diff options
| author | Aurelien Jacquiot <a-jacquiot@ti.com> | 2011-10-04 11:06:27 -0400 | 
|---|---|---|
| committer | Mark Salter <msalter@redhat.com> | 2011-10-06 19:47:54 -0400 | 
| commit | ec500af3059b474df35418c41c684c1cde830c81 (patch) | |
| tree | fca5ee52137efe4fc9d9c07ddce4f4e4ea52ba16 /arch/c6x/include/asm/irq.h | |
| parent | 546a39546c64ad7e73796c5508ef5487af42cae2 (diff) | |
C6X: interrupt handling
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Diffstat (limited to 'arch/c6x/include/asm/irq.h')
| -rw-r--r-- | arch/c6x/include/asm/irq.h | 302 | 
1 files changed, 302 insertions, 0 deletions
| diff --git a/arch/c6x/include/asm/irq.h b/arch/c6x/include/asm/irq.h new file mode 100644 index 000000000000..a6ae3c9d9c40 --- /dev/null +++ b/arch/c6x/include/asm/irq.h @@ -0,0 +1,302 @@ +/* + *  Port on Texas Instruments TMS320C6x architecture + * + *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated + *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com) + * + *  Large parts taken directly from powerpc. + * + *  This program is free software; you can redistribute it and/or modify + *  it under the terms of the GNU General Public License version 2 as + *  published by the Free Software Foundation. + */ +#ifndef _ASM_C6X_IRQ_H +#define _ASM_C6X_IRQ_H + +#include <linux/threads.h> +#include <linux/list.h> +#include <linux/radix-tree.h> +#include <asm/percpu.h> + +#define irq_canonicalize(irq)  (irq) + +/* + * The C64X+ core has 16 IRQ vectors. One each is used by Reset and NMI. Two + * are reserved. The remaining 12 vectors are used to route SoC interrupts. + * These interrupt vectors are prioritized with IRQ 4 having the highest + * priority and IRQ 15 having the lowest. + * + * The C64x+ megamodule provides a PIC which combines SoC IRQ sources into a + * single core IRQ vector. There are four combined sources, each of which + * feed into one of the 12 general interrupt vectors. The remaining 8 vectors + * can each route a single SoC interrupt directly. + */ +#define NR_PRIORITY_IRQS 16 + +#define NR_IRQS_LEGACY	NR_PRIORITY_IRQS + +/* Total number of virq in the platform */ +#define NR_IRQS		256 + +/* This number is used when no interrupt has been assigned */ +#define NO_IRQ		0 + +/* This type is the placeholder for a hardware interrupt number. It has to + * be big enough to enclose whatever representation is used by a given + * platform. + */ +typedef unsigned long irq_hw_number_t; + +/* Interrupt controller "host" data structure. This could be defined as a + * irq domain controller. That is, it handles the mapping between hardware + * and virtual interrupt numbers for a given interrupt domain. The host + * structure is generally created by the PIC code for a given PIC instance + * (though a host can cover more than one PIC if they have a flat number + * model). It's the host callbacks that are responsible for setting the + * irq_chip on a given irq_desc after it's been mapped. + * + * The host code and data structures are fairly agnostic to the fact that + * we use an open firmware device-tree. We do have references to struct + * device_node in two places: in irq_find_host() to find the host matching + * a given interrupt controller node, and of course as an argument to its + * counterpart host->ops->match() callback. However, those are treated as + * generic pointers by the core and the fact that it's actually a device-node + * pointer is purely a convention between callers and implementation. This + * code could thus be used on other architectures by replacing those two + * by some sort of arch-specific void * "token" used to identify interrupt + * controllers. + */ +struct irq_host; +struct radix_tree_root; +struct device_node; + +/* Functions below are provided by the host and called whenever a new mapping + * is created or an old mapping is disposed. The host can then proceed to + * whatever internal data structures management is required. It also needs + * to setup the irq_desc when returning from map(). + */ +struct irq_host_ops { +	/* Match an interrupt controller device node to