summaryrefslogtreecommitdiff
path: root/arch/x86/include
diff options
context:
space:
mode:
authorAndrea Arcangeli <aarcange@redhat.com>2012-10-04 01:50:46 +0200
committerMel Gorman <mgorman@suse.de>2012-12-11 14:28:35 +0000
commitdbe4d2035a5b273c910f8f7eb0b7189ee76f63ad (patch)
tree9e638daa51015c85146d7efdad9a8ba0502c005b /arch/x86/include
parent397487db696cae0b026a474a5cd66f4e372995e6 (diff)
mm: numa: define _PAGE_NUMA
The objective of _PAGE_NUMA is to be able to trigger NUMA hinting page faults to identify the per NUMA node working set of the thread at runtime. Arming the NUMA hinting page fault mechanism works similarly to setting up a mprotect(PROT_NONE) virtual range: the present bit is cleared at the same time that _PAGE_NUMA is set, so when the fault triggers we can identify it as a NUMA hinting page fault. _PAGE_NUMA on x86 shares the same bit number of _PAGE_PROTNONE (but it could also use a different bitflag, it's up to the architecture to decide). It would be confusing to call the "NUMA hinting page faults" as "do_prot_none faults". They're different events and _PAGE_NUMA doesn't alter the semantics of mprotect(PROT_NONE) in any way. Sharing the same bitflag with _PAGE_PROTNONE in fact complicates things: it requires us to ensure the code paths executed by _PAGE_PROTNONE remains mutually exclusive to the code paths executed by _PAGE_NUMA at all times, to avoid _PAGE_NUMA and _PAGE_PROTNONE to step into each other toes. Because we want to be able to set this bitflag in any established pte or pmd (while clearing the present bit at the same time) without losing information, this bitflag must never be set when the pte and pmd are present, so the bitflag picked for _PAGE_NUMA usage, must not be used by the swap entry format. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com>
Diffstat (limited to 'arch/x86/include')
-rw-r--r--arch/x86/include/asm/pgtable_types.h20
1 files changed, 20 insertions, 0 deletions
diff --git a/arch/x86/include/asm/pgtable_types.h b/arch/x86/include/asm/pgtable_types.h
index ec8a1fc9505d..3c32db8c539d 100644
--- a/arch/x86/include/asm/pgtable_types.h
+++ b/arch/x86/include/asm/pgtable_types.h
@@ -64,6 +64,26 @@
#define _PAGE_FILE (_AT(pteval_t, 1) << _PAGE_BIT_FILE)
#define _PAGE_PROTNONE (_AT(pteval_t, 1) << _PAGE_BIT_PROTNONE)
+/*
+ * _PAGE_NUMA indicates that this page will trigger a numa hinting
+ * minor page fault to gather numa placement statistics (see
+ * pte_numa()). The bit picked (8) is within the range between
+ * _PAGE_FILE (6) and _PAGE_PROTNONE (8) bits. Therefore, it doesn't
+ * require changes to the swp entry format because that bit is always
+ * zero when the pte is not present.
+ *
+ * The bit picked must be always zero when the pmd is present and not
+ * present, so that we don't lose information when we set it while
+ * atomically clearing the present bit.
+ *
+ * Because we shared the same bit (8) with _PAGE_PROTNONE this can be
+ * interpreted as _PAGE_NUMA only in places that _PAGE_PROTNONE
+ * couldn't reach, like handle_mm_fault() (see access_error in
+ * arch/x86/mm/fault.c, the vma protection must not be PROT_NONE for
+ * handle_mm_fault() to be invoked).
+ */
+#define _PAGE_NUMA _PAGE_PROTNONE
+
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \
_PAGE_ACCESSED | _PAGE_DIRTY)
#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | \