summaryrefslogtreecommitdiff
path: root/arch/x86
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2011-07-24 09:07:03 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2011-07-24 09:07:03 -0700
commit5fabc487c96819dd12ddb9414835d170fd9cd6d5 (patch)
tree01532d492e5074b0d3add29bf92ebf9a9d161e9e /arch/x86
parentc61264f98c1a974ee6f545f61a4ab33b141d6bda (diff)
parent3f68b0318bbbd61bf08478ab99a149f0d9e5156e (diff)
Merge branch 'kvm-updates/3.1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
* 'kvm-updates/3.1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (143 commits) KVM: IOMMU: Disable device assignment without interrupt remapping KVM: MMU: trace mmio page fault KVM: MMU: mmio page fault support KVM: MMU: reorganize struct kvm_shadow_walk_iterator KVM: MMU: lockless walking shadow page table KVM: MMU: do not need atomicly to set/clear spte KVM: MMU: introduce the rules to modify shadow page table KVM: MMU: abstract some functions to handle fault pfn KVM: MMU: filter out the mmio pfn from the fault pfn KVM: MMU: remove bypass_guest_pf KVM: MMU: split kvm_mmu_free_page KVM: MMU: count used shadow pages on prepareing path KVM: MMU: rename 'pt_write' to 'emulate' KVM: MMU: cleanup for FNAME(fetch) KVM: MMU: optimize to handle dirty bit KVM: MMU: cache mmio info on page fault path KVM: x86: introduce vcpu_mmio_gva_to_gpa to cleanup the code KVM: MMU: do not update slot bitmap if spte is nonpresent KVM: MMU: fix walking shadow page table KVM guest: KVM Steal time registration ...
Diffstat (limited to 'arch/x86')
-rw-r--r--arch/x86/Kconfig12
-rw-r--r--arch/x86/include/asm/kvm_emulate.h52
-rw-r--r--arch/x86/include/asm/kvm_host.h46
-rw-r--r--arch/x86/include/asm/kvm_para.h20
-rw-r--r--arch/x86/include/asm/msr-index.h12
-rw-r--r--arch/x86/include/asm/paravirt.h9
-rw-r--r--arch/x86/include/asm/paravirt_types.h1
-rw-r--r--arch/x86/include/asm/processor-flags.h1
-rw-r--r--arch/x86/include/asm/vmx.h43
-rw-r--r--arch/x86/kernel/kvm.c72
-rw-r--r--arch/x86/kernel/kvmclock.c2
-rw-r--r--arch/x86/kernel/paravirt.c9
-rw-r--r--arch/x86/kvm/Kconfig1
-rw-r--r--arch/x86/kvm/emulate.c1749
-rw-r--r--arch/x86/kvm/mmu.c1226
-rw-r--r--arch/x86/kvm/mmu.h25
-rw-r--r--arch/x86/kvm/mmu_audit.c12
-rw-r--r--arch/x86/kvm/mmutrace.h48
-rw-r--r--arch/x86/kvm/paging_tmpl.h258
-rw-r--r--arch/x86/kvm/svm.c6
-rw-r--r--arch/x86/kvm/trace.h31
-rw-r--r--arch/x86/kvm/vmx.c2784
-rw-r--r--arch/x86/kvm/x86.c374
-rw-r--r--arch/x86/kvm/x86.h44
24 files changed, 4982 insertions, 1855 deletions
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index b2127544fbe7..a67e014e4e44 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -529,6 +529,18 @@ menuconfig PARAVIRT_GUEST
if PARAVIRT_GUEST
+config PARAVIRT_TIME_ACCOUNTING
+ bool "Paravirtual steal time accounting"
+ select PARAVIRT
+ default n
+ ---help---
+ Select this option to enable fine granularity task steal time
+ accounting. Time spent executing other tasks in parallel with
+ the current vCPU is discounted from the vCPU power. To account for
+ that, there can be a small performance impact.
+
+ If in doubt, say N here.
+
source "arch/x86/xen/Kconfig"
config KVM_CLOCK
diff --git a/arch/x86/include/asm/kvm_emulate.h b/arch/x86/include/asm/kvm_emulate.h
index 0049211959c0..6040d115ef51 100644
--- a/arch/x86/include/asm/kvm_emulate.h
+++ b/arch/x86/include/asm/kvm_emulate.h
@@ -229,7 +229,26 @@ struct read_cache {
unsigned long end;
};
-struct decode_cache {
+struct x86_emulate_ctxt {
+ struct x86_emulate_ops *ops;
+
+ /* Register state before/after emulation. */
+ unsigned long eflags;
+ unsigned long eip; /* eip before instruction emulation */
+ /* Emulated execution mode, represented by an X86EMUL_MODE value. */
+ int mode;
+
+ /* interruptibility state, as a result of execution of STI or MOV SS */
+ int interruptibility;
+
+ bool guest_mode; /* guest running a nested guest */
+ bool perm_ok; /* do not check permissions if true */
+ bool only_vendor_specific_insn;
+
+ bool have_exception;
+ struct x86_exception exception;
+
+ /* decode cache */
u8 twobyte;
u8 b;
u8 intercept;
@@ -246,8 +265,6 @@ struct decode_cache {
unsigned int d;
int (*execute)(struct x86_emulate_ctxt *ctxt);
int (*check_perm)(struct x86_emulate_ctxt *ctxt);
- unsigned long regs[NR_VCPU_REGS];
- unsigned long eip;
/* modrm */
u8 modrm;
u8 modrm_mod;
@@ -255,34 +272,14 @@ struct decode_cache {
u8 modrm_rm;
u8 modrm_seg;
bool rip_relative;
+ unsigned long _eip;
+ /* Fields above regs are cleared together. */
+ unsigned long regs[NR_VCPU_REGS];
struct fetch_cache fetch;
struct read_cache io_read;
struct read_cache mem_read;
};
-struct x86_emulate_ctxt {
- struct x86_emulate_ops *ops;
-
- /* Register state before/after emulation. */
- unsigned long eflags;
- unsigned long eip; /* eip before instruction emulation */
- /* Emulated execution mode, represented by an X86EMUL_MODE value. */
- int mode;
-
- /* interruptibility state, as a result of execution of STI or MOV SS */
- int interruptibility;
-
- bool guest_mode; /* guest running a nested guest */
- bool perm_ok; /* do not check permissions if true */
- bool only_vendor_specific_insn;
-
- bool have_exception;
- struct x86_exception exception;
-
- /* decode cache */
- struct decode_cache decode;
-};
-
/* Repeat String Operation Prefix */
#define REPE_PREFIX 0xf3
#define REPNE_PREFIX 0xf2
@@ -373,6 +370,5 @@ int x86_emulate_insn(struct x86_emulate_ctxt *ctxt);
int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
u16 tss_selector, int reason,
bool has_error_code, u32 error_code);
-int emulate_int_real(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops, int irq);
+int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq);
#endif /* _ASM_X86_KVM_X86_EMULATE_H */
diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h
index d2ac8e2ee897..dd51c83aa5de 100644
--- a/arch/x86/include/asm/kvm_host.h
+++ b/arch/x86/include/asm/kvm_host.h
@@ -48,7 +48,7 @@
(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
| X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
| X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
- | X86_CR4_OSXSAVE \
+ | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_RDWRGSFS \
| X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
@@ -205,6 +205,7 @@ union kvm_mmu_page_role {
unsigned invalid:1;
unsigned nxe:1;
unsigned cr0_wp:1;
+ unsigned smep_andnot_wp:1;
};
};
@@ -227,15 +228,17 @@ struct kvm_mmu_page {
* in this shadow page.
*/
DECLARE_BITMAP(slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
- bool multimapped; /* More than one parent_pte? */
bool unsync;
int root_count; /* Currently serving as active root */
unsigned int unsync_children;
- union {
- u64 *parent_pte; /* !multimapped */
- struct hlist_head parent_ptes; /* multimapped, kvm_pte_chain */
- };
+ unsigned long parent_ptes; /* Reverse mapping for parent_pte */
DECLARE_BITMAP(unsync_child_bitmap, 512);
+
+#ifdef CONFIG_X86_32
+ int clear_spte_count;
+#endif
+
+ struct rcu_head rcu;
};
struct kvm_pv_mmu_op_buffer {
@@ -269,8 +272,6 @@ struct kvm_mmu {
gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access,
struct x86_exception *exception);
gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access);
- void (*prefetch_page)(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *page);
int (*sync_page)(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp);
void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva);
@@ -346,8 +347,7 @@ struct kvm_vcpu_arch {
* put it here to avoid allocation */
struct kvm_pv_mmu_op_buffer mmu_op_buffer;
- struct kvm_mmu_memory_cache mmu_pte_chain_cache;
- struct kvm_mmu_memory_cache mmu_rmap_desc_cache;
+ struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
struct kvm_mmu_memory_cache mmu_page_cache;
struct kvm_mmu_memory_cache mmu_page_header_cache;
@@ -393,6 +393,15 @@ struct kvm_vcpu_arch {
unsigned int hw_tsc_khz;
unsigned int time_offset;
struct page *time_page;
+
+ struct {
+ u64 msr_val;
+ u64 last_steal;
+ u64 accum_steal;
+ struct gfn_to_hva_cache stime;
+ struct kvm_steal_time steal;
+ } st;
+
u64 last_guest_tsc;
u64 last_kernel_ns;
u64 last_tsc_nsec;
@@ -419,6 +428,11 @@ struct kvm_vcpu_arch {
u64 mcg_ctl;
u64 *mce_banks;
+ /* Cache MMIO info */
+ u64 mmio_gva;
+ unsigned access;
+ gfn_t mmio_gfn;
+
/* used for guest single stepping over the given code position */
unsigned long singlestep_rip;
@@ -441,6 +455,7 @@ struct kvm_arch {
unsigned int n_used_mmu_pages;
unsigned int n_requested_mmu_pages;
unsigned int n_max_mmu_pages;
+ unsigned int indirect_shadow_pages;
atomic_t invlpg_counter;
struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
/*
@@ -477,6 +492,8 @@ struct kvm_arch {
u64 hv_guest_os_id;
u64 hv_hypercall;
+ atomic_t reader_counter;
+
#ifdef CONFIG_KVM_MMU_AUDIT
int audit_point;
#endif
@@ -559,7 +576,7 @@ struct kvm_x86_ops {
void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu);
void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
- void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
+ int (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
@@ -636,7 +653,6 @@ void kvm_mmu_module_exit(void);
void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
int kvm_mmu_create(struct kvm_vcpu *vcpu);
int kvm_mmu_setup(struct kvm_vcpu *vcpu);
-void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte);
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
u64 dirty_mask, u64 nx_mask, u64 x_mask);
@@ -830,11 +846,12 @@ enum {
asmlinkage void kvm_spurious_fault(void);
extern bool kvm_rebooting;
-#define __kvm_handle_fault_on_reboot(insn) \
+#define ____kvm_handle_fault_on_reboot(insn, cleanup_insn) \
"666: " insn "\n\t" \
"668: \n\t" \
".pushsection .fixup, \"ax\" \n" \
"667: \n\t" \
+ cleanup_insn "\n\t" \
"cmpb $0, kvm_rebooting \n\t" \
"jne 668b \n\t" \
__ASM_SIZE(push) " $666b \n\t" \
@@ -844,6 +861,9 @@ extern bool kvm_rebooting;
_ASM_PTR " 666b, 667b \n\t" \
".popsection"
+#define __kvm_handle_fault_on_reboot(insn) \
+ ____kvm_handle_fault_on_reboot(insn, "")
+
#define KVM_ARCH_WANT_MMU_NOTIFIER
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
int kvm_age_hva(struct kvm *kvm, unsigned long hva);
diff --git a/arch/x86/include/asm/kvm_para.h b/arch/x86/include/asm/kvm_para.h
index a427bf77a93d..734c3767cfac 100644
--- a/arch/x86/include/asm/kvm_para.h
+++ b/arch/x86/include/asm/kvm_para.h
@@ -21,6 +21,7 @@
*/
#define KVM_FEATURE_CLOCKSOURCE2 3
#define KVM_FEATURE_ASYNC_PF 4
+#define KVM_FEATURE_STEAL_TIME 5
/* The last 8 bits are used to indicate how to interpret the flags field
* in pvclock structure. If no bits are set, all flags are ignored.
@@ -30,10 +31,23 @@
#define MSR_KVM_WALL_CLOCK 0x11
#define MSR_KVM_SYSTEM_TIME 0x12
+#define KVM_MSR_ENABLED 1
/* Custom MSRs falls in the range 0x4b564d00-0x4b564dff */
#define MSR_KVM_WALL_CLOCK_NEW 0x4b564d00
#define MSR_KVM_SYSTEM_TIME_NEW 0x4b564d01
#define MSR_KVM_ASYNC_PF_EN 0x4b564d02
+#define MSR_KVM_STEAL_TIME 0x4b564d03
+
+struct kvm_steal_time {
+ __u64 steal;
+ __u32 version;
+ __u32 flags;
+ __u32 pad[12];
+};
+
+#define KVM_STEAL_ALIGNMENT_BITS 5
+#define KVM_STEAL_VALID_BITS ((-1ULL << (KVM_STEAL_ALIGNMENT_BITS + 1)))
+#define KVM_STEAL_RESERVED_MASK (((1 << KVM_STEAL_ALIGNMENT_BITS) - 1 ) << 1)
#define KVM_MAX_MMU_OP_BATCH 32
@@ -178,6 +192,7 @@ void __init kvm_guest_init(void);
void kvm_async_pf_task_wait(u32 token);
void kvm_async_pf_task_wake(u32 token);
u32 kvm_read_and_reset_pf_reason(void);
+extern void kvm_disable_steal_time(void);
#else
#define kvm_guest_init() do { } while (0)
#define kvm_async_pf_task_wait(T) do {} while(0)
@@ -186,6 +201,11 @@ static inline u32 kvm_read_and_reset_pf_reason(void)
{
return 0;
}
+
+static inline void kvm_disable_steal_time(void)
+{
+ return;
+}
#endif
#endif /* __KERNEL__ */
diff --git a/arch/x86/include/asm/msr-index.h b/arch/x86/include/asm/msr-index.h
index d96bdb25ca3d..d52609aeeab8 100644
--- a/arch/x86/include/asm/msr-index.h
+++ b/arch/x86/include/asm/msr-index.h
@@ -441,6 +441,18 @@
#define MSR_IA32_VMX_VMCS_ENUM 0x0000048a
#define MSR_IA32_VMX_PROCBASED_CTLS2 0x0000048b
#define MSR_IA32_VMX_EPT_VPID_CAP 0x0000048c
+#define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x0000048d
+#define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x0000048e
+#define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x0000048f
+#define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x00000490
+
+/* VMX_BASIC bits and bitmasks */
+#define VMX_BASIC_VMCS_SIZE_SHIFT 32
+#define VMX_BASIC_64 0x0001000000000000LLU
+#define VMX_BASIC_MEM_TYPE_SHIFT 50
+#define VMX_BASIC_MEM_TYPE_MASK 0x003c000000000000LLU
+#define VMX_BASIC_MEM_TYPE_WB 6LLU
+#define VMX_BASIC_INOUT 0x0040000000000000LLU
/* AMD-V MSRs */
diff --git a/arch/x86/include/asm/paravirt.h b/arch/x86/include/asm/paravirt.h
index ebbc4d8ab170..a7d2db9a74fb 100644
--- a/arch/x86/include/asm/paravirt.h
+++ b/arch/x86/include/asm/paravirt.h
@@ -230,6 +230,15 @@ static inline unsigned long long paravirt_sched_clock(void)
return PVOP_CALL0(unsigned long long, pv_time_ops.sched_clock);
}
+struct jump_label_key;
+extern struct jump_label_key paravirt_steal_enabled;
+extern struct jump_label_key paravirt_steal_rq_enabled;
+
+static inline u64 paravirt_steal_clock(int cpu)
+{
+ return PVOP_CALL1(u64, pv_time_ops.steal_clock, cpu);
+}
+
static inline unsigned long long paravirt_read_pmc(int counter)
{
return PVOP_CALL1(u64, pv_cpu_ops.read_pmc, counter);
diff --git a/arch/x86/include/asm/paravirt_types.h b/arch/x86/include/asm/paravirt_types.h
index 82885099c869..2c7652163111 100644
--- a/arch/x86/include/asm/paravirt_types.h
+++ b/arch/x86/include/asm/paravirt_types.h
@@ -89,6 +89,7 @@ struct pv_lazy_ops {
struct pv_time_ops {
unsigned long long (*sched_clock)(void);
+ unsigned long long (*steal_clock)(int cpu);
unsigned long (*get_tsc_khz)(void);
};
diff --git a/arch/x86/include/asm/processor-flags.h b/arch/x86/include/asm/processor-flags.h
index 59ab4dffa377..2dddb317bb39 100644
--- a/arch/x86/include/asm/processor-flags.h
+++ b/arch/x86/include/asm/processor-flags.h
@@ -59,6 +59,7 @@
#define X86_CR4_OSFXSR 0x00000200 /* enable fast FPU save and restore */
#define X86_CR4_OSXMMEXCPT 0x00000400 /* enable unmasked SSE exceptions */
#define X86_CR4_VMXE 0x00002000 /* enable VMX virtualization */
+#define X86_CR4_RDWRGSFS 0x00010000 /* enable RDWRGSFS support */
#define X86_CR4_OSXSAVE 0x00040000 /* enable xsave and xrestore */
#define X86_CR4_SMEP 0x00100000 /* enable SMEP support */
diff --git a/arch/x86/include/asm/vmx.h b/arch/x86/include/asm/vmx.h
index 84471b810460..2caf290e9895 100644
--- a/arch/x86/include/asm/vmx.h
+++ b/arch/x86/include/asm/vmx.h
@@ -132,6 +132,8 @@ enum vmcs_field {
GUEST_IA32_PAT_HIGH = 0x00002805,
GUEST_IA32_EFER = 0x00002806,
GUEST_IA32_EFER_HIGH = 0x00002807,
+ GUEST_IA32_PERF_GLOBAL_CTRL = 0x00002808,
+ GUEST_IA32_PERF_GLOBAL_CTRL_HIGH= 0x00002809,
GUEST_PDPTR0 = 0x0000280a,
GUEST_PDPTR0_HIGH = 0x0000280b,
GUEST_PDPTR1 = 0x0000280c,
@@ -144,6 +146,8 @@ enum vmcs_field {
HOST_IA32_PAT_HIGH = 0x00002c01,
HOST_IA32_EFER = 0x00002c02,
HOST_IA32_EFER_HIGH = 0x00002c03,
+ HOST_IA32_PERF_GLOBAL_CTRL = 0x00002c04,
+ HOST_IA32_PERF_GLOBAL_CTRL_HIGH = 0x00002c05,
PIN_BASED_VM_EXEC_CONTROL = 0x00004000,
CPU_BASED_VM_EXEC_CONTROL = 0x00004002,
EXCEPTION_BITMAP = 0x00004004,
@@ -426,4 +430,43 @@ struct vmx_msr_entry {
u64 value;
} __aligned(16);
+/*
+ * Exit Qualifications for entry failure during or after loading guest state
+ */
+#define ENTRY_FAIL_DEFAULT 0
+#define ENTRY_FAIL_PDPTE 2
+#define ENTRY_FAIL_NMI 3
+#define ENTRY_FAIL_VMCS_LINK_PTR 4
+
+/*
+ * VM-instruction error numbers
+ */
+enum vm_instruction_error_number {
+ VMXERR_VMCALL_IN_VMX_ROOT_OPERATION = 1,
+ VMXERR_VMCLEAR_INVALID_ADDRESS = 2,
+ VMXERR_VMCLEAR_VMXON_POINTER = 3,
+ VMXERR_VMLAUNCH_NONCLEAR_VMCS = 4,
+ VMXERR_VMRESUME_NONLAUNCHED_VMCS = 5,
+ VMXERR_VMRESUME_AFTER_VMXOFF = 6,
+ VMXERR_ENTRY_INVALID_CONTROL_FIELD = 7,
+ VMXERR_ENTRY_INVALID_HOST_STATE_FIELD = 8,
+ VMXERR_VMPTRLD_INVALID_ADDRESS = 9,
+ VMXERR_VMPTRLD_VMXON_POINTER = 10,
+ VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID = 11,
+ VMXERR_UNSUPPORTED_VMCS_COMPONENT = 12,
+ VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT = 13,
+ VMXERR_VMXON_IN_VMX_ROOT_OPERATION = 15,
+ VMXERR_ENTRY_INVALID_EXECUTIVE_VMCS_POINTER = 16,
+ VMXERR_ENTRY_NONLAUNCHED_EXECUTIVE_VMCS = 17,
+ VMXERR_ENTRY_EXECUTIVE_VMCS_POINTER_NOT_VMXON_POINTER = 18,
+ VMXERR_VMCALL_NONCLEAR_VMCS = 19,
+ VMXERR_VMCALL_INVALID_VM_EXIT_CONTROL_FIELDS = 20,
+ VMXERR_VMCALL_INCORRECT_MSEG_REVISION_ID = 22,
+ VMXERR_VMXOFF_UNDER_DUAL_MONITOR_TREATMENT_OF_SMIS_AND_SMM = 23,
+ VMXERR_VMCALL_INVALID_SMM_MONITOR_FEATURES = 24,
+ VMXERR_ENTRY_INVALID_VM_EXECUTION_CONTROL_FIELDS_IN_EXECUTIVE_VMCS = 25,
+ VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS = 26,
+ VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID = 28,
+};
+
#endif
diff --git a/arch/x86/kernel/kvm.c b/arch/x86/kernel/kvm.c
index 33c07b0b122e..a9c2116001d6 100644
--- a/arch/x86/kernel/kvm.c
+++ b/arch/x86/kernel/kvm.c
@@ -51,6 +51,15 @@ static int parse_no_kvmapf(char *arg)
early_param("no-kvmapf", parse_no_kvmapf);
+static int steal_acc = 1;
+static int parse_no_stealacc(char *arg)
+{
+ steal_acc = 0;
+ return 0;
+}
+