a host, returns +	 * 1 on a match +	 */ +	int (*match)(struct irq_host *h, struct device_node *node); + +	/* Create or update a mapping between a virtual irq number and a hw +	 * irq number. This is called only once for a given mapping. +	 */ +	int (*map)(struct irq_host *h, unsigned int virq, irq_hw_number_t hw); + +	/* Dispose of such a mapping */ +	void (*unmap)(struct irq_host *h, unsigned int virq); + +	/* Translate device-tree interrupt specifier from raw format coming +	 * from the firmware to a irq_hw_number_t (interrupt line number) and +	 * type (sense) that can be passed to set_irq_type(). In the absence +	 * of this callback, irq_create_of_mapping() and irq_of_parse_and_map() +	 * will return the hw number in the first cell and IRQ_TYPE_NONE for +	 * the type (which amount to keeping whatever default value the +	 * interrupt controller has for that line) +	 */ +	int (*xlate)(struct irq_host *h, struct device_node *ctrler, +		     const u32 *intspec, unsigned int intsize, +		     irq_hw_number_t *out_hwirq, unsigned int *out_type); +}; + +struct irq_host { +	struct list_head	link; + +	/* type of reverse mapping technique */ +	unsigned int		revmap_type; +#define IRQ_HOST_MAP_PRIORITY   0 /* core priority irqs, get irqs 1..15 */ +#define IRQ_HOST_MAP_NOMAP	1 /* no fast reverse mapping */ +#define IRQ_HOST_MAP_LINEAR	2 /* linear map of interrupts */ +#define IRQ_HOST_MAP_TREE	3 /* radix tree */ +	union { +		struct { +			unsigned int size; +			unsigned int *revmap; +		} linear; +		struct radix_tree_root tree; +	} revmap_data; +	struct irq_host_ops	*ops; +	void			*host_data; +	irq_hw_number_t		inval_irq; + +	/* Optional device node pointer */ +	struct device_node	*of_node; +}; + +struct irq_data; +extern irq_hw_number_t irqd_to_hwirq(struct irq_data *d); +extern irq_hw_number_t virq_to_hw(unsigned int virq); +extern bool virq_is_host(unsigned int virq, struct irq_host *host); + +/** + * irq_alloc_host - Allocate a new irq_host data structure + * @of_node: optional device-tree node of the interrupt controller + * @revmap_type: type of reverse mapping to use + * @revmap_arg: for IRQ_HOST_MAP_LINEAR linear only: size of the map + * @ops: map/unmap host callbacks + * @inval_irq: provide a hw number in that host space that is always invalid + * + * Allocates and initialize and irq_host structure. Note that in the case of + * IRQ_HOST_MAP_LEGACY, the map() callback will be called before this returns + * for all legacy interrupts except 0 (which is always the invalid irq for + * a legacy controller). For a IRQ_HOST_MAP_LINEAR, the map is allocated by + * this call as well. For a IRQ_HOST_MAP_TREE, the radix tree will be allocated + * later during boot automatically (the reverse mapping will use the slow path + * until that happens). + */ +extern struct irq_host *irq_alloc_host(struct device_node *of_node, +				       unsigned int revmap_type, +				       unsigned int revmap_arg, +				       struct irq_host_ops *ops, +				       irq_hw_number_t inval_irq); + + +/** + * irq_find_host - Locates a host for a given device node + * @node: device-tree node of the interrupt controller + */ +extern struct irq_host *irq_find_host(struct device_node *node); + + +/** + * irq_set_default_host - Set a "default" host + * @host: default host pointer + * + * For convenience, it's possible to set a "default" host that will be used + * whenever NULL is passed to irq_create_mapping(). It makes life easier for + * platforms that want to manipulate a few hard coded interrupt numbers that + * aren't properly represented in the device-tree. + */ +extern void irq_set_default_host(struct irq_host *host); + + +/** + * irq_set_virq_count - Set the maximum number of virt irqs + * @count: number of linux virtual irqs, capped with NR_IRQS + * + * This is mainly for use by platforms like iSeries who want to program + * the virtual irq number in the controller to avoid the reverse mapping + */ +extern void irq_set_virq_count(unsigned int count); + + +/** + * irq_create_mapping - Map a hardware interrupt into linux virq space + * @host: host owning this hardware interrupt or NULL for default host + * @hwirq: hardware irq number in that host space + * + * Only one mapping per hardware interrupt is permitted. Returns a linux + * virq number. + * If the sense/trigger is to be specified, set_irq_type() should be called + * on the number returned from that call. + */ +extern unsigned int irq_create_mapping(struct irq_host *host, +				       irq_hw_number_t hwirq); + + +/** + * irq_dispose_mapping - Unmap an interrupt + * @virq: linux virq number of the interrupt to unmap + */ +extern void irq_dispose_mapping(unsigned int virq); + +/** + * irq_find_mapping - Find a linux virq from an hw irq number. + * @host: host owning this hardware interrupt + * @hwirq: hardware irq number in that host space + * + * This is a slow path, for use by generic code. It's expected that an + * irq controller implementation directly calls the appropriate low level + * mapping function. + */ +extern unsigned int irq_find_mapping(struct irq_host *host, +				     irq_hw_number_t hwirq); + +/** + * irq_create_direct_mapping - Allocate a virq for direct mapping + * @host: host to allocate the virq for or NULL for default host + * + * This routine is used for irq controllers which can choose the hardware + * interrupt numbers they generate. In such a case it's simplest to use + * the linux virq as the hardware interrupt number. + */ +extern unsigned int irq_create_direct_mapping(struct irq_host *host); + +/** + * irq_radix_revmap_insert - Insert a hw irq to linux virq number mapping. + * @host: host owning this hardware interrupt + * @virq: linux irq number + * @hwirq: hardware irq number in that host space + * + * This is for use by irq controllers that use a radix tree reverse + * mapping for fast lookup. + */ +extern void irq_radix_revmap_insert(struct irq_host *host, unsigned int virq, +				    irq_hw_number_t hwirq); + +/** + * irq_radix_revmap_lookup - Find a linux virq from a hw irq number. + * @host: host owning this hardware interrupt + * @hwirq: hardware irq number in that host space + * + * This is a fast path, for use by irq controller code that uses radix tree + * revmaps + */ +extern unsigned int irq_radix_revmap_lookup(struct irq_host *host, +					    irq_hw_number_t hwirq); + +/** + * irq_linear_revmap - Find a linux virq from a hw irq number. + * @host: host owning this hardware interrupt + * @hwirq: hardware irq number in that host space + * + * This is a fast path, for use by irq controller code that uses linear + * revmaps. It does fallback to the slow path if the revmap doesn't exist + * yet and will create the revmap entry with appropriate locking + */ + +extern unsigned int irq_linear_revmap(struct irq_host *host, +				      irq_hw_number_t hwirq); + + + +/** + * irq_alloc_virt - Allocate virtual irq numbers + * @host: host owning these new virtual irqs + * @count: number of consecutive numbers to allocate + * @hint: pass a hint number, the allocator will try to use a 1:1 mapping + * + * This is a low level function that is used internally by irq_create_mapping() + * and that can be used by some irq controllers implementations for things + * like allocating ranges of numbers for MSIs. The revmaps are left untouched. + */ +extern unsigned int irq_alloc_virt(struct irq_host *host, +				   unsigned int count, +				   unsigned int hint); + +/** + * irq_free_virt - Free virtual irq numbers + * @virq: virtual irq number of the first interrupt to free + * @count: number of interrupts to free + * + * This function is the opposite of irq_alloc_virt. It will not clear reverse + * maps, this should be done previously by unmap'ing the interrupt. In fact, + * all interrupts covered by the range being freed should have been unmapped + * prior to calling this. + */ +extern void irq_free_virt(unsigned int virq, unsigned int count); + +extern void __init init_pic_c64xplus(void); + +extern void init_IRQ(void); + +struct pt_regs; + +extern asmlinkage void c6x_do_IRQ(unsigned int prio, struct pt_regs *regs); + +extern unsigned long irq_err_count; + +#endif /* _ASM_C6X_IRQ_H */ | 
