diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2013-11-21 19:46:00 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2013-11-21 19:46:00 -0800 |
commit | 78dc53c422172a317adb0776dfb687057ffa28b7 (patch) | |
tree | 7c5d15da75d769d01f6a992c24c3490b3867d5b2 /Documentation/security | |
parent | 3eaded86ac3e7f00fb3eeb8162d89e9a34e42fb0 (diff) | |
parent | 62fe318256befbd1b4a6765e71d9c997f768fe79 (diff) |
Merge branch 'for-linus2' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull security subsystem updates from James Morris:
"In this patchset, we finally get an SELinux update, with Paul Moore
taking over as maintainer of that code.
Also a significant update for the Keys subsystem, as well as
maintenance updates to Smack, IMA, TPM, and Apparmor"
and since I wanted to know more about the updates to key handling,
here's the explanation from David Howells on that:
"Okay. There are a number of separate bits. I'll go over the big bits
and the odd important other bit, most of the smaller bits are just
fixes and cleanups. If you want the small bits accounting for, I can
do that too.
(1) Keyring capacity expansion.
KEYS: Consolidate the concept of an 'index key' for key access
KEYS: Introduce a search context structure
KEYS: Search for auth-key by name rather than target key ID
Add a generic associative array implementation.
KEYS: Expand the capacity of a keyring
Several of the patches are providing an expansion of the capacity of a
keyring. Currently, the maximum size of a keyring payload is one page.
Subtract a small header and then divide up into pointers, that only gives
you ~500 pointers on an x86_64 box. However, since the NFS idmapper uses
a keyring to store ID mapping data, that has proven to be insufficient to
the cause.
Whatever data structure I use to handle the keyring payload, it can only
store pointers to keys, not the keys themselves because several keyrings
may point to a single key. This precludes inserting, say, and rb_node
struct into the key struct for this purpose.
I could make an rbtree of records such that each record has an rb_node
and a key pointer, but that would use four words of space per key stored
in the keyring. It would, however, be able to use much existing code.
I selected instead a non-rebalancing radix-tree type approach as that
could have a better space-used/key-pointer ratio. I could have used the
radix tree implementation that we already have and insert keys into it by
their serial numbers, but that means any sort of search must iterate over
the whole radix tree. Further, its nodes are a bit on the capacious side
for what I want - especially given that key serial numbers are randomly
allocated, thus leaving a lot of empty space in the tree.
So what I have is an associative array that internally is a radix-tree
with 16 pointers per node where the index key is constructed from the key
type pointer and the key description. This means that an exact lookup by
type+description is very fast as this tells us how to navigate directly to
the target key.
I made the data structure general in lib/assoc_array.c as far as it is
concerned, its index key is just a sequence of bits that leads to a
pointer. It's possible that someone else will be able to make use of it
also. FS-Cache might, for example.
(2) Mark keys as 'trusted' and keyrings as 'trusted only'.
KEYS: verify a certificate is signed by a 'trusted' key
KEYS: Make the system 'trusted' keyring viewable by userspace
KEYS: Add a 'trusted' flag and a 'trusted only' flag
KEYS: Separate the kernel signature checking keyring from module signing
These patches allow keys carrying asymmetric public keys to be marked as
being 'trusted' and allow keyrings to be marked as only permitting the
addition or linkage of trusted keys.
Keys loaded from hardware during kernel boot or compiled into the kernel
during build are marked as being trusted automatically. New keys can be
loaded at runtime with add_key(). They are checked against the system
keyring contents and if their signatures can be validated with keys that
are already marked trusted, then they are marked trusted also and can
thus be added into the master keyring.
Patches from Mimi Zohar make this usable with the IMA keyrings also.
(3) Remove the date checks on the key used to validate a module signature.
X.509: Remove certificate date checks
It's not reasonable to reject a signature just because the key that it was
generated with is no longer valid datewise - especially if the kernel
hasn't yet managed to set the system clock when the first module is
loaded - so just remove those checks.
(4) Make it simpler to deal with additional X.509 being loaded into the kernel.
KEYS: Load *.x509 files into kernel keyring
KEYS: Have make canonicalise the paths of the X.509 certs better to deduplicate
The builder of the kernel now just places files with the extension ".x509"
into the kernel source or build trees and they're concatenated by the
kernel build and stuffed into the appropriate section.
(5) Add support for userspace kerberos to use keyrings.
KEYS: Add per-user_namespace registers for persistent per-UID kerberos caches
KEYS: Implement a big key type that can save to tmpfs
Fedora went to, by default, storing kerberos tickets and tokens in tmpfs.
We looked at storing it in keyrings instead as that confers certain
advantages such as tickets being automatically deleted after a certain
amount of time and the ability for the kernel to get at these tokens more
easily.
To make this work, two things were needed:
(a) A way for the tickets to persist beyond the lifetime of all a user's
sessions so that cron-driven processes can still use them.
The problem is that a user's session keyrings are deleted when the
session that spawned them logs out and the user's user keyring is
deleted when the UID is deleted (typically when the last log out
happens), so neither of these places is suitable.
I've added a system keyring into which a 'persistent' keyring is
created for each UID on request. Each time a user requests their
persistent keyring, the expiry time on it is set anew. If the user
doesn't ask for it for, say, three days, the keyring is automatically
expired and garbage collected using the existing gc. All the kerberos
tokens it held are then also gc'd.
(b) A key type that can hold really big tickets (up to 1MB in size).
The problem is that Active Directory can return huge tickets with lots
of auxiliary data attached. We don't, however, want to eat up huge
tracts of unswappable kernel space for this, so if the ticket is
greater than a certain size, we create a swappable shmem file and dump
the contents in there and just live with the fact we then have an
inode and a dentry overhead. If the ticket is smaller than that, we
slap it in a kmalloc()'d buffer"
* 'for-linus2' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (121 commits)
KEYS: Fix keyring content gc scanner
KEYS: Fix error handling in big_key instantiation
KEYS: Fix UID check in keyctl_get_persistent()
KEYS: The RSA public key algorithm needs to select MPILIB
ima: define '_ima' as a builtin 'trusted' keyring
ima: extend the measurement list to include the file signature
kernel/system_certificate.S: use real contents instead of macro GLOBAL()
KEYS: fix error return code in big_key_instantiate()
KEYS: Fix keyring quota misaccounting on key replacement and unlink
KEYS: Fix a race between negating a key and reading the error set
KEYS: Make BIG_KEYS boolean
apparmor: remove the "task" arg from may_change_ptraced_domain()
apparmor: remove parent task info from audit logging
apparmor: remove tsk field from the apparmor_audit_struct
apparmor: fix capability to not use the current task, during reporting
Smack: Ptrace access check mode
ima: provide hash algo info in the xattr
ima: enable support for larger default filedata hash algorithms
ima: define kernel parameter 'ima_template=' to change configured default
ima: add Kconfig default measurement list template
...
Diffstat (limited to 'Documentation/security')
-rw-r--r-- | Documentation/security/00-INDEX | 2 | ||||
-rw-r--r-- | Documentation/security/IMA-templates.txt | 87 | ||||
-rw-r--r-- | Documentation/security/keys.txt | 20 |
3 files changed, 100 insertions, 9 deletions
diff --git a/Documentation/security/00-INDEX b/Documentation/security/00-INDEX index 414235c1fcfc..45c82fd3e9d3 100644 --- a/Documentation/security/00-INDEX +++ b/Documentation/security/00-INDEX @@ -22,3 +22,5 @@ keys.txt - description of the kernel key retention service. tomoyo.txt - documentation on the TOMOYO Linux Security Module. +IMA-templates.txt + - documentation on the template management mechanism for IMA. diff --git a/Documentation/security/IMA-templates.txt b/Documentation/security/IMA-templates.txt new file mode 100644 index 000000000000..a777e5f1df5b --- /dev/null +++ b/Documentation/security/IMA-templates.txt @@ -0,0 +1,87 @@ + IMA Template Management Mechanism + + +==== INTRODUCTION ==== + +The original 'ima' template is fixed length, containing the filedata hash +and pathname. The filedata hash is limited to 20 bytes (md5/sha1). +The pathname is a null terminated string, limited to 255 characters. +To overcome these limitations and to add additional file metadata, it is +necessary to extend the current version of IMA by defining additional +templates. For example, information that could be possibly reported are +the inode UID/GID or the LSM labels either of the inode and of the process +that is accessing it. + +However, the main problem to introduce this feature is that, each time +a new template is defined, the functions that generate and display +the measurements list would include the code for handling a new format +and, thus, would significantly grow over the time. + +The proposed solution solves this problem by separating the template +management from the remaining IMA code. The core of this solution is the +definition of two new data structures: a template descriptor, to determine +which information should be included in the measurement list; a template +field, to generate and display data of a given type. + +Managing