+early_param("no-steal-acc", parse_no_stealacc);
+
struct kvm_para_state {
u8 mmu_queue[MMU_QUEUE_SIZE];
int mmu_queue_len;
@@ -58,6 +67,8 @@ struct kvm_para_state {
static DEFINE_PER_CPU(struct kvm_para_state, para_state);
static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
+static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
+static int has_steal_clock = 0;
static struct kvm_para_state *kvm_para_state(void)
{
@@ -441,6 +452,21 @@ static void __init paravirt_ops_setup(void)
#endif
}
+static void kvm_register_steal_time(void)
+{
+ int cpu = smp_processor_id();
+ struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
+
+ if (!has_steal_clock)
+ return;
+
+ memset(st, 0, sizeof(*st));
+
+ wrmsrl(MSR_KVM_STEAL_TIME, (__pa(st) | KVM_MSR_ENABLED));
+ printk(KERN_INFO "kvm-stealtime: cpu %d, msr %lx\n",
+ cpu, __pa(st));
+}
+
void __cpuinit kvm_guest_cpu_init(void)
{
if (!kvm_para_available())
@@ -457,6 +483,9 @@ void __cpuinit kvm_guest_cpu_init(void)
printk(KERN_INFO"KVM setup async PF for cpu %d\n",
smp_processor_id());
}
+
+ if (has_steal_clock)
+ kvm_register_steal_time();
}
static void kvm_pv_disable_apf(void *unused)
@@ -483,6 +512,31 @@ static struct notifier_block kvm_pv_reboot_nb = {
.notifier_call = kvm_pv_reboot_notify,
};
+static u64 kvm_steal_clock(int cpu)
+{
+ u64 steal;
+ struct kvm_steal_time *src;
+ int version;
+
+ src = &per_cpu(steal_time, cpu);
+ do {
+ version = src->version;
+ rmb();
+ steal = src->steal;
+ rmb();
+ } while ((version & 1) || (version != src->version));
+
+ return steal;
+}
+
+void kvm_disable_steal_time(void)
+{
+ if (!has_steal_clock)
+ return;
+
+ wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
+}
+
#ifdef CONFIG_SMP
static void __init kvm_smp_prepare_boot_cpu(void)
{
@@ -500,6 +554,7 @@ static void __cpuinit kvm_guest_cpu_online(void *dummy)
static void kvm_guest_cpu_offline(void *dummy)
{
+ kvm_disable_steal_time();
kvm_pv_disable_apf(NULL);
apf_task_wake_all();
}
@@ -548,6 +603,11 @@ void __init kvm_guest_init(void)
if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
x86_init.irqs.trap_init = kvm_apf_trap_init;
+ if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
+ has_steal_clock = 1;
+ pv_time_ops.steal_clock = kvm_steal_clock;
+ }
+
#ifdef CONFIG_SMP
smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
register_cpu_notifier(&kvm_cpu_notifier);
@@ -555,3 +615,15 @@ void __init kvm_guest_init(void)
kvm_guest_cpu_init();
#endif
}
+
+static __init int activate_jump_labels(void)
+{
+ if (has_steal_clock) {
+ jump_label_inc(&paravirt_steal_enabled);
+ if (steal_acc)
+ jump_label_inc(&paravirt_steal_rq_enabled);
+ }
+
+ return 0;
+}
+arch_initcall(activate_jump_labels);
diff --git a/arch/x86/kernel/kvmclock.c b/arch/x86/kernel/kvmclock.c
index 6389a6bca11b..c1a0188e29ae 100644
--- a/arch/x86/kernel/kvmclock.c
+++ b/arch/x86/kernel/kvmclock.c
@@ -160,6 +160,7 @@ static void __cpuinit kvm_setup_secondary_clock(void)
static void kvm_crash_shutdown(struct pt_regs *regs)
{
native_write_msr(msr_kvm_system_time, 0, 0);
+ kvm_disable_steal_time();
native_machine_crash_shutdown(regs);
}
#endif
@@ -167,6 +168,7 @@ static void kvm_crash_shutdown(struct pt_regs *regs)
static void kvm_shutdown(void)
{
native_write_msr(msr_kvm_system_time, 0, 0);
+ kvm_disable_steal_time();
native_machine_shutdown();
}
diff --git a/arch/x86/kernel/paravirt.c b/arch/x86/kernel/paravirt.c
index 869e1aeeb71b..613a7931ecc1 100644
--- a/arch/x86/kernel/paravirt.c
+++ b/arch/x86/kernel/paravirt.c
@@ -202,6 +202,14 @@ static void native_flush_tlb_single(unsigned long addr)
__native_flush_tlb_single(addr);
}
+struct jump_label_key paravirt_steal_enabled;
+struct jump_label_key paravirt_steal_rq_enabled;
+
+static u64 native_steal_clock(int cpu)
+{
+ return 0;
+}
+
/* These are in entry.S */
extern void native_iret(void);
extern void native_irq_enable_sysexit(void);
@@ -307,6 +315,7 @@ struct pv_init_ops pv_init_ops = {
struct pv_time_ops pv_time_ops = {
.sched_clock = native_sched_clock,
+ .steal_clock = native_steal_clock,
};
struct pv_irq_ops pv_irq_ops = {
diff --git a/arch/x86/kvm/Kconfig b/arch/x86/kvm/Kconfig
index 65cf8233d25c..988724b236b6 100644
--- a/arch/x86/kvm/Kconfig
+++ b/arch/x86/kvm/Kconfig
@@ -31,6 +31,7 @@ config KVM
select KVM_ASYNC_PF
select USER_RETURN_NOTIFIER
select KVM_MMIO
+ select TASK_DELAY_ACCT
---help---
Support hosting fully virtualized guest machines using hardware
virtualization extensions. You will need a fairly recent
diff --git a/arch/x86/kvm/emulate.c b/arch/x86/kvm/emulate.c
index adc98675cda0..6f08bc940fa8 100644
--- a/arch/x86/kvm/emulate.c
+++ b/arch/x86/kvm/emulate.c
@@ -407,76 +407,59 @@ struct gprefix {
} \
} while (0)
-/* Fetch next part of the instruction being emulated. */
-#define insn_fetch(_type, _size, _eip) \
-({ unsigned long _x; \
- rc = do_insn_fetch(ctxt, ops, (_eip), &_x, (_size)); \
- if (rc != X86EMUL_CONTINUE) \
- goto done; \
- (_eip) += (_size); \
- (_type)_x; \
-})
-
-#define insn_fetch_arr(_arr, _size, _eip) \
-({ rc = do_insn_fetch(ctxt, ops, (_eip), _arr, (_size)); \
- if (rc != X86EMUL_CONTINUE) \
- goto done; \
- (_eip) += (_size); \
-})
-
static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
enum x86_intercept intercept,
enum x86_intercept_stage stage)
{
struct x86_instruction_info info = {
.intercept = intercept,
- .rep_prefix = ctxt->decode.rep_prefix,
- .modrm_mod = ctxt->decode.modrm_mod,
- .modrm_reg = ctxt->decode.modrm_reg,
- .modrm_rm = ctxt->decode.modrm_rm,
- .src_val = ctxt->decode.src.val64,
- .src_bytes = ctxt->decode.src.bytes,
- .dst_bytes = ctxt->decode.dst.bytes,
- .ad_bytes = ctxt->decode.ad_bytes,
+ .rep_prefix = ctxt->rep_prefix,
+ .modrm_mod = ctxt->modrm_mod,
+ .modrm_reg = ctxt->modrm_reg,
+ .modrm_rm = ctxt->modrm_rm,
+ .src_val = ctxt->src.val64,
+ .src_bytes = ctxt->src.bytes,
+ .dst_bytes = ctxt->dst.bytes,
+ .ad_bytes = ctxt->ad_bytes,
.next_rip = ctxt->eip,
};
return ctxt->ops->intercept(ctxt, &info, stage);
}
-static inline unsigned long ad_mask(struct decode_cache *c)
+static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
{
- return (1UL << (c->ad_bytes << 3)) - 1;
+ return (1UL << (ctxt->ad_bytes << 3)) - 1;
}
/* Access/update address held in a register, based on addressing mode. */
static inline unsigned long
-address_mask(struct decode_cache *c, unsigned long reg)
+address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
{
- if (c->ad_bytes == sizeof(unsigned long))
+ if (ctxt->ad_bytes == sizeof(unsigned long))
return reg;
else
- return reg & ad_mask(c);
+ return reg & ad_mask(ctxt);
}
static inline unsigned long
-register_address(struct decode_cache *c, unsigned long reg)
