit for Mem-Wr-Inval -and also ensures that the cache line size register is set correctly. -Check the return value of pci_set_mwi() as not all architectures -or chip-sets may support Memory-Write-Invalidate. Alternatively, -if Mem-Wr-Inval would be nice to have but is not required, call -pci_try_set_mwi() to have the system do its best effort at enabling -Mem-Wr-Inval. - - -3.2 Request MMIO/IOP resources -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Memory (MMIO), and I/O port addresses should NOT be read directly -from the PCI device config space. Use the values in the pci_dev structure -as the PCI "bus address" might have been remapped to a "host physical" -address by the arch/chip-set specific kernel support. - -See Documentation/IO-mapping.txt for how to access device registers -or device memory. - -The device driver needs to call pci_request_region() to verify -no other device is already using the same address resource. -Conversely, drivers should call pci_release_region() AFTER -calling pci_disable_device(). -The idea is to prevent two devices colliding on the same address range. - -[ See OS BUG comment above. Currently (2.6.19), The driver can only - determine MMIO and IO Port resource availability _after_ calling - pci_enable_device(). ] - -Generic flavors of pci_request_region() are request_mem_region() -(for MMIO ranges) and request_region() (for IO Port ranges). -Use these for address resources that are not described by "normal" PCI -BARs. - -Also see pci_request_selected_regions() below. - - -3.3 Set the DMA mask size -~~~~~~~~~~~~~~~~~~~~~~~~~ -[ If anything below doesn't make sense, please refer to - Documentation/DMA-API.txt. This section is just a reminder that - drivers need to indicate DMA capabilities of the device and is not - an authoritative source for DMA interfaces. ] - -While all drivers should explicitly indicate the DMA capability -(e.g. 32 or 64 bit) of the PCI bus master, devices with more than -32-bit bus master capability for streaming data need the driver -to "register" this capability by calling pci_set_dma_mask() with -appropriate parameters. In general this allows more efficient DMA -on systems where System RAM exists above 4G _physical_ address. - -Drivers for all PCI-X and PCIe compliant devices must call -pci_set_dma_mask() as they are 64-bit DMA devices. - -Similarly, drivers must also "register" this capability if the device -can directly address "consistent memory" in System RAM above 4G physical -address by calling pci_set_consistent_dma_mask(). -Again, this includes drivers for all PCI-X and PCIe compliant devices. -Many 64-bit "PCI" devices (before PCI-X) and some PCI-X devices are -64-bit DMA capable for payload ("streaming") data but not control -("consistent") data. - - -3.4 Setup shared control data -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Once the DMA masks are set, the driver can allocate "consistent" (a.k.a. shared) -memory. See Documentation/DMA-API.txt for a full description of -the DMA APIs. This section is just a reminder that it needs to be done -before enabling DMA on the device. - - -3.5 Initialize device registers -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Some drivers will need specific "capability" fields programmed -or other "vendor specific" register initialized or reset. -E.g. clearing pending interrupts. - - -3.6 Register IRQ handler -~~~~~~~~~~~~~~~~~~~~~~~~ -While calling request_irq() is the last step described here, -this is often just another intermediate step to initialize a device. -This step can often be deferred until the device is opened for use. - -All interrupt handlers for IRQ lines should be registered with IRQF_SHARED -and use the devid to map IRQs to devices (remember that all PCI IRQ lines -can be shared). - -request_irq() will associate an interrupt handler and device handle -with an interrupt number. Historically interrupt numbers represent -IRQ lines which run from the PCI device to the Interrupt controller. -With MSI and MSI-X (more below) the interrupt number is a CPU "vector". - -request_irq() also enables the interrupt. Make sure the device is -quiesced and does not have any interrupts pending before registering -the interrupt handler. - -MSI and MSI-X are PCI capabilities. Both are "Message Signaled Interrupts" -which deliver interrupts to the CPU via a DMA write to a Local APIC. -The fundamental difference between MSI and MSI-X is how multiple -"vectors" get allocated. MSI requires contiguous blocks of vectors -while MSI-X can allocate several individual ones. - -MSI capability can be enabled by calling pci_enable_msi() or -pci_enable_msix() before calling request_irq(). This causes -the PCI support to program CPU vector data into the PCI device -capability registers. - -If your PCI device supports both, try to enable MSI-X