diff options
author | Dave Airlie <airlied@redhat.com> | 2013-06-27 20:40:44 +1000 |
---|---|---|
committer | Dave Airlie <airlied@redhat.com> | 2013-06-27 20:40:44 +1000 |
commit | 4300a0f8bdcce5a03b88bfa16fc9827e15c52dc4 (patch) | |
tree | dea0276d7d0a12147f04ddbef9121e32e903c5ca /Documentation | |
parent | 160954b7bca43da7cd3cfbce310e6df919a8216e (diff) | |
parent | 9e895ace5d82df8929b16f58e9f515f6d54ab82d (diff) |
Merge tag 'v3.10-rc7' into drm-next
Linux 3.10-rc7
The sdvo lvds fix in this -fixes pull
commit c3456fb3e4712d0448592af3c5d644c9472cd3c1
Author: Daniel Vetter <daniel.vetter@ffwll.ch>
Date: Mon Jun 10 09:47:58 2013 +0200
drm/i915: prefer VBT modes for SVDO-LVDS over EDID
has a silent functional conflict with
commit 990256aec2f10800595dddf4d1c3441fcd6b2616
Author: Ville Syrjälä <ville.syrjala@linux.intel.com>
Date: Fri May 31 12:17:07 2013 +0000
drm: Add probed modes in probe order
in drm-next. W simply need to add the vbt modes before edid modes, i.e. the
other way round than now.
Conflicts:
drivers/gpu/drm/drm_prime.c
drivers/gpu/drm/i915/intel_sdvo.c
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/DocBook/media/v4l/dev-codec.xml | 35 | ||||
-rw-r--r-- | Documentation/DocBook/media/v4l/v4l2.xml | 2 | ||||
-rw-r--r-- | Documentation/bcache.txt | 12 | ||||
-rw-r--r-- | Documentation/devices.txt | 8 | ||||
-rw-r--r-- | Documentation/devicetree/bindings/media/exynos-fimc-lite.txt | 2 | ||||
-rw-r--r-- | Documentation/devicetree/bindings/net/macb.txt | 2 | ||||
-rw-r--r-- | Documentation/devicetree/bindings/rtc/atmel,at91rm9200-rtc.txt | 2 | ||||
-rw-r--r-- | Documentation/devicetree/bindings/video/simple-framebuffer.txt | 25 | ||||
-rw-r--r-- | Documentation/dmatest.txt | 6 | ||||
-rw-r--r-- | Documentation/filesystems/xfs.txt | 3 | ||||
-rw-r--r-- | Documentation/kernel-parameters.txt | 3 | ||||
-rw-r--r-- | Documentation/m68k/kernel-options.txt | 2 | ||||
-rw-r--r-- | Documentation/powerpc/transactional_memory.txt | 27 | ||||
-rw-r--r-- | Documentation/rapidio/rapidio.txt | 128 | ||||
-rw-r--r-- | Documentation/rapidio/sysfs.txt | 17 | ||||
-rw-r--r-- | Documentation/sound/alsa/HD-Audio-Models.txt | 3 |
16 files changed, 230 insertions, 47 deletions
diff --git a/Documentation/DocBook/media/v4l/dev-codec.xml b/Documentation/DocBook/media/v4l/dev-codec.xml index dca0ecd54dc6..ff44c16fc080 100644 --- a/Documentation/DocBook/media/v4l/dev-codec.xml +++ b/Documentation/DocBook/media/v4l/dev-codec.xml @@ -1,18 +1,27 @@ <title>Codec Interface</title> - <note> - <title>Suspended</title> + <para>A V4L2 codec can compress, decompress, transform, or otherwise +convert video data from one format into another format, in memory. Typically +such devices are memory-to-memory devices (i.e. devices with the +<constant>V4L2_CAP_VIDEO_M2M</constant> or <constant>V4L2_CAP_VIDEO_M2M_MPLANE</constant> +capability set). +</para> - <para>This interface has been be suspended from the V4L2 API -implemented in Linux 2.6 until we have more experience with codec -device interfaces.</para> - </note> + <para>A memory-to-memory video node acts just like a normal video node, but it +supports both output (sending frames from memory to the codec hardware) and +capture (receiving the processed frames from the codec hardware into memory) +stream I/O. An application will have to setup the stream +I/O for both sides and finally call &VIDIOC-STREAMON; for both capture and output +to start the codec.</para> - <para>A V4L2 codec can compress, decompress, transform, or otherwise -convert video data from one format into another format, in memory. -Applications send data to be converted to the driver through a -&func-write; call, and receive the converted data through a -&func-read; call. For efficiency a driver may also support streaming -I/O.</para> + <para>Video compression codecs use the MPEG controls to setup their codec parameters +(note that the MPEG controls actually support many more codecs than just MPEG). +See <xref linkend="mpeg-controls"></xref>.</para> - <para>[to do]</para> + <para>Memory-to-memory devices can often be used as a shared resource: you can +open the video node multiple times, each application setting up their own codec properties +that are local to the file handle, and each can use it independently from the others. +The driver will arbitrate access to the codec and reprogram it whenever another file +handler gets access. This is different from the usual video node behavior where the video properties +are global to the device (i.e. changing something through one file handle is visible +through another file handle).</para> diff --git a/Documentation/DocBook/media/v4l/v4l2.xml b/Documentation/DocBook/media/v4l/v4l2.xml index bfc93cdcf696..bfe823dd0f31 100644 --- a/Documentation/DocBook/media/v4l/v4l2.xml +++ b/Documentation/DocBook/media/v4l/v4l2.xml @@ -493,7 +493,7 @@ and discussions on the V4L mailing list.</revremark> </partinfo> <title>Video for Linux Two API Specification</title> - <subtitle>Revision 3.9</subtitle> + <subtitle>Revision 3.10</subtitle> <chapter id="common"> &sub-common; diff --git a/Documentation/bcache.txt b/Documentation/bcache.txt index 77db8809bd96..b3a7e7d384f6 100644 --- a/Documentation/bcache.txt +++ b/Documentation/bcache.txt @@ -319,7 +319,10 @@ cache<0..n> Symlink to each of the cache devices comprising this cache set. cache_available_percent - Percentage of cache device free. + Percentage of cache device which doesn't contain dirty data, and could + potentially be used for writeback. This doesn't mean this space isn't used + for clean cached data; the unused statistic (in priority_stats) is typically + much lower. clear_stats Clears the statistics associated with this cache @@ -423,8 +426,11 @@ nbuckets Total buckets in this cache priority_stats - Statistics about how recently data in the cache has been accessed. This can - reveal your working set size. + Statistics about how recently data in the cache has been accessed. + This can reveal your working set size. Unused is the percentage of + the cache that doesn't contain any data. Metadata is bcache's + metadata overhead. Average is the average priority of cache buckets. + Next is a list of quantiles with the priority threshold of each. written Sum of all data that has been written to the cache; comparison with diff --git a/Documentation/devices.txt b/Documentation/devices.txt index 08f01e79c41a..b9015912bca6 100644 --- a/Documentation/devices.txt +++ b/Documentation/devices.txt @@ -498,12 +498,8 @@ Your cooperation is appreciated. Each device type has 5 bits (32 minors). - 13 block 8-bit MFM/RLL/IDE controller - 0 = /dev/xda First XT disk whole disk - 64 = /dev/xdb Second XT disk whole disk - - Partitions are handled in the same way as IDE disks - (see major number 3). + 13 block Previously used for the XT disk (/dev/xdN) + Deleted in kernel v3.9. 14 char Open Sound System (OSS) 0 = /dev/mixer Mixer control diff --git a/Documentation/devicetree/bindings/media/exynos-fimc-lite.txt b/Documentation/devicetree/bindings/media/exynos-fimc-lite.txt index 3f62adfb3e0b..de9f6b78ee51 100644 --- a/Documentation/devicetree/bindings/media/exynos-fimc-lite.txt +++ b/Documentation/devicetree/bindings/media/exynos-fimc-lite.txt @@ -2,7 +2,7 @@ Exynos4x12/Exynos5 SoC series camera host interface (FIMC-LITE) Required properties: -- compatible : should be "samsung,exynos4212-fimc" for Exynos4212 and +- compatible : should be "samsung,exynos4212-fimc-lite" for Exynos4212 and Exynos4412 SoCs; - reg : physical base address and size of the device memory mapped registers; diff --git a/Documentation/devicetree/bindings/net/macb.txt b/Documentation/devicetree/bindings/net/macb.txt index 44afa0e5057d..4ff65047bb9a 100644 --- a/Documentation/devicetree/bindings/net/macb.txt +++ b/Documentation/devicetree/bindings/net/macb.txt @@ -4,7 +4,7 @@ Required properties: - compatible: Should be "cdns,[<chip>-]{macb|gem}" Use "cdns,at91sam9260-macb" Atmel at91sam9260 and at91sam9263 SoCs. Use "cdns,at32ap7000-macb" for other 10/100 usage or use the generic form: "cdns,macb". - Use "cnds,pc302-gem" for Picochip picoXcell pc302 and later devices based on + Use "cdns,pc302-gem" for Picochip picoXcell pc302 and later devices based on the Cadence GEM, or the generic form: "cdns,gem". - reg: Address and length of the register set for the device - interrupts: Should contain macb interrupt diff --git a/Documentation/devicetree/bindings/rtc/atmel,at91rm9200-rtc.txt b/Documentation/devicetree/bindings/rtc/atmel,at91rm9200-rtc.txt index 