+register_address(struct x86_emulate_ctxt *ctxt, unsigned long reg)
{
- return address_mask(c, reg);
+ return address_mask(ctxt, reg);
}
static inline void
-register_address_increment(struct decode_cache *c, unsigned long *reg, int inc)
+register_address_increment(struct x86_emulate_ctxt *ctxt, unsigned long *reg, int inc)
{
- if (c->ad_bytes == sizeof(unsigned long))
+ if (ctxt->ad_bytes == sizeof(unsigned long))
*reg += inc;
else
- *reg = (*reg & ~ad_mask(c)) | ((*reg + inc) & ad_mask(c));
+ *reg = (*reg & ~ad_mask(ctxt)) | ((*reg + inc) & ad_mask(ctxt));
}
-static inline void jmp_rel(struct decode_cache *c, int rel)
+static inline void jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
{
- register_address_increment(c, &c->eip, rel);
+ register_address_increment(ctxt, &ctxt->_eip, rel);
}
static u32 desc_limit_scaled(struct desc_struct *desc)
@@ -486,28 +469,26 @@ static u32 desc_limit_scaled(struct desc_struct *desc)
return desc->g ? (limit << 12) | 0xfff : limit;
}
-static void set_seg_override(struct decode_cache *c, int seg)
+static void set_seg_override(struct x86_emulate_ctxt *ctxt, int seg)
{
- c->has_seg_override = true;
- c->seg_override = seg;
+ ctxt->has_seg_override = true;
+ ctxt->seg_override = seg;
}
-static unsigned long seg_base(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops, int seg)
+static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
{
if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
return 0;
- return ops->get_cached_segment_base(ctxt, seg);
+ return ctxt->ops->get_cached_segment_base(ctxt, seg);
}
-static unsigned seg_override(struct x86_emulate_ctxt *ctxt,
- struct decode_cache *c)
+static unsigned seg_override(struct x86_emulate_ctxt *ctxt)
{
- if (!c->has_seg_override)
+ if (!ctxt->has_seg_override)
return 0;
- return c->seg_override;
+ return ctxt->seg_override;
}
static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
@@ -579,7 +560,6 @@ static int __linearize(struct x86_emulate_ctxt *ctxt,
unsigned size, bool write, bool fetch,
ulong *linear)
{
- struct decode_cache *c = &ctxt->decode;
struct desc_struct desc;
bool usable;
ulong la;
@@ -587,7 +567,7 @@ static int __linearize(struct x86_emulate_ctxt *ctxt,
u16 sel;
unsigned cpl, rpl;
- la = seg_base(ctxt, ctxt->ops, addr.seg) + addr.ea;
+ la = seg_base(ctxt, addr.seg) + addr.ea;
switch (ctxt->mode) {
case X86EMUL_MODE_REAL:
break;
@@ -637,7 +617,7 @@ static int __linearize(struct x86_emulate_ctxt *ctxt,
}
break;
}
- if (fetch ? ctxt->mode != X86EMUL_MODE_PROT64 : c->ad_bytes != 8)
+ if (fetch ? ctxt->mode != X86EMUL_MODE_PROT64 : ctxt->ad_bytes != 8)
la &= (u32)-1;
*linear = la;
return X86EMUL_CONTINUE;
@@ -671,11 +651,10 @@ static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception);
}
-static int do_fetch_insn_byte(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
+static int do_insn_fetch_byte(struct x86_emulate_ctxt *ctxt,
unsigned long eip, u8 *dest)
{
- struct fetch_cache *fc = &ctxt->decode.fetch;
+ struct fetch_cache *fc = &ctxt->fetch;
int rc;
int size, cur_size;
@@ -687,8 +666,8 @@ static int do_fetch_insn_byte(struct x86_emulate_ctxt *ctxt,
rc = __linearize(ctxt, addr, size, false, true, &linear);
if (rc != X86EMUL_CONTINUE)
return rc;
- rc = ops->fetch(ctxt, linear, fc->data + cur_size,
- size, &ctxt->exception);
+ rc = ctxt->ops->fetch(ctxt, linear, fc->data + cur_size,
+ size, &ctxt->exception);
if (rc != X86EMUL_CONTINUE)
return rc;
fc->end += size;
@@ -698,7 +677,6 @@ static int do_fetch_insn_byte(struct x86_emulate_ctxt *ctxt,
}
static int do_insn_fetch(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
unsigned long eip, void *dest, unsigned size)
{
int rc;
@@ -707,13 +685,30 @@ static int do_insn_fetch(struct x86_emulate_ctxt *ctxt,
if (eip + size - ctxt->eip > 15)
return X86EMUL_UNHANDLEABLE;
while (size--) {
- rc = do_fetch_insn_byte(ctxt, ops, eip++, dest++);
+ rc = do_insn_fetch_byte(ctxt, eip++, dest++);
if (rc != X86EMUL_CONTINUE)
return rc;
}
return X86EMUL_CONTINUE;
}
+/* Fetch next part of the instruction being emulated. */
+#define insn_fetch(_type, _size, _eip) \
+({ unsigned long _x; \
+ rc = do_insn_fetch(ctxt, (_eip), &_x, (_size)); \
+ if (rc != X86EMUL_CONTINUE) \
+ goto done; \
+ (_eip) += (_size); \
+ (_type)_x; \
+})
+
+#define insn_fetch_arr(_arr, _size, _eip) \
+({ rc = do_insn_fetch(ctxt, (_eip), _arr, (_size)); \
+ if (rc != X86EMUL_CONTINUE) \
+ goto done; \
+ (_eip) += (_size); \
+})
+
/*
* Given the 'reg' portion of a ModRM byte, and a register block, return a
* pointer into the block that addresses the relevant register.
@@ -857,16 +852,15 @@ static void write_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data,
static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
struct operand *op,
- struct decode_cache *c,
int inhibit_bytereg)
{
- unsigned reg = c->modrm_reg;
- int highbyte_regs = c->rex_prefix == 0;
+ unsigned reg = ctxt->modrm_reg;
+ int highbyte_regs = ctxt->rex_prefix == 0;
- if (!(c->d & ModRM))
- reg = (c->b & 7) | ((c->rex_prefix & 1) << 3);
+ if (!(ctxt->d & ModRM))
+ reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
- if (c->d & Sse) {
+ if (ctxt->d & Sse) {
op->type = OP_XMM;
op->bytes = 16;
op->addr.xmm = reg;
@@ -875,49 +869,47 @@ static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
}
op->type = OP_REG;
- if ((c->d & ByteOp) && !inhibit_bytereg) {
- op->addr.reg = decode_register(reg, c->regs, highbyte_regs);
+ if ((ctxt->d & ByteOp) && !inhibit_bytereg) {
+ op->addr.reg = decode_register(reg, ctxt->regs, highbyte_regs);
op->bytes = 1;
} else {
- op->addr.reg = decode_register(reg, c->regs, 0);
- op->bytes = c->op_bytes;
+ op->addr.reg = decode_register(reg, ctxt->regs, 0);
+ op->bytes = ctxt->op_bytes;
}
fetch_register_operand(op);
op->orig_val = op->val;
}
static int decode_modrm(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
struct operand *op)
{
- struct decode_cache *c = &ctxt->decode;
u8 sib;
int index_reg = 0, base_reg = 0, scale;
int rc = X86EMUL_CONTINUE;
ulong modrm_ea = 0;
- if (c->rex_prefix) {
- c->modrm_reg = (c->rex_prefix & 4) << 1; /* REX.R */
- index_reg = (c->rex_prefix & 2) << 2; /* REX.X */
- c->modrm_rm = base_reg = (c->rex_prefix & 1) << 3; /* REG.B */
+ if (ctxt->rex_prefix) {
+ ctxt->modrm_reg = (ctxt->rex_prefix & 4) << 1; /* REX.R */
+ index_reg = (ctxt->rex_prefix & 2) << 2; /* REX.X */
+ ctxt->modrm_rm = base_reg = (ctxt->rex_prefix & 1) << 3; /* REG.B */
}
- c->modrm = insn_fetch(u8, 1, c->eip);
- c->modrm_mod |= (c->modrm & 0xc0) >> 6;
- c->modrm_reg |= (c->modrm & 0x38) >> 3;
- c->modrm_rm |= (c->modrm & 0x07);
- c->modrm_seg = VCPU_SREG_DS;
+ ctxt->modrm = insn_fetch(u8, 1, ctxt->_eip);
