summaryrefslogtreecommitdiff
path: root/arch/arm64/include/asm/cacheflush.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2012-10-01 11:51:57 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2012-10-01 11:51:57 -0700
commit81f56e5375e84689b891e0e6c5a02ec12a1f18d9 (patch)
treea1e128a71ff24fc705428df86a858076cfe4bc13 /arch/arm64/include/asm/cacheflush.h
parent6c09931b3f987898f5c581d267ef269f5e2e9575 (diff)
parent27aa55c5e5123fa8b8ad0156559d34d7edff58ca (diff)
Merge tag 'arm64-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64
Pull arm64 support from Catalin Marinas: "Linux support for the 64-bit ARM architecture (AArch64) Features currently supported: - 39-bit address space for user and kernel (each) - 4KB and 64KB page configurations - Compat (32-bit) user applications (ARMv7, EABI only) - Flattened Device Tree (mandated for all AArch64 platforms) - ARM generic timers" * tag 'arm64-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64: (35 commits) arm64: ptrace: remove obsolete ptrace request numbers from user headers arm64: Do not set the SMP/nAMP processor bit arm64: MAINTAINERS update arm64: Build infrastructure arm64: Miscellaneous header files arm64: Generic timers support arm64: Loadable modules arm64: Miscellaneous library functions arm64: Performance counters support arm64: Add support for /proc/sys/debug/exception-trace arm64: Debugging support arm64: Floating point and SIMD arm64: 32-bit (compat) applications support arm64: User access library functions arm64: Signal handling support arm64: VDSO support arm64: System calls handling arm64: ELF definitions arm64: SMP support arm64: DMA mapping API ...
Diffstat (limited to 'arch/arm64/include/asm/cacheflush.h')
-rw-r--r--arch/arm64/include/asm/cacheflush.h148
1 files changed, 148 insertions, 0 deletions
diff --git a/arch/arm64/include/asm/cacheflush.h b/arch/arm64/include/asm/cacheflush.h
new file mode 100644
index 000000000000..aa3132ab7f29
--- /dev/null
+++ b/arch/arm64/include/asm/cacheflush.h
@@ -0,0 +1,148 @@
+/*
+ * Based on arch/arm/include/asm/cacheflush.h
+ *
+ * Copyright (C) 1999-2002 Russell King.
+ * Copyright (C) 2012 ARM Ltd.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+#ifndef __ASM_CACHEFLUSH_H
+#define __ASM_CACHEFLUSH_H
+
+#include <linux/mm.h>
+
+/*
+ * This flag is used to indicate that the page pointed to by a pte is clean
+ * and does not require cleaning before returning it to the user.
+ */
+#define PG_dcache_clean PG_arch_1
+
+/*
+ * MM Cache Management
+ * ===================
+ *
+ * The arch/arm64/mm/cache.S implements these methods.
+ *
+ * Start addresses are inclusive and end addresses are exclusive; start
+ * addresses should be rounded down, end addresses up.
+ *
+ * See Documentation/cachetlb.txt for more information. Please note that
+ * the implementation assumes non-aliasing VIPT D-cache and (aliasing)
+ * VIPT or ASID-tagged VIVT I-cache.
+ *
+ * flush_cache_all()
+ *
+ * Unconditionally clean and invalidate the entire cache.
+ *
+ * flush_cache_mm(mm)
+ *
+ * Clean and invalidate all user space cache entries
+ * before a change of page tables.
+ *
+ * flush_icache_range(start, end)
+ *
+ * Ensure coherency between the I-cache and the D-cache in the
+ * region described by start, end.
+ * - start - virtual start address
+ * - end - virtual end address
+ *
+ * __flush_cache_user_range(start, end)
+ *
+ * Ensure coherency between the I-cache and the D-cache in the
+ * region described by start, end.
+ * - start - virtual start address
+ * - end - virtual end address
+ *
+ * __flush_dcache_area(kaddr, size)
+ *
+ * Ensure that the data held in page is written back.
+ * - kaddr - page address
+ * - size - region size
+ */
+extern void flush_cache_all(void);
+extern void flush_cache_mm(struct mm_struct *mm);
+extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
+extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
+extern void flush_icache_range(unsigned long start, unsigned long end);
+extern void __flush_dcache_area(void *addr, size_t len);
+extern void __flush_cache_user_range(unsigned long start, unsigned long end);
+
+/*
+ * Copy user data from/to a page which is mapped into a different
+ * processes address space. Really, we want to allow our "user
+ * space" model to handle this.
+ */
+extern void copy_to_user_page(struct vm_area_struct *, struct page *,
+ unsigned long, void *, const void *, unsigned long);
+#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
+ do { \
+ memcpy(dst, src, len); \
+ } while (0)
+
+#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
+
+/*
+ * flush_dcache_page is used when the kernel has written to the page
+ * cache page at virtual address page->virtual.
+ *
+ * If this page isn't mapped (ie, page_mapping == NULL), or it might
+ * have userspace mappings, then we _must_ always clean + invalidate
+ * the dcache entries associated with the kernel mapping.
+ *
+ * Otherwise we can defer the operation, and clean the cache when we are
+ * about to change to user space. This is the same method as used on SPARC64.
+ * See update_mmu_cache for the user space part.
+ */
+#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
+extern void flush_dcache_page(struct page *);
+
+static inline void __flush_icache_all(void)
+{
+ asm("ic ialluis");
+}
+
+#define flush_dcache_mmap_lock(mapping) \
+ spin_lock_irq(&(mapping)->tree_lock)
+#define flush_dcache_mmap_unlock(mapping) \
+ spin_unlock_irq(&(mapping)->tree_lock)
+
+#define flush_icache_user_range(vma,page,addr,len) \
+ flush_dcache_page(page)
+
+/*
+ * We don't appear to need to do anything here. In fact, if we did, we'd
+ * duplicate cache flushing elsewhere performed by flush_dcache_page().
+ */
+#define flush_icache_page(vma,page) do { } while (0)
+
+/*
+ * flush_cache_vmap() is used when creating mappings (eg, via vmap,
+ * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
+ * caches, since the direct-mappings of these pages may contain cached
+ * data, we need to do a full cache flush to ensure that writebacks
+ * don't corrupt data placed into these pages via the new mappings.
+ */
+static inline void flush_cache_vmap(unsigned long start, unsigned long end)
+{
+ /*
+ * set_pte_at() called from vmap_pte_range() does not
+ * have a DSB after cleaning the cache line.
+ */
+ dsb();
+}
+
+static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
+{
+}
+
+#endif