first. -Only one can be enabled at a time. Many architectures, chip-sets, -or BIOSes do NOT support MSI or MSI-X and the call to pci_enable_msi/msix -will fail. This is important to note since many drivers have -two (or more) interrupt handlers: one for MSI/MSI-X and another for IRQs. -They choose which handler to register with request_irq() based on the -return value from pci_enable_msi/msix(). - -There are (at least) two really good reasons for using MSI: -1) MSI is an exclusive interrupt vector by definition. - This means the interrupt handler doesn't have to verify - its device caused the interrupt. - -2) MSI avoids DMA/IRQ race conditions. DMA to host memory is guaranteed - to be visible to the host CPU(s) when the MSI is delivered. This - is important for both data coherency and avoiding stale control data. - This guarantee allows the driver to omit MMIO reads to flush - the DMA stream. - -See drivers/infiniband/hw/mthca/ or drivers/net/tg3.c for examples -of MSI/MSI-X usage. - - - -4. PCI device shutdown -~~~~~~~~~~~~~~~~~~~~~~~ - -When a PCI device driver is being unloaded, most of the following -steps need to be performed: - - Disable the device from generating IRQs - Release the IRQ (free_irq()) - Stop all DMA activity - Release DMA buffers (both streaming and consistent) - Unregister from other subsystems (e.g. scsi or netdev) - Disable device from responding to MMIO/IO Port addresses - Release MMIO/IO Port resource(s) - - -4.1 Stop IRQs on the device -~~~~~~~~~~~~~~~~~~~~~~~~~~~ -How to do this is chip/device specific. If it's not done, it opens -the possibility of a "screaming interrupt" if (and only if) -the IRQ is shared with another device. - -When the shared IRQ handler is "unhooked", the remaining devices -using the same IRQ line will still need the IRQ enabled. Thus if the -"unhooked" device asserts IRQ line, the system will respond assuming -it was one of the remaining devices asserted the IRQ line. Since none -of the other devices will handle the IRQ, the system will "hang" until -it decides the IRQ isn't going to get handled and masks the IRQ (100,000 -iterations later). Once the shared IRQ is masked, the remaining devices -will stop functioning properly. Not a nice situation. - -This is another reason to use MSI or MSI-X if it's available. -MSI and MSI-X are defined to be exclusive interrupts and thus -are not susceptible to the "screaming interrupt" problem. - - -4.2 Release the IRQ -~~~~~~~~~~~~~~~~~~~ -Once the device is quiesced (no more IRQs), one can call free_irq(). -This function will return control once any pending IRQs are handled, -"unhook" the drivers IRQ handler from that IRQ, and finally release -the IRQ if no one else is using it. - - -4.3 Stop all DMA activity -~~~~~~~~~~~~~~~~~~~~~~~~~ -It's extremely important to stop all DMA operations BEFORE attempting -to deallocate DMA control data. Failure to do so can result in memory -corruption, hangs, and on some chip-sets a hard crash. - -Stopping DMA after stopping the IRQs can avoid races where the -IRQ handler might restart DMA engines. - -While this step sounds obvious and trivial, several "mature" drivers -didn't get this step right in the past. - - -4.4 Release DMA buffers -~~~~~~~~~~~~~~~~~~~~~~~ -Once DMA is stopped, clean up streaming DMA first. -I.e. unmap data buffers and return buffers to "upstream" -owners if there is one. - -Then clean up "consistent" buffers which contain the control data. - -See Documentation/DMA-API.txt for details on unmapping interfaces. - - -4.5 Unregister from other subsystems -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Most low level PCI device drivers support some other subsystem -like USB, ALSA, SCSI, NetDev, Infiniband, etc. Make sure your -driver isn't losing resources from that other subsystem. -If this happens, typically the symptom is an Oops (panic) when -the subsystem attempts to call into a driver that has been unloaded. - - -4.6 Disable Device from responding to MMIO/IO Port addresses -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -io_unmap() MMIO or IO Port resources and then call pci_disable_device(). -This is the symmetric opposite of pci_enable_device(). -Do not access device registers after calling pci_disable_device(). - - -4.7 Release MMIO/IO Port Resource(s) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Call pci_release_region() to mark the MMIO or IO Port range as available. -Failure to do so usually results in the inability to reload the driver. - - - -5. How to access PCI config space -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -You can use pci_(read|write)_config_(byte|word|dword) to access the config -space of a device represented by struct pci_dev *. All these functions return 0 -when successful or an error code (PCIBIOS_...) which can be translated to a text -string by pcibios_strerror. Most drivers expect that accesses to valid PCI -devices don't fail. - -If you don't have a struct pci_dev available, you can call -pci_bus_(read|write)_config_(byte|word|dword) to access a given device -and function on that bus. - -If you access fields in the standard portion of the config header, please -use symbolic names of locations and bits declared in <linux/pci.h>. - -If you need to access Extended PCI Capability registers, just call -pci_find_capability() for the particular capability and it will find the -corresponding register block for you. - - - -6. Other interesting functions -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -pci_find_slot() Find pci_dev corresponding to given bus and - slot numbers. -pci_set_power_state() Set PCI Power Management state (0=D0 ... 3=D3) -pci_find_capability() Find specified capability in device's capability - list. -pci_resource_start() Returns bus start address for a given PCI region -pci_resource_end() Returns bus end address for a given PCI region -pci_resource_len() Returns the byte length of a PCI region -pci_set_drvdata() Set private driver data pointer for a pci_dev -pci_get_drvdata() Return private driver data pointer for a pci_dev -pci_set_mwi() Enable Memory-Write-Invalidate transactions. -pci_clear_mwi() Disable Memory-Write-Invalidate transactions. - - - -7. Miscellaneous hints -~~~~~~~~~~~~~~~~~~~~~~ - -When displaying PCI device names to the user (for example when a driver wants -to tell the user what card has it found), please use pci_name(pci_dev). - -Always refer to the PCI devices by a pointer to the pci_dev structure. -All PCI layer functions use this identification and it's the only -reasonable one. Don't use bus/slot/function numbers except for very -special purposes -- on systems with multiple primary buses their semantics -can be pretty complex. - -Don't try to turn on Fast Back to Back writes in your driver. All devices -on the bus need to be capable of doing it, so this is something which needs -to be handled by platform and generic code, not individual drivers. - - - -8. Vendor and device identifications -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -One is not not required to add new device ids to include/linux/pci_ids.h. -Please add PCI_VENDOR_ID_xxx for vendors and a hex constant for device ids. - -PCI_VENDOR_ID_xxx constants are re-used. The device ids are arbitrary -hex numbers (vendor controlled) and normally used only in a single -location, the pci_device_id table. - -Please DO submit new vendor/device ids to pciids.sourceforge.net project. - - - -9. Obsolete functions -~~~~~~~~~~~~~~~~~~~~~ - -There are several functions which you might come across when trying to -port an old driver to the new PCI interface. They are no longer present -in the kernel as they aren't compatible with hotplug or PCI domains or -having sane locking. - -pci_find_device() Superseded by pci_get_device() -pci_find_subsys() Superseded by pci_get_subsys() -pci_find_slot() Superseded by pci_get_slot() - - -The alternative is the traditional PCI device driver that walks PCI -device lists. This is still possible but discouraged. - - - -10. MMIO Space and "Write Posting" -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -Converting a driver from using I/O Port space to using MMIO space -often requires some additional changes. Specifically, "write posting" -needs to be handled. Many drivers (e.g. tg3, acenic, sym53c8xx_2) -already do this. I/O Port space guarantees write transactions reach the PCI -device before the CPU can continue. Writes to MMIO space allow the CPU -to continue before the transaction reaches the PCI device. HW weenies -call this "Write Posting" because the write completion is "posted" to -the CPU before the transaction has reached its destination. - -Thus, timing sensitive code should add readl() where the CPU is -expected to wait before doing other work. The classic "bit banging" -sequence works fine for I/O Port space: - - for (i = 8; --i; val >>= 1) { - outb(val & 1, ioport_reg); /* write bit */ - udelay(10); - } - -The same sequence for MMIO space should be: - - for (i = 8; --i; val >>= 1) { - writeb(val & 1, mmio_reg); /* write bit */ - readb(safe_mmio_reg); /* flush posted write */ - udelay(10); - } - -It is important that "safe_mmio_reg" not have any side effects that -interferes with the correct operation of the device. - -Another case to watch out for is when resetting a PCI device. Use PCI -Configuration space reads to flush the writel(). This will gracefully -handle the PCI master abort on all platforms if the PCI device is -expected to not respond to a readl(). Most x86 platforms will allow -MMIO reads to master abort (a.k.a. "Soft Fail") and return garbage -(e.g. ~0). But many RISC platforms will crash (a.k.a."Hard Fail"). - |