+ ctxt->modrm_mod |= (ctxt->modrm & 0xc0) >> 6;
+ ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
+ ctxt->modrm_rm |= (ctxt->modrm & 0x07);
+ ctxt->modrm_seg = VCPU_SREG_DS;
- if (c->modrm_mod == 3) {
+ if (ctxt->modrm_mod == 3) {
op->type = OP_REG;
- op->bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
- op->addr.reg = decode_register(c->modrm_rm,
- c->regs, c->d & ByteOp);
- if (c->d & Sse) {
+ op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ op->addr.reg = decode_register(ctxt->modrm_rm,
+ ctxt->regs, ctxt->d & ByteOp);
+ if (ctxt->d & Sse) {
op->type = OP_XMM;
op->bytes = 16;
- op->addr.xmm = c->modrm_rm;
- read_sse_reg(ctxt, &op->vec_val, c->modrm_rm);
+ op->addr.xmm = ctxt->modrm_rm;
+ read_sse_reg(ctxt, &op->vec_val, ctxt->modrm_rm);
return rc;
}
fetch_register_operand(op);
@@ -926,26 +918,26 @@ static int decode_modrm(struct x86_emulate_ctxt *ctxt,
op->type = OP_MEM;
- if (c->ad_bytes == 2) {
- unsigned bx = c->regs[VCPU_REGS_RBX];
- unsigned bp = c->regs[VCPU_REGS_RBP];
- unsigned si = c->regs[VCPU_REGS_RSI];
- unsigned di = c->regs[VCPU_REGS_RDI];
+ if (ctxt->ad_bytes == 2) {
+ unsigned bx = ctxt->regs[VCPU_REGS_RBX];
+ unsigned bp = ctxt->regs[VCPU_REGS_RBP];
+ unsigned si = ctxt->regs[VCPU_REGS_RSI];
+ unsigned di = ctxt->regs[VCPU_REGS_RDI];
/* 16-bit ModR/M decode. */
- switch (c->modrm_mod) {
+ switch (ctxt->modrm_mod) {
case 0:
- if (c->modrm_rm == 6)
- modrm_ea += insn_fetch(u16, 2, c->eip);
+ if (ctxt->modrm_rm == 6)
+ modrm_ea += insn_fetch(u16, 2, ctxt->_eip);
break;
case 1:
- modrm_ea += insn_fetch(s8, 1, c->eip);
+ modrm_ea += insn_fetch(s8, 1, ctxt->_eip);
break;
case 2:
- modrm_ea += insn_fetch(u16, 2, c->eip);
+ modrm_ea += insn_fetch(u16, 2, ctxt->_eip);
break;
}
- switch (c->modrm_rm) {
+ switch (ctxt->modrm_rm) {
case 0:
modrm_ea += bx + si;
break;
@@ -965,46 +957,46 @@ static int decode_modrm(struct x86_emulate_ctxt *ctxt,
modrm_ea += di;
break;
case 6:
- if (c->modrm_mod != 0)
+ if (ctxt->modrm_mod != 0)
modrm_ea += bp;
break;
case 7:
modrm_ea += bx;
break;
}
- if (c->modrm_rm == 2 || c->modrm_rm == 3 ||
- (c->modrm_rm == 6 && c->modrm_mod != 0))
- c->modrm_seg = VCPU_SREG_SS;
+ if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
+ (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
+ ctxt->modrm_seg = VCPU_SREG_SS;
modrm_ea = (u16)modrm_ea;
} else {
/* 32/64-bit ModR/M decode. */
- if ((c->modrm_rm & 7) == 4) {
- sib = insn_fetch(u8, 1, c->eip);
+ if ((ctxt->modrm_rm & 7) == 4) {
+ sib = insn_fetch(u8, 1, ctxt->_eip);
index_reg |= (sib >> 3) & 7;
base_reg |= sib & 7;
scale = sib >> 6;
- if ((base_reg & 7) == 5 && c->modrm_mod == 0)
- modrm_ea += insn_fetch(s32, 4, c->eip);
+ if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
+ modrm_ea += insn_fetch(s32, 4, ctxt->_eip);
else
- modrm_ea += c->regs[base_reg];
+ modrm_ea += ctxt->regs[base_reg];
if (index_reg != 4)
- modrm_ea += c->regs[index_reg] << scale;
- } else if ((c->modrm_rm & 7) == 5 && c->modrm_mod == 0) {
+ modrm_ea += ctxt->regs[index_reg] << scale;
+ } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
if (ctxt->mode == X86EMUL_MODE_PROT64)
- c->rip_relative = 1;
+ ctxt->rip_relative = 1;
} else
- modrm_ea += c->regs[c->modrm_rm];
- switch (c->modrm_mod) {
+ modrm_ea += ctxt->regs[ctxt->modrm_rm];
+ switch (ctxt->modrm_mod) {
case 0:
- if (c->modrm_rm == 5)
- modrm_ea += insn_fetch(s32, 4, c->eip);
+ if (ctxt->modrm_rm == 5)
+ modrm_ea += insn_fetch(s32, 4, ctxt->_eip);
break;
case 1:
- modrm_ea += insn_fetch(s8, 1, c->eip);
+ modrm_ea += insn_fetch(s8, 1, ctxt->_eip);
break;
case 2:
- modrm_ea += insn_fetch(s32, 4, c->eip);
+ modrm_ea += insn_fetch(s32, 4, ctxt->_eip);
break;
}
}
@@ -1014,53 +1006,50 @@ done:
}
static int decode_abs(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
struct operand *op)
{
- struct decode_cache *c = &ctxt->decode;
int rc = X86EMUL_CONTINUE;
op->type = OP_MEM;
- switch (c->ad_bytes) {
+ switch (ctxt->ad_bytes) {
case 2:
- op->addr.mem.ea = insn_fetch(u16, 2, c->eip);
+ op->addr.mem.ea = insn_fetch(u16, 2, ctxt->_eip);
break;
case 4:
- op->addr.mem.ea = insn_fetch(u32, 4, c->eip);
+ op->addr.mem.ea = insn_fetch(u32, 4, ctxt->_eip);
break;
case 8:
- op->addr.mem.ea = insn_fetch(u64, 8, c->eip);
+ op->addr.mem.ea = insn_fetch(u64, 8, ctxt->_eip);
break;
}
done:
return rc;
}
-static void fetch_bit_operand(struct decode_cache *c)
+static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
{
long sv = 0, mask;
- if (c->dst.type == OP_MEM && c->src.type == OP_REG) {
- mask = ~(c->dst.bytes * 8 - 1);
+ if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
+ mask = ~(ctxt->dst.bytes * 8 - 1);
- if (c->src.bytes == 2)
- sv = (s16)c->src.val & (s16)mask;
- else if (c->src.bytes == 4)
- sv = (s32)c->src.val & (s32)mask;
+ if (ctxt->src.bytes == 2)
+ sv = (s16)ctxt->src.val & (s16)mask;
+ else if (ctxt->src.bytes == 4)
+ sv = (s32)ctxt->src.val & (s32)mask;
- c->dst.addr.mem.ea += (sv >> 3);
+ ctxt->dst.addr.mem.ea += (sv >> 3);
}
/* only subword offset */
- c->src.val &= (c->dst.bytes << 3) - 1;
+ ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
}
static int read_emulated(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
unsigned long addr, void *dest, unsigned size)
{
int rc;
- struct read_cache *mc = &ctxt->decode.mem_read;
+ struct read_cache *mc = &ctxt->mem_read;
while (size) {
int n = min(size, 8u);
@@ -1068,8 +1057,8 @@ static int read_emulated(struct x86_emulate_ctxt *ctxt,
if (mc->pos < mc->end)
goto read_cached;
- rc = ops->read_emulated(ctxt, addr, mc->data + mc->end, n,
- &ctxt->exception);
+ rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, n,
+ &ctxt->exception);
if (rc != X86EMUL_CONTINUE)
return rc;
mc->end += n;
@@ -1094,7 +1083,7 @@ static int segmented_read(struct x86_emulate_ctxt *ctxt,
rc = linearize(ctxt, addr, size, false, &linear);
if (rc != X86EMUL_CONTINUE)
return rc;
- return read_emulated(ctxt, ctxt->ops, linear, data, size);
+ return read_emulated(ctxt, linear, data, size);
}
static int segmented_write(struct x86_emulate_ctxt *ctxt,
@@ -1128,26 +1117,24 @@ static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
}
static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
unsigned int size, unsigned short port,
void *dest)
{
- struct read_cache *rc = &ctxt->decode.io_read;
+ struct read_cache *rc = &ctxt->io_read;
if (rc->pos == rc->end) { /* refill pio read ahead */
- struct decode_cache *c = &ctxt->decode;
unsigned int in_page, n;
- unsigned int count = c->rep_prefix ?
- address_mask(c, c->regs[VCPU_REGS_RCX]) : 1;
+ unsigned int count = ctxt->rep_prefix ?
+ address_mask(ctxt, ctxt->regs[VCPU_REGS_RCX]) : 1;
in_page = (ctxt->eflags & EFLG_DF) ?
- offset_in_page(c->regs[VCPU_REGS_RDI]) :
- PAGE_SIZE - offset_in_page(c->regs[VCPU_REGS_RDI]);
+ offset_in_page(ctxt->regs[VCPU_REGS_RDI]) :
+ PAGE_SIZE - offset_in_page(ctxt->regs[VCPU_REGS_RDI]);
n = min(min(in_page, (unsigned int)sizeof(rc->data)) / size,
count);
if (n == 0)
n = 1;
rc->pos = rc->end = 0;
- if (!ops->pio_in_emulated(ctxt, size, port, rc->data, n))
+ if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
return 0;
rc->end = n * size;
}
@@ -1158,9 +1145,10 @@ static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
}
static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
u16 selector, struct desc_ptr *dt)
{
+ struct x86_emulate_ops *ops = ctxt->ops;
+
if (selector & 1 << 2) {
struct desc_struct desc;
u16 sel;
@@ -1177,48 +1165,42 @@ static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
/* allowed just for 8 bytes segments */
static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
u16 selector, struct desc_struct *desc)
{
struct desc_ptr dt;
u16 index = selector >> 3;
- int ret;
ulong addr;
- get_descriptor_table_ptr(ctxt, ops, selector, &dt);
+ get_descriptor_table_ptr(ctxt, selector, &dt);
if (dt.size < index * 8 + 7)
return emulate_gp(ctxt, selector & 0xfffc);
- addr = dt.address + index * 8;
- ret = ops->read_std(ctxt, addr, desc, sizeof *desc, &ctxt->exception);
- return ret;
+ addr = dt.address + index * 8;
+ return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc,
+ &ctxt->exception);
}
/* allowed just for 8 bytes segments */
static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
u16 selector, struct desc_struct *desc)
{
struct desc_ptr dt;
u16 index = selector >> 3;
ulong addr;
- int ret;
- get_descriptor_table_ptr(ctxt, ops, selector, &dt);
+ get_descriptor_table_ptr(ctxt, selector, &dt);
if (dt.size < index * 8 + 7)
return emulate_gp(ctxt, selector & 0xfffc);
addr = dt.address + index * 8;
- ret = ops->write_std(ctxt, addr, desc, sizeof *desc, &ctxt->exception);
-
- return ret;
+ return ctxt->ops->write_std(ctxt, addr, desc, sizeof *desc,
+ &ctxt->exception);
}
/* Does not support long mode */
static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
u16 selector, int seg)
{
struct desc_struct seg_desc;
@@ -1253,7 +1235,7 @@ static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
if (null_selector) /* for NULL selector skip all following checks */
goto load;
- ret = read_segment_descriptor(ctxt, ops, selector, &seg_desc);
+ ret = read_segment_descriptor(ctxt, selector, &seg_desc);
if (ret != X86EMUL_CONTINUE)
return ret;
@@ -1271,7 +1253,7 @@ static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
rpl = selector & 3;
dpl = seg_desc.dpl;
- cpl = ops->cpl(ctxt);
+ cpl = ctxt->ops->cpl(ctxt);
switch (seg) {
case VCPU_SREG_SS:
@@ -1322,12 +1304,12 @@ static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
if (seg_desc.s) {
/* mark segment as accessed */
seg_desc.type |= 1;
- ret = write_segment_descriptor(ctxt, ops, selector, &seg_desc);
+ ret = write_segment_descriptor(ctxt, selector, &seg_desc);
if (ret != X86EMUL_CONTINUE)
return ret;
}
load:
- ops->set_segment(ctxt, selector, &seg_desc, 0, seg);
+ ctxt->ops->set_segment(ctxt, selector, &seg_desc, 0, seg);
return X86EMUL_CONTINUE;
exception:
emulate_exception(ctxt, err_vec, err_code, true);
@@ -1356,29 +1338,28 @@ static void write_register_operand(struct operand *op)
static int writeback(struct x86_emulate_ctxt *ctxt)
{
int rc;
- struct decode_cache *c = &ctxt->decode;
- switch (c->dst.type) {
+ switch (ctxt->dst.type) {
case OP_REG:
- write_register_operand(&c->dst);
+ write_register_operand(&ctxt->dst);
break;
case OP_MEM:
- if (c->lock_prefix)
+ if (ctxt->lock_prefix)
rc = segmented_cmpxchg(ctxt,
- c->dst.addr.mem,
- &c->dst.orig_val,
- &c->dst.val,
- c->dst.bytes);
+ ctxt->dst.addr.mem,
+ &ctxt->dst.orig_val,
+ &ctxt->dst.val,
+ ctxt->dst.bytes);
else
rc = segmented_write(ctxt,
- c->dst.addr.mem,
- &c->dst.val,
- c->dst.bytes);
+ ctxt->dst.addr.mem,
+ &ctxt->dst.val,
+ ctxt->dst.bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
break;
case OP_XMM:
- write_sse_reg(ctxt, &c->dst.vec_val, c->dst.addr.xmm);
+ write_sse_reg(ctxt, &ctxt->dst.vec_val, ctxt->dst.addr.xmm);
break;
case OP_NONE:
/* no writeback */
@@ -1391,50 +1372,45 @@ static int writeback(struct x86_emulate_ctxt *ctxt)
static int em_push(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
struct segmented_address addr;
- register_address_increment(c, &c->regs[VCPU_REGS_RSP], -c->op_bytes);
- addr.ea = register_address(c, c->regs[VCPU_REGS_RSP]);
+ register_address_increment(ctxt, &ctxt->regs[VCPU_REGS_RSP], -ctxt->op_bytes);
+ addr.ea = register_address(ctxt, ctxt->regs[VCPU_REGS_RSP]);
addr.seg = VCPU_SREG_SS;
/* Disable writeback. */
- c->dst.type = OP_NONE;
- return segmented_write(ctxt, addr, &c->src.val, c->op_bytes);
+ ctxt->dst.type = OP_NONE;
+ return segmented_write(ctxt, addr, &ctxt->src.val, ctxt->op_bytes);
}
static int emulate_pop(struct x86_emulate_ctxt *ctxt,
void *dest, int len)
{
- struct decode_cache *c = &ctxt->decode;
int rc;
struct segmented_address addr;
- addr.ea = register_address(c, c->regs[VCPU_REGS_RSP]);
+ addr.ea = register_address(ctxt, ctxt->regs[VCPU_REGS_RSP]);
addr.seg = VCPU_SREG_SS;
rc = segmented_read(ctxt, addr, dest, len);
if (rc != X86EMUL_CONTINUE)
return rc;
- register_address_increment(c, &c->regs[VCPU_REGS_RSP], len);
+ register_address_increment(ctxt, &ctxt->regs[VCPU_REGS_RSP], len);
return rc;
}
static int em_pop(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- return emulate_pop(ctxt, &c->dst.val, c->op_bytes);
+ return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
}
static int emulate_popf(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
- void *dest, int len)
+ void *dest, int len)
{
int rc;
unsigned long val, change_mask;
int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
- int cpl = ops->cpl(ctxt);
+ int cpl = ctxt->ops->cpl(ctxt);
rc = emulate_pop(ctxt, &val, len);
if (rc != X86EMUL_CONTINUE)
@@ -1470,49 +1446,41 @@ static int emulate_popf(struct x86_emulate_ctxt *ctxt,
static int em_popf(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- c->dst.type = OP_REG;
- c->dst.addr.reg = &ctxt->eflags;
- c->dst.bytes = c->op_bytes;
- return emulate_popf(ctxt, ctxt->ops, &c->dst.val, c->op_bytes);
+ ctxt->dst.type = OP_REG;
+ ctxt->dst.addr.reg = &ctxt->eflags;
+ ctxt->dst.bytes = ctxt->op_bytes;
+ return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
}
-static int emulate_push_sreg(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops, int seg)
+static int emulate_push_sreg(struct x86_emulate_ctxt *ctxt, int seg)
{
- struct decode_cache *c = &ctxt->decode;
-
- c->src.val = get_segment_selector(ctxt, seg);
+ ctxt->src.val = get_segment_selector(ctxt, seg);
return em_push(ctxt);
}
-static int emulate_pop_sreg(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops, int seg)
+static int emulate_pop_sreg(struct x86_emulate_ctxt *ctxt, int seg)
{
- struct decode_cache *c = &ctxt->decode;
unsigned long selector;
int rc;
- rc = emulate_pop(ctxt, &selector, c->op_bytes);
+ rc = emulate_pop(ctxt, &selector, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
- rc = load_segment_descriptor(ctxt, ops, (u16)selector, seg);
+ rc = load_segment_descriptor(ctxt, (u16)selector, seg);
return rc;
}
static int em_pusha(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
- unsigned long old_esp = c->regs[VCPU_REGS_RSP];
+ unsigned long old_esp = ctxt->regs[VCPU_REGS_RSP];
int rc = X86EMUL_CONTINUE;
int reg = VCPU_REGS_RAX;
while (reg <= VCPU_REGS_RDI) {
(reg == VCPU_REGS_RSP) ?
- (c->src.val = old_esp) : (c->src.val = c->regs[reg]);
+ (ctxt->src.val = old_esp) : (ctxt->src.val = ctxt->regs[reg]);
rc = em_push(ctxt);
if (rc != X86EMUL_CONTINUE)
@@ -1526,26 +1494,23 @@ static int em_pusha(struct x86_emulate_ctxt *ctxt)
static int em_pushf(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- c->src.val = (unsigned long)ctxt->eflags;
+ ctxt->src.val = (unsigned long)ctxt->eflags;
return em_push(ctxt);
}
static int em_popa(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
int rc = X86EMUL_CONTINUE;
int reg = VCPU_REGS_RDI;
while (reg >= VCPU_REGS_RAX) {
if (reg == VCPU_REGS_RSP) {
- register_address_increment(c, &c->regs[VCPU_REGS_RSP],
- c->op_bytes);
+ register_address_increment(ctxt, &ctxt->regs[VCPU_REGS_RSP],
+ ctxt->op_bytes);
--reg;
}
- rc = emulate_pop(ctxt, &c->regs[reg], c->op_bytes);
+ rc = emulate_pop(ctxt, &ctxt->regs[reg], ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
break;
--reg;
@@ -1553,10 +1518,9 @@ static int em_popa(struct x86_emulate_ctxt *ctxt)
return rc;
}
-int emulate_int_real(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops, int irq)
+int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
{
- struct decode_cache *c = &ctxt->decode;
+ struct x86_emulate_ops *ops = ctxt->ops;
int rc;
struct desc_ptr dt;
gva_t cs_addr;
@@ -1564,19 +1528,19 @@ int emulate_int_real(struct x86_emulate_ctxt *ctxt,
u16 cs, eip;
/* TODO: Add limit checks */
- c->src.val = ctxt->eflags;
+ ctxt->src.val = ctxt->eflags;
rc = em_push(ctxt);
if (rc != X86EMUL_CONTINUE)
return rc;
ctxt->eflags &= ~(EFLG_IF | EFLG_TF | EFLG_AC);
- c->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
+ ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
rc = em_push(ctxt);
if (rc != X86EMUL_CONTINUE)
return rc;
- c->src.val = c->eip;
+ ctxt->src.val = ctxt->_eip;
rc = em_push(ctxt);
if (rc != X86EMUL_CONTINUE)
return rc;
@@ -1594,21 +1558,20 @@ int emulate_int_real(struct x86_emulate_ctxt *ctxt,
if (rc != X86EMUL_CONTINUE)
return rc;
- rc = load_segment_descriptor(ctxt, ops, cs, VCPU_SREG_CS);
+ rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
if (rc != X86EMUL_CONTINUE)
return rc;
- c->eip = eip;
+ ctxt->_eip = eip;
return rc;
}
-static int emulate_int(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops, int irq)
+static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
{
switch(ctxt->mode) {
case X86EMUL_MODE_REAL:
- return emulate_int_real(ctxt, ops, irq);
+ return emulate_int_real(ctxt, irq);
case X86EMUL_MODE_VM86:
case X86EMUL_MODE_PROT16:
case X86EMUL_MODE_PROT32:
@@ -1619,10 +1582,8 @@ static int emulate_int(struct x86_emulate_ctxt *ctxt,
}
}
-static int emulate_iret_real(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops)
+static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
int rc = X86EMUL_CONTINUE;
unsigned long temp_eip = 0;
unsigned long temp_eflags = 0;
@@ -1634,7 +1595,7 @@ static int emulate_iret_real(struct x86_emulate_ctxt *ctxt,
/* TODO: Add stack limit check */
- rc = emulate_pop(ctxt, &temp_eip, c->op_bytes);
+ rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
@@ -1642,27 +1603,27 @@ static int emulate_iret_real(struct x86_emulate_ctxt *ctxt,
if (temp_eip & ~0xffff)
return emulate_gp(ctxt, 0);
- rc = emulate_pop(ctxt, &cs, c->op_bytes);
+ rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
- rc = emulate_pop(ctxt, &temp_eflags, c->op_bytes);
+ rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
- rc = load_segment_descriptor(ctxt, ops, (u16)cs, VCPU_SREG_CS);
+ rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
if (rc != X86EMUL_CONTINUE)
return rc;
- c->eip = temp_eip;
+ ctxt->_eip = temp_eip;
- if (c->op_bytes == 4)
+ if (ctxt->op_bytes == 4)
ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
- else if (c->op_bytes == 2) {
+ else if (ctxt->op_bytes == 2) {
ctxt->eflags &= ~0xffff;
ctxt->eflags |= temp_eflags;
}
@@ -1673,12 +1634,11 @@ static int emulate_iret_real(struct x86_emulate_ctxt *ctxt,
return rc;
}
-static inline int emulate_iret(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops* ops)
+static int em_iret(struct x86_emulate_ctxt *ctxt)
{
switch(ctxt->mode) {
case X86EMUL_MODE_REAL:
- return emulate_iret_real(ctxt, ops);
+ return emulate_iret_real(ctxt);
case X86EMUL_MODE_VM86:
case X86EMUL_MODE_PROT16:
case X86EMUL_MODE_PROT32:
@@ -1691,53 +1651,49 @@ static inline int emulate_iret(struct x86_emulate_ctxt *ctxt,
static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
int rc;
unsigned short sel;
- memcpy(&sel, c->src.valptr + c->op_bytes, 2);
+ memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
- rc = load_segment_descriptor(ctxt, ctxt->ops, sel, VCPU_SREG_CS);
+ rc = load_segment_descriptor(ctxt, sel, VCPU_SREG_CS);
if (rc != X86EMUL_CONTINUE)
return rc;
- c->eip = 0;
- memcpy(&c->eip, c->src.valptr, c->op_bytes);
+ ctxt->_eip = 0;
+ memcpy(&ctxt->_eip, ctxt->src.valptr, ctxt->op_bytes);
return X86EMUL_CONTINUE;
}
static int em_grp1a(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- return emulate_pop(ctxt, &c->dst.val, c->dst.bytes);
+ return emulate_pop(ctxt, &ctxt->dst.val, ctxt->dst.bytes);
}
static int em_grp2(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
- switch (c->modrm_reg) {
+ switch (ctxt->modrm_reg) {
case 0: /* rol */
- emulate_2op_SrcB("rol", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcB("rol", ctxt->src, ctxt->dst, ctxt->eflags);
break;
case 1: /* ror */
- emulate_2op_SrcB("ror", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcB("ror", ctxt->src, ctxt->dst, ctxt->eflags);
break;
case 2: /* rcl */
- emulate_2op_SrcB("rcl", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcB("rcl", ctxt->src, ctxt->dst, ctxt->eflags);
break;
case 3: /* rcr */
- emulate_2op_SrcB("rcr", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcB("rcr", ctxt->src, ctxt->dst, ctxt->eflags);
break;
case 4: /* sal/shl */
case 6: /* sal/shl */
- emulate_2op_SrcB("sal", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcB("sal", ctxt->src, ctxt->dst, ctxt->eflags);
break;
case 5: /* shr */
- emulate_2op_SrcB("shr", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcB("shr", ctxt->src, ctxt->dst, ctxt->eflags);
break;
case 7: /* sar */
- emulate_2op_SrcB("sar", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcB("sar", ctxt->src, ctxt->dst, ctxt->eflags);
break;
}
return X86EMUL_CONTINUE;
@@ -1745,33 +1701,32 @@ static int em_grp2(struct x86_emulate_ctxt *ctxt)
static int em_grp3(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
- unsigned long *rax = &c->regs[VCPU_REGS_RAX];
- unsigned long *rdx = &c->regs[VCPU_REGS_RDX];
+ unsigned long *rax = &ctxt->regs[VCPU_REGS_RAX];
+ unsigned long *rdx = &ctxt->regs[VCPU_REGS_RDX];
u8 de = 0;
- switch (c->modrm_reg) {
+ switch (ctxt->modrm_reg) {
case 0 ... 1: /* test */
- emulate_2op_SrcV("test", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcV("test", ctxt->src, ctxt->dst, ctxt->eflags);
break;
case 2: /* not */
- c->dst.val = ~c->dst.val;
+ ctxt->dst.val = ~ctxt->dst.val;
break;
case 3: /* neg */
- emulate_1op("neg", c->dst, ctxt->eflags);
+ emulate_1op("neg", ctxt->dst, ctxt->eflags);
break;
case 4: /* mul */
- emulate_1op_rax_rdx("mul", c->src, *rax, *rdx, ctxt->eflags);
+ emulate_1op_rax_rdx("mul", ctxt->src, *rax, *rdx, ctxt->eflags);
break;
case 5: /* imul */
- emulate_1op_rax_rdx("imul", c->src, *rax, *rdx, ctxt->eflags);
+ emulate_1op_rax_rdx("imul", ctxt->src, *rax, *rdx, ctxt->eflags);
break;
case 6: /* div */
- emulate_1op_rax_rdx_ex("div", c->src, *rax, *rdx,
+ emulate_1op_rax_rdx_ex("div", ctxt->src, *rax, *rdx,
ctxt->eflags, de);
break;
case 7: /* idiv */
- emulate_1op_rax_rdx_ex("idiv", c->src, *rax, *rdx,
+ emulate_1op_rax_rdx_ex("idiv", ctxt->src, *rax, *rdx,
ctxt->eflags, de);
break;
default:
@@ -1784,26 +1739,25 @@ static int em_grp3(struct x86_emulate_ctxt *ctxt)
static int em_grp45(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
int rc = X86EMUL_CONTINUE;
- switch (c->modrm_reg) {
+ switch (ctxt->modrm_reg) {
case 0: /* inc */
- emulate_1op("inc", c->dst, ctxt->eflags);
+ emulate_1op("inc", ctxt->dst, ctxt->eflags);
break;
case 1: /* dec */
- emulate_1op("dec", c->dst, ctxt->eflags);
+ emulate_1op("dec", ctxt->dst, ctxt->eflags);
break;
case 2: /* call near abs */ {
long int old_eip;
- old_eip = c->eip;
- c->eip = c->src.val;
- c->src.val = old_eip;
+ old_eip = ctxt->_eip;
+ ctxt->_eip = ctxt->src.val;
+ ctxt->src.val = old_eip;
rc = em_push(ctxt);
break;
}
case 4: /* jmp abs */
- c->eip = c->src.val;
+ ctxt->_eip = ctxt->src.val;
break;
case 5: /* jmp far */
rc = em_jmp_far(ctxt);
@@ -1817,68 +1771,70 @@ static int em_grp45(struct x86_emulate_ctxt *ctxt)
static int em_grp9(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
- u64 old = c->dst.orig_val64;
+ u64 old = ctxt->dst.orig_val64;
- if (((u32) (old >> 0) != (u32) c->regs[VCPU_REGS_RAX]) ||
- ((u32) (old >> 32) != (u32) c->regs[VCPU_REGS_RDX])) {
- c->regs[VCPU_REGS_RAX] = (u32) (old >> 0);
- c->regs[VCPU_REGS_RDX] = (u32) (old >> 32);
+ if (((u32) (old >> 0) != (u32) ctxt->regs[VCPU_REGS_RAX]) ||
+ ((u32) (old >> 32) != (u32) ctxt->regs[VCPU_REGS_RDX])) {
+ ctxt->regs[VCPU_REGS_RAX] = (u32) (old >> 0);
+ ctxt->regs[VCPU_REGS_RDX] = (u32) (old >> 32);
ctxt->eflags &= ~EFLG_ZF;
} else {
- c->dst.val64 = ((u64)c->regs[VCPU_REGS_RCX] << 32) |
- (u32) c->regs[VCPU_REGS_RBX];
+ ctxt->dst.val64 = ((u64)ctxt->regs[VCPU_REGS_RCX] << 32) |
+ (u32) ctxt->regs[VCPU_REGS_RBX];
ctxt->eflags |= EFLG_ZF;
}
return X86EMUL_CONTINUE;
}
-static int emulate_ret_far(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops)
+static int em_ret(struct x86_emulate_ctxt *ctxt)
+{
+ ctxt->dst.type = OP_REG;
+ ctxt->dst.addr.reg = &ctxt->_eip;
+ ctxt->dst.bytes = ctxt->op_bytes;
+ return em_pop(ctxt);
+}
+
+static int em_ret_far(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
int rc;
unsigned long cs;
- rc = emulate_pop(ctxt, &c->eip, c->op_bytes);
+ rc = emulate_pop(ctxt, &ctxt->_eip, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
- if (c->op_bytes == 4)
- c->eip = (u32)c->eip;
- rc = emulate_pop(ctxt, &cs, c->op_bytes);
+ if (ctxt->op_bytes == 4)
+ ctxt->_eip = (u32)ctxt->_eip;
+ rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
- rc = load_segment_descriptor(ctxt, ops, (u16)cs, VCPU_SREG_CS);
+ rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
return rc;
}
-static int emulate_load_segment(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops, int seg)
+static int emulate_load_segment(struct x86_emulate_ctxt *ctxt, int seg)
{
- struct decode_cache *c = &ctxt->decode;
unsigned short sel;
int rc;
- memcpy(&sel, c->src.valptr + c->op_bytes, 2);
+ memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
- rc = load_segment_descriptor(ctxt, ops, sel, seg);
+ rc = load_segment_descriptor(ctxt, sel, seg);
if (rc != X86EMUL_CONTINUE)
return rc;
- c->dst.val = c->src.val;
+ ctxt->dst.val = ctxt->src.val;
return rc;
}
-static inline void
+static void
setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops, struct desc_struct *cs,
- struct desc_struct *ss)
+ struct desc_struct *cs, struct desc_struct *ss)
{
u16 selector;
memset(cs, 0, sizeof(struct desc_struct));
- ops->get_segment(ctxt, &selector, cs, NULL, VCPU_SREG_CS);
+ ctxt->ops->get_segment(ctxt, &selector, cs, NULL, VCPU_SREG_CS);
memset(ss, 0, sizeof(struct desc_struct));
cs->l = 0; /* will be adjusted later */
@@ -1901,10 +1857,9 @@ setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
ss->p = 1;
}
-static int
-emulate_syscall(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
+static int em_syscall(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
+ struct x86_emulate_ops *ops = ctxt->ops;
struct desc_struct cs, ss;
u64 msr_data;
u16 cs_sel, ss_sel;
@@ -1916,7 +1871,7 @@ emulate_syscall(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
return emulate_ud(ctxt);
ops->get_msr(ctxt, MSR_EFER, &efer);
- setup_syscalls_segments(ctxt, ops, &cs, &ss);
+ setup_syscalls_segments(ctxt, &cs, &ss);
ops->get_msr(ctxt, MSR_STAR, &msr_data);
msr_data >>= 32;
@@ -1930,15 +1885,15 @@ emulate_syscall(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
- c->regs[VCPU_REGS_RCX] = c->eip;
+ ctxt->regs[VCPU_REGS_RCX] = ctxt->_eip;
if (efer & EFER_LMA) {
#ifdef CONFIG_X86_64
- c->regs[VCPU_REGS_R11] = ctxt->eflags & ~EFLG_RF;
+ ctxt->regs[VCPU_REGS_R11] = ctxt->eflags & ~EFLG_RF;
ops->get_msr(ctxt,
ctxt->mode == X86EMUL_MODE_PROT64 ?
MSR_LSTAR : MSR_CSTAR, &msr_data);
- c->eip = msr_data;
+ ctxt->_eip = msr_data;
ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
ctxt->eflags &= ~(msr_data | EFLG_RF);
@@ -1946,7 +1901,7 @@ emulate_syscall(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
} else {
/* legacy mode */
ops->get_msr(ctxt, MSR_STAR, &msr_data);
- c->eip = (u32)msr_data;
+ ctxt->_eip = (u32)msr_data;
ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF);
}
@@ -1954,16 +1909,15 @@ emulate_syscall(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
return X86EMUL_CONTINUE;
}
-static int
-emulate_sysenter(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
+static int em_sysenter(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
+ struct x86_emulate_ops *ops = ctxt->ops;
struct desc_struct cs, ss;
u64 msr_data;
u16 cs_sel, ss_sel;
u64 efer = 0;
- ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
+ ops->get_msr(ctxt, MSR_EFER, &efer);
/* inject #GP if in real mode */
if (ctxt->mode == X86EMUL_MODE_REAL)
return emulate_gp(ctxt, 0);
@@ -1974,7 +1928,7 @@ emulate_sysenter(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
if (ctxt->mode == X86EMUL_MODE_PROT64)
return emulate_ud(ctxt);
- setup_syscalls_segments(ctxt, ops, &cs, &ss);
+ setup_syscalls_segments(ctxt, &cs, &ss);
ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
switch (ctxt->mode) {
@@ -2002,31 +1956,30 @@ emulate_sysenter(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
- c->eip = msr_data;
+ ctxt->_eip = msr_data;
ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
- c->regs[VCPU_REGS_RSP] = msr_data;
+ ctxt->regs[VCPU_REGS_RSP] = msr_data;
return X86EMUL_CONTINUE;
}
-static int
-emulate_sysexit(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
+static int em_sysexit(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
+ struct x86_emulate_ops *ops = ctxt->ops;
struct desc_struct cs, ss;
u64 msr_data;
int usermode;
- u16 cs_sel, ss_sel;
+ u16 cs_sel = 0, ss_sel = 0;
/* inject #GP if in real mode or Virtual 8086 mode */
if (ctxt->mode == X86EMUL_MODE_REAL ||
ctxt->mode == X86EMUL_MODE_VM86)
return emulate_gp(ctxt, 0);
- setup_syscalls_segments(ctxt, ops, &cs, &ss);
+ setup_syscalls_segments(ctxt, &cs, &ss);
- if ((c->rex_prefix & 0x8) != 0x0)
+ if ((ctxt->rex_prefix & 0x8) != 0x0)
usermode = X86EMUL_MODE_PROT64;
else
usermode = X86EMUL_MODE_PROT32;
@@ -2056,14 +2009,13 @@ emulate_sysexit(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
- c->eip = c->regs[VCPU_REGS_RDX];
- c->regs[VCPU_REGS_RSP] = c->regs[VCPU_REGS_RCX];
+ ctxt->_eip = ctxt->regs[VCPU_REGS_RDX];
+ ctxt->regs[VCPU_REGS_RSP] = ctxt->regs[VCPU_REGS_RCX];
return X86EMUL_CONTINUE;
}
-static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops)
+static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
{
int iopl;
if (ctxt->mode == X86EMUL_MODE_REAL)
@@ -2071,13 +2023,13 @@ static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt,
if (ctxt->mode == X86EMUL_MODE_VM86)
return true;
iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
- return ops->cpl(ctxt) > iopl;
+ return ctxt->ops->cpl(ctxt) > iopl;
}
static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
u16 port, u16 len)
{
+ struct x86_emulate_ops *ops = ctxt->ops;
struct desc_struct tr_seg;
u32 base3;
int r;
@@ -2108,14 +2060,13 @@ static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
}
static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
u16 port, u16 len)
{
if (ctxt->perm_ok)
return true;
- if (emulator_bad_iopl(ctxt, ops))
- if (!emulator_io_port_access_allowed(ctxt, ops, port, len))
+ if (emulator_bad_iopl(ctxt))
+ if (!emulator_io_port_access_allowed(ctxt, port, len))
return false;
ctxt->perm_ok = true;
@@ -2124,21 +2075,18 @@ static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
}
static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
struct tss_segment_16 *tss)
{
- struct decode_cache *c = &ctxt->decode;
-
- tss->ip = c->eip;
+ tss->ip = ctxt->_eip;
tss->flag = ctxt->eflags;
- tss->ax = c->regs[VCPU_REGS_RAX];
- tss->cx = c->regs[VCPU_REGS_RCX];
- tss->dx = c->regs[VCPU_REGS_RDX];
- tss->bx = c->regs[VCPU_REGS_RBX];
- tss->sp = c->regs[VCPU_REGS_RSP];
- tss->bp = c->regs[VCPU_REGS_RBP];
- tss->si = c->regs[VCPU_REGS_RSI];
- tss->di = c->regs[VCPU_REGS_RDI];
+ tss->ax = ctxt->regs[VCPU_REGS_RAX];
+ tss->cx = ctxt->regs[VCPU_REGS_RCX];
+ tss->dx = ctxt->regs[VCPU_REGS_RDX];
+ tss->bx = ctxt->regs[VCPU_REGS_RBX];
+ tss->sp = ctxt->regs[VCPU_REGS_RSP];
+ tss->bp = ctxt->regs[VCPU_REGS_RBP];
+ tss->si = ctxt->regs[VCPU_REGS_RSI];
+ tss->di = ctxt->regs[VCPU_REGS_RDI];
tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
@@ -2148,22 +2096,20 @@ static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
}
static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
struct tss_segment_16 *tss)
{
- struct decode_cache *c = &ctxt->decode;
int ret;
- c->eip = tss->ip;
+ ctxt->_eip = tss->ip;
ctxt->eflags = tss->flag | 2;
- c->regs[VCPU_REGS_RAX] = tss->ax;
- c->regs[VCPU_REGS_RCX] = tss->cx;
- c->regs[VCPU_REGS_RDX] = tss->dx;
- c->regs[VCPU_REGS_RBX] = tss->bx;
- c->regs[VCPU_REGS_RSP] = tss->sp;
- c->regs[VCPU_REGS_RBP] = tss->bp;
- c->regs[VCPU_REGS_RSI] = tss->si;
- c->regs[VCPU_REGS_RDI] = tss->di;
+ ctxt->regs[VCPU_REGS_RAX] = tss->ax;
+ ctxt->regs[VCPU_REGS_RCX] = tss->cx;
+ ctxt->regs[VCPU_REGS_RDX] = tss->dx;
+ ctxt->regs[VCPU_REGS_RBX] = tss->bx;
+ ctxt->regs[VCPU_REGS_RSP] = tss->sp;
+ ctxt->regs[VCPU_REGS_RBP] = tss->bp;
+ ctxt->regs[VCPU_REGS_RSI] = tss->si;
+ ctxt->regs[VCPU_REGS_RDI] = tss->di;
/*
* SDM says that segment selectors are loaded before segment
@@ -2179,19 +2125,19 @@ static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
* Now load segment descriptors. If fault happenes at this stage
* it is handled in a context of new task
*/
- ret = load_segment_descriptor(ctxt, ops, tss->ldt, VCPU_SREG_LDTR);
+ ret = load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, ops, tss->es, VCPU_SREG_ES);
+ ret = load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, ops, tss->cs, VCPU_SREG_CS);
+ ret = load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, ops, tss->ss, VCPU_SREG_SS);
+ ret = load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, ops, tss->ds, VCPU_SREG_DS);
+ ret = load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS);
if (ret != X86EMUL_CONTINUE)
return ret;
@@ -2199,10 +2145,10 @@ static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
}
static int task_switch_16(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
u16 tss_selector, u16 old_tss_sel,
ulong old_tss_base, struct desc_struct *new_desc)
{
+ struct x86_emulate_ops *ops = ctxt->ops;
struct tss_segment_16 tss_seg;
int ret;
u32 new_tss_base = get_desc_base(new_desc);
@@ -2213,7 +2159,7 @@ static int task_switch_16(struct x86_emulate_ctxt *ctxt,
/* FIXME: need to provide precise fault address */
return ret;
- save_state_to_tss16(ctxt, ops, &tss_seg);
+ save_state_to_tss16(ctxt, &tss_seg);
ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
&ctxt->exception);
@@ -2239,26 +2185,23 @@ static int task_switch_16(struct x86_emulate_ctxt *ctxt,
return ret;
}
- return load_state_from_tss16(ctxt, ops, &tss_seg);
+ return load_state_from_tss16(ctxt, &tss_seg);
}
static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
struct tss_segment_32 *tss)
{
- struct decode_cache *c = &ctxt->decode;
-
- tss->cr3 = ops->get_cr(ctxt, 3);
- tss->eip = c->eip;
+ tss->cr3 = ctxt->ops->get_cr(ctxt, 3);
+ tss->eip = ctxt->_eip;
tss->eflags = ctxt->eflags;
- tss->eax = c->regs[VCPU_REGS_RAX];
- tss->ecx = c->regs[VCPU_REGS_RCX];
- tss->edx = c->regs[VCPU_REGS_RDX];
- tss->ebx = c->regs[VCPU_REGS_RBX];
- tss->esp = c->regs[VCPU_REGS_RSP];
- tss->ebp = c->regs[VCPU_REGS_RBP];
- tss->esi = c