templates with these structures is very simple. To support +a new data type, developers define the field identifier and implement +two functions, init() and show(), respectively to generate and display +measurement entries. Defining a new template descriptor requires +specifying the template format, a string of field identifiers separated +by the '|' character. While in the current implementation it is possible +to define new template descriptors only by adding their definition in the +template specific code (ima_template.c), in a future version it will be +possible to register a new template on a running kernel by supplying to IMA +the desired format string. In this version, IMA initializes at boot time +all defined template descriptors by translating the format into an array +of template fields structures taken from the set of the supported ones. + +After the initialization step, IMA will call ima_alloc_init_template() +(new function defined within the patches for the new template management +mechanism) to generate a new measurement entry by using the template +descriptor chosen through the kernel configuration or through the newly +introduced 'ima_template=' kernel command line parameter. It is during this +phase that the advantages of the new architecture are clearly shown: +the latter function will not contain specific code to handle a given template +but, instead, it simply calls the init() method of the template fields +associated to the chosen template descriptor and store the result (pointer +to allocated data and data length) in the measurement entry structure. + +The same mechanism is employed to display measurements entries. +The functions ima[_ascii]_measurements_show() retrieve, for each entry, +the template descriptor used to produce that entry and call the show() +method for each item of the array of template fields structures. + + + +==== SUPPORTED TEMPLATE FIELDS AND DESCRIPTORS ==== + +In the following, there is the list of supported template fields +('<identifier>': description), that can be used to define new template +descriptors by adding their identifier to the format string +(support for more data types will be added later): + + - 'd': the digest of the event (i.e. the digest of a measured file), + calculated with the SHA1 or MD5 hash algorithm; + - 'n': the name of the event (i.e. the file name), with size up to 255 bytes; + - 'd-ng': the digest of the event, calculated with an arbitrary hash + algorithm (field format: [<hash algo>:]digest, where the digest + prefix is shown only if the hash algorithm is not SHA1 or MD5); + - 'n-ng': the name of the event, without size limitations. + + +Below, there is the list of defined template descriptors: + - "ima": its format is 'd|n'; + - "ima-ng" (default): its format is 'd-ng|n-ng'. + + + +==== USE ==== + +To specify the template descriptor to be used to generate measurement entries, +currently the following methods are supported: + + - select a template descriptor among those supported in the kernel + configuration ('ima-ng' is the default choice); + - specify a template descriptor name from the kernel command line through + the 'ima_template=' parameter. diff --git a/Documentation/security/keys.txt b/Documentation/security/keys.txt index 7b4145d00452..a4c33f1a7c6d 100644 --- a/Documentation/security/keys.txt +++ b/Documentation/security/keys.txt @@ -865,15 +865,14 @@ encountered: calling processes has a searchable link to the key from one of its keyrings. There are three functions for dealing with these: - key_ref_t make_key_ref(const struct key *key, - unsigned long possession); + key_ref_t make_key_ref(const struct key *key, bool possession); struct key *key_ref_to_ptr(const key_ref_t key_ref); - unsigned long is_key_possessed(const key_ref_t key_ref); + bool is_key_possessed(const key_ref_t key_ref); The first function constructs a key reference from a key pointer and - possession information (which must be 0 or 1 and not any other value). + possession information (which must be true or false). The second function retrieves the key pointer from a reference and the third retrieves the possession flag. @@ -961,14 +960,17 @@ payload contents" for more information. the argument will not be parsed. -(*) Extra references can be made to a key by calling the following function: +(*) Extra references can be made to a key by calling one of the following + functions: + struct key *__key_get(struct key *key); struct key *key_get(struct key *key); - These need to be disposed of by calling key_put() when they've been - finished with. The key pointer passed in will be returned. If the pointer - is NULL or CONFIG_KEYS is not set then the key will not be dereferenced and - no increment will take place. + Keys so references will need to be disposed of by calling key_put() when + they've been finished with. The key pointer passed in will be returned. + + In the case of key_get(), if the pointer is NULL or CONFIG_KEYS is not set + then the key will not be dereferenced and no increment will take place. (*) A key's serial number can be obtained by calling: |