diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2015-11-04 09:11:12 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2015-11-04 09:11:12 -0800 |
commit | ccc9d4a6d640cbde05d519edeb727881646cf71b (patch) | |
tree | 736c90b100703501d5e3fa3eccc57a48f70bef14 /Documentation | |
parent | 66ef3493d4bb387f5a83915e33dc893102fd1b43 (diff) | |
parent | 271817a3e92c0455bda5856d87eca244ad67d3a2 (diff) |
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto update from Herbert Xu:
"API:
- Add support for cipher output IVs in testmgr
- Add missing crypto_ahash_blocksize helper
- Mark authenc and des ciphers as not allowed under FIPS.
Algorithms:
- Add CRC support to 842 compression
- Add keywrap algorithm
- A number of changes to the akcipher interface:
+ Separate functions for setting public/private keys.
+ Use SG lists.
Drivers:
- Add Intel SHA Extension optimised SHA1 and SHA256
- Use dma_map_sg instead of custom functions in crypto drivers
- Add support for STM32 RNG
- Add support for ST RNG
- Add Device Tree support to exynos RNG driver
- Add support for mxs-dcp crypto device on MX6SL
- Add xts(aes) support to caam
- Add ctr(aes) and xts(aes) support to qat
- A large set of fixes from Russell King for the marvell/cesa driver"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (115 commits)
crypto: asymmetric_keys - Fix unaligned access in x509_get_sig_params()
crypto: akcipher - Don't #include crypto/public_key.h as the contents aren't used
hwrng: exynos - Add Device Tree support
hwrng: exynos - Fix missing configuration after suspend to RAM
hwrng: exynos - Add timeout for waiting on init done
dt-bindings: rng: Describe Exynos4 PRNG bindings
crypto: marvell/cesa - use __le32 for hardware descriptors
crypto: marvell/cesa - fix missing cpu_to_le32() in mv_cesa_dma_add_op()
crypto: marvell/cesa - use memcpy_fromio()/memcpy_toio()
crypto: marvell/cesa - use gfp_t for gfp flags
crypto: marvell/cesa - use dma_addr_t for cur_dma
crypto: marvell/cesa - use readl_relaxed()/writel_relaxed()
crypto: caam - fix indentation of close braces
crypto: caam - only export the state we really need to export
crypto: caam - fix non-block aligned hash calculation
crypto: caam - avoid needlessly saving and restoring caam_hash_ctx
crypto: caam - print errno code when hash registration fails
crypto: marvell/cesa - fix memory leak
crypto: marvell/cesa - fix first-fragment handling in mv_cesa_ahash_dma_last_req()
crypto: marvell/cesa - rearrange handling for sw padded hashes
...
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/devicetree/bindings/rng/samsung,exynos-rng4.txt | 17 | ||||
-rw-r--r-- | Documentation/devicetree/bindings/rng/st,rng.txt | 15 | ||||
-rw-r--r-- | Documentation/devicetree/bindings/rng/st,stm32-rng.txt | 21 | ||||
-rw-r--r-- | Documentation/hw_random.txt | 8 |
4 files changed, 57 insertions, 4 deletions
diff --git a/Documentation/devicetree/bindings/rng/samsung,exynos-rng4.txt b/Documentation/devicetree/bindings/rng/samsung,exynos-rng4.txt new file mode 100644 index 000000000000..4ca8dd4d7e66 --- /dev/null +++ b/Documentation/devicetree/bindings/rng/samsung,exynos-rng4.txt @@ -0,0 +1,17 @@ +Exynos Pseudo Random Number Generator + +Required properties: + +- compatible : Should be "samsung,exynos4-rng". +- reg : Specifies base physical address and size of the registers map. +- clocks : Phandle to clock-controller plus clock-specifier pair. +- clock-names : "secss" as a clock name. + +Example: + + rng@10830400 { + compatible = "samsung,exynos4-rng"; + reg = <0x10830400 0x200>; + clocks = <&clock CLK_SSS>; + clock-names = "secss"; + }; diff --git a/Documentation/devicetree/bindings/rng/st,rng.txt b/Documentation/devicetree/bindings/rng/st,rng.txt new file mode 100644 index 000000000000..35734bc282e9 --- /dev/null +++ b/Documentation/devicetree/bindings/rng/st,rng.txt @@ -0,0 +1,15 @@ +STMicroelectronics HW Random Number Generator +---------------------------------------------- + +Required parameters: +compatible : Should be "st,rng" +reg : Base address and size of IP's register map. +clocks : Phandle to device's clock (See: ../clocks/clock-bindings.txt) + +Example: + +rng@fee80000 { + compatible = "st,rng"; + reg = <0xfee80000 0x1000>; + clocks = <&clk_sysin>; +} diff --git a/Documentation/devicetree/bindings/rng/st,stm32-rng.txt b/Documentation/devicetree/bindings/rng/st,stm32-rng.txt new file mode 100644 index 000000000000..47f04176f93b --- /dev/null +++ b/Documentation/devicetree/bindings/rng/st,stm32-rng.txt @@ -0,0 +1,21 @@ +STMicroelectronics STM32 HW RNG +=============================== + +The STM32 hardware random number generator is a simple fixed purpose IP and +is fully separated from other crypto functions. + +Required properties: + +- compatible : Should be "st,stm32-rng" +- reg : Should be register base and length as documented in the datasheet +- interrupts : The designated IRQ line for the RNG +- clocks : The clock needed to enable the RNG + +Example: + + rng: rng@50060800 { + compatible = "st,stm32-rng"; + reg = <0x50060800 0x400>; + interrupts = <80>; + clocks = <&rcc 0 38>; + }; diff --git a/Documentation/hw_random.txt b/Documentation/hw_random.txt index 026e237bbc87..fce1634907d0 100644 --- a/Documentation/hw_random.txt +++ b/Documentation/hw_random.txt @@ -3,7 +3,7 @@ Introduction: The hw_random framework is software that makes use of a special hardware feature on your CPU or motherboard, a Random Number Generator (RNG). The software has two parts: - a core providing the /dev/hw_random character device and its + a core providing the /dev/hwrng character device and its sysfs support, plus a hardware-specific driver that plugs into that core. @@ -14,7 +14,7 @@ Introduction: http://sourceforge.net/projects/gkernel/ - Those tools use /dev/hw_random to fill the kernel entropy pool, + Those tools use /dev/hwrng to fill the kernel entropy pool, which is used internally and exported by the /dev/urandom and /dev/random special files. @@ -32,13 +32,13 @@ Theory of operation: The rng-tools package uses such tests in "rngd", and lets you run them by hand with a "rngtest" utility. - /dev/hw_random is char device major 10, minor 183. + /dev/hwrng is char device major 10, minor 183. CLASS DEVICE. There is a /sys/class/misc/hw_random node with two unique attributes, "rng_available" and "rng_current". The "rng_available" attribute lists the hardware-specific drivers available, while "rng_current" lists the one which is currently - connected to /dev/hw_random. If your system has more than one + connected to /dev/hwrng. If your system has more than one RNG available, you may change the one used by writing a name from the list in "rng_available" into "rng_current". |