2a3feabd3b22..34c1505774bf 100644 --- a/Documentation/devicetree/bindings/rtc/atmel,at91rm9200-rtc.txt +++ b/Documentation/devicetree/bindings/rtc/atmel,at91rm9200-rtc.txt @@ -1,7 +1,7 @@ Atmel AT91RM9200 Real Time Clock Required properties: -- compatible: should be: "atmel,at91rm9200-rtc" +- compatible: should be: "atmel,at91rm9200-rtc" or "atmel,at91sam9x5-rtc" - reg: physical base address of the controller and length of memory mapped region. - interrupts: rtc alarm/event interrupt diff --git a/Documentation/devicetree/bindings/video/simple-framebuffer.txt b/Documentation/devicetree/bindings/video/simple-framebuffer.txt new file mode 100644 index 000000000000..3ea460583111 --- /dev/null +++ b/Documentation/devicetree/bindings/video/simple-framebuffer.txt @@ -0,0 +1,25 @@ +Simple Framebuffer + +A simple frame-buffer describes a raw memory region that may be rendered to, +with the assumption that the display hardware has already been set up to scan +out from that buffer. + +Required properties: +- compatible: "simple-framebuffer" +- reg: Should contain the location and size of the framebuffer memory. +- width: The width of the framebuffer in pixels. +- height: The height of the framebuffer in pixels. +- stride: The number of bytes in each line of the framebuffer. +- format: The format of the framebuffer surface. Valid values are: + - r5g6b5 (16-bit pixels, d[15:11]=r, d[10:5]=g, d[4:0]=b). + +Example: + + framebuffer { + compatible = "simple-framebuffer"; + reg = <0x1d385000 (1600 * 1200 * 2)>; + width = <1600>; + height = <1200>; + stride = <(1600 * 2)>; + format = "r5g6b5"; + }; diff --git a/Documentation/dmatest.txt b/Documentation/dmatest.txt index 279ac0a8c5b1..132a094c7bc3 100644 --- a/Documentation/dmatest.txt +++ b/Documentation/dmatest.txt @@ -34,7 +34,7 @@ command: After a while you will start to get messages about current status or error like in the original code. -Note that running a new test will stop any in progress test. +Note that running a new test will not stop any in progress test. The following command should return actual state of the test. % cat /sys/kernel/debug/dmatest/run @@ -52,8 +52,8 @@ To wait for test done the user may perform a busy loop that checks the state. The module parameters that is supplied to the kernel command line will be used for the first performed test. After user gets a control, the test could be -interrupted or re-run with same or different parameters. For the details see -the above section "Part 2 - When dmatest is built as a module..." +re-run with the same or different parameters. For the details see the above +section "Part 2 - When dmatest is built as a module..." In both cases the module parameters are used as initial values for the test case. You always could check them at run-time by running diff --git a/Documentation/filesystems/xfs.txt b/Documentation/filesystems/xfs.txt index 3e4b3dd1e046..83577f0232a0 100644 --- a/Documentation/filesystems/xfs.txt +++ b/Documentation/filesystems/xfs.txt @@ -33,6 +33,9 @@ When mounting an XFS filesystem, the following options are accepted. removing extended attributes) the on-disk superblock feature bit field will be updated to reflect this format being in use. + CRC enabled filesystems always use the attr2 format, and so + will reject the noattr2 mount option if it is set. + barrier Enables the use of block layer write barriers for writes into the journal and unwritten extent conversion. This allows for diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 6e3b18a8afc6..2fe6e767b3d6 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -3351,9 +3351,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted. plus one apbt timer for broadcast timer. x86_mrst_timer=apbt_only | lapic_and_apbt - xd= [HW,XT] Original XT pre-IDE (RLL encoded) disks. - xd_geo= See header of drivers/block/xd.c. - xen_emul_unplug= [HW,X86,XEN] Unplug Xen emulated devices Format: [unplug0,][unplug1] diff --git a/Documentation/m68k/kernel-options.txt b/Documentation/m68k/kernel-options.txt index 97d45f276fe6..eaf32a1fd0b1 100644 --- a/Documentation/m68k/kernel-options.txt +++ b/Documentation/m68k/kernel-options.txt @@ -80,8 +80,6 @@ Valid names are: /dev/sdd: -> 0x0830 (forth SCSI disk) /dev/sde: -> 0x0840 (fifth SCSI disk) /dev/fd : -> 0x0200 (floppy disk) - /dev/xda: -> 0x0c00 (first XT disk, unused in Linux/m68k) - /dev/xdb: -> 0x0c40 (second XT disk, unused in Linux/m68k) The name must be followed by a decimal number, that stands for the partition number. Internally, the value of the number is just diff --git a/Documentation/powerpc/transactional_memory.txt b/Documentation/powerpc/transactional_memory.txt index c907be41d60f..dc23e58ae264 100644 --- a/Documentation/powerpc/transactional_memory.txt +++ b/Documentation/powerpc/transactional_memory.txt @@ -147,6 +147,25 @@ Example signal handler: fix_the_problem(ucp->dar); } +When in an active transaction that takes a signal, we need to be careful with +the stack. It's possible that the stack has moved back up after the tbegin. +The obvious case here is when the tbegin is called inside a function that +returns before a tend. In this case, the stack is part of the checkpointed +transactional memory state. If we write over this non transactionally or in +suspend, we are in trouble because if we get a tm abort, the program counter and +stack pointer will be back at the tbegin but our in memory stack won't be valid +anymore. + +To avoid this, when taking a signal in an active transaction, we need to use +the stack pointer from the checkpointed state, rather than the speculated +state. This ensures that the signal context (written tm suspended) will be +written below the stack required for the rollback. The transaction is aborted +becuase of the treclaim, so any memory written between the tbegin and the +signal will be rolled back anyway. + +For signals taken in non-TM or suspended mode, we use the +normal/non-checkpointed stack pointer. + Failure cause codes used by kernel ================================== @@ -155,14 +174,18 @@ These are defined in <asm/reg.h>, and distinguish different reasons why the kernel aborted a transaction: TM_CAUSE_RESCHED Thread was rescheduled. + TM_CAUSE_TLBI Software TLB invalide. TM_CAUSE_FAC_UNAV FP/VEC/VSX unavailable trap. TM_CAUSE_SYSCALL Currently unused; future syscalls that must abort transactions for consistency will use this. TM_CAUSE_SIGNAL Signal delivered. TM_CAUSE_MISC Currently unused. + TM_CAUSE_ALIGNMENT Alignment fault. + TM_CAUSE_EMULATE Emulation that touched memory. -These can be checked by the user program's abort handler as TEXASR[0:7]. - +These can be checked by the user program's abort handler as TEXASR[0:7]. If +bit 7 is set, it indicates that the error is consider persistent. For example +a TM_CAUSE_ALIGNMENT will be persistent while a TM_CAUSE_RESCHED will not.q GDB === diff --git a/Documentation/rapidio/rapidio.txt b/Documentation/rapidio/rapidio.txt index c75694b35d08..a9c16c979da2 100644 --- a/Documentation/rapidio/rapidio.txt +++ b/Documentation/rapidio/rapidio.txt @@ -79,20 +79,63 @@ master port that is used to communicate with devices within the network. In order to initialize the RapidIO subsystem, a platform must initialize and register at least one master port within the RapidIO network. To register mport within the subsystem controller driver initialization code calls function -rio_register_mport() for each available master port. After all active master -ports are registered with a RapidIO subsystem, the rio_init_mports() routine -is called to perform enumeration and discovery. +rio_register_mport() for each available master port. -In the current PowerPC-based implementation a subsys_initcall() is specified to -perform controller initialization and mport registration. At the end it directly -calls rio_init_mports() to execute RapidIO enumeration and discovery. +RapidIO subsystem uses subsys_initcall() or device_initcall() to perform +controller initialization (depending on controller device type). + +After all active master ports are registered with a RapidIO subsystem, +an enumeration and/or discovery routine may be called automatically or +by user-space command. 4. Enumeration and Discovery ---------------------------- -When rio_init_mports() is called it scans a list of registered master ports and -calls an enumeration or discovery routine depending on the configured role of a -master port: host or agent. +4.1 Overview +------------ + +RapidIO subsystem configuration options allow users to specify enumeration and +discovery methods as statically linked components or loadable modules. +An enumeration/discovery method implementation and available input parameters +define how any given method can be attached to available RapidIO mports: +simply to all available mports OR individually to the specified mport device. + +Depending on selected enumeration/discovery build configuration, there are +several methods to initiate an enumeration and/or discovery process: + + (a) Statically linked enumeration and discovery process can be started + automatically during kernel initialization time using corresponding module + parameters. This was the original method used since introduction of RapidIO + subsystem. Now this method relies on enumerator module parameter which is + 'rio-scan.scan' for existing basic enumeration/discovery method. + When automatic start of enumeration/discovery is used a user has to ensure + that all discovering endpoints are started before the enumerating endpoint + and are waiting for enumeration to be completed. + Configuration option CONFIG_RAPIDIO_DISC_TIMEOUT defines time that discovering + endpoint waits for enumeration to be completed. If the specified timeout + expires the discovery process is terminated without obtaining RapidIO network + information. NOTE: a timed out discovery process may be restarted later using + a user-space command as it is described later if the given endpoint was + enumerated successfully. + + (b) Statically linked enumeration and discovery process can be started by + a command from user space. This initiation method provides more flexibility + for a system startup compared to the option (a) above. After all participating + endpoints have been successfully booted, an enumeration process shall be + started first by issuing a user-space command, after an enumeration is + completed a discovery process can be started on all remaining endpoints. + + (c) Modular enumeration and discovery process can be started by a command from + user space. After an enumeration/discovery module is loaded, a network scan + process can be started by issuing a user-space command. + Similar to the option (b) above, an enumerator has to be started first. + + (d) Modular enumeration and discovery process can be started by a module + initialization routine. In this case an enumerating module shall be loaded + first. + +When a network scan process is started it calls an enumeration or discovery +routine depending on the configured role of a master port: host or agent. Enumeration is performed by a master port if it is configured as a host port by assigning a host device ID greater than or equal to zero. A host device ID is @@ -104,8 +147,58 @@ for it. The enumeration and discovery routines use RapidIO maintenance transactions to access the configuration space of devices. -The enumeration process is implemented according to the enumeration algorithm -outlined in the RapidIO Interconnect Specification: Annex I [1]. +4.2 Automatic Start of Enumeration and Discovery +------------------------------------------------ + +Automatic enumeration/discovery start method is applicable only to built-in +enumeration/discovery RapidIO configuration selection. To enable automatic +enumeration/discovery start by existing basic enumerator method set use boot +command line parameter "rio-scan.scan=1". + +This configuration requires synchronized start of all RapidIO endpoints that +form a network which will be enumerated/discovered. Discovering endpoints have +to be started before an enumeration starts to ensure that all RapidIO +controllers have been initialized and are ready to be discovered. Configuration +parameter CONFIG_RAPIDIO_DISC_TIMEOUT defines time (in seconds) which +a discovering endpoint will wait for enumeration to be completed. + +When automatic enumeration/discovery start is selected, basic method's +initialization routine calls rio_init_mports() to perform enumeration or +discovery for all known mport devices. + +Depending on RapidIO network size and configuration this automatic +enumeration/discovery start method may be difficult to use due to the +requirement for synchronized start of all endpoints. + +4.3 User-space Start of Enumeration and Discovery +------------------------------------------------- + +User-space start of enumeration and discovery can be used with built-in and +modular build configurations. For user-space controlled start RapidIO subsystem +creates the sysfs write-only attribute file '/sys/bus/rapidio/scan'. To initiate +an enumeration or discovery process on specific mport device, a user needs to +write mport_ID (not RapidIO destination ID) into that file. The mport_ID is a +sequential number (0 ... RIO_MAX_MPORTS) assigned during mport device +registration. For example for machine with single RapidIO controller, mport_ID +for that controller always will be 0. + +To initiate RapidIO enumeration/discovery on all available mports a user may +write '-1' (or RIO_MPORT_ANY) into the scan attribute file. + +4.4 Basic Enumeration Method +---------------------------- + +This is an original enumeration/discovery method which is available since +first release of RapidIO subsystem code. The enumeration process is +implemented according to the enumeration algorithm outlined in the RapidIO +Interconnect Specification: Annex I [1]. + +This method can be configured as statically linked or loadable module. +The method's single parameter "scan" allows to trigger the enumeration/discovery +process from module initialization routine. + +This enumeration/discovery method can be started only once and does not support +unloading if it is built as a module. The enumeration process traverses the network using a recursive depth-first algorithm. When a new device is found, the enumerator takes ownership of that @@ -160,6 +253,19 @@ time period. If this wait time period expires before enumeration is completed, an agent skips RapidIO discovery and continues with remaining kernel initialization. +4.5 Adding New Enumeration/Discovery Method +------------------------------------------- + +RapidIO subsystem code organization allows addition of new enumeration/discovery +methods as new configuration options without significant impact to to the core +RapidIO code. + +A new enumeration/discovery method has to be attached to one or more mport +devices before an enumeration/discovery process can be started. Normally, +method's module initialization routine calls rio_register_scan() to attach +an enumerator to a specified mport device (or devices). The basic enumerator +implementation demonstrates this process. + 5. References ------------- diff --git a/Documentation/rapidio/sysfs.txt b/Documentation/rapidio/sysfs.txt index 97f71ce575d6..19878179da4c 100644 --- a/Documentation/rapidio/sysfs.txt +++ b/Documentation/rapidio/sysfs.txt @@ -88,3 +88,20 @@ that exports additional attributes. IDT_GEN2: errlog - reads contents of device error log until it is empty. + + +5. RapidIO Bus Attributes +------------------------- + +RapidIO bus subdirectory /sys/bus/rapidio implements the following bus-specific +attribute: + + scan - allows to trigger enumeration discovery process from user space. This + is a write-only attribute. To initiate an enumeration or discovery + process on specific mport device, a user needs to write mport_ID (not + RapidIO destination ID) into this file. The mport_ID is a sequential + number (0 ... RIO_MAX_MPORTS) assigned to the mport device. + For example, for a machine with a single RapidIO controller, mport_ID + for that controller always will be 0. + To initiate RapidIO enumeration/discovery on all available mports + a user must write '-1' (or RIO_MPORT_ANY) into this attribute file. diff --git a/Documentation/sound/alsa/HD-Audio-Models.txt b/Documentation/sound/alsa/HD-Audio-Models.txt index bb8b0dc532b8..77d68e23b247 100644 --- a/Documentation/sound/alsa/HD-Audio-Models.txt +++ b/Documentation/sound/alsa/HD-Audio-Models.txt @@ -29,6 +29,8 @@ ALC269/270/275/276/280/282 alc271-dmic Enable ALC271X digital mic workaround inv-dmic Inverted internal mic workaround lenovo-dock Enables docking station I/O for some Lenovos + dell-headset-multi Headset jack, which can also be used as mic-in + dell-headset-dock Headset jack (without mic-in), and also dock I/O ALC662/663/272 ============== @@ -42,6 +44,7 @@ ALC662/663/272 asus-mode7 ASUS asus-mode8 ASUS inv-dmic Inverted internal mic workaround + dell-headset-multi Headset jack, which can also be used as mic-in ALC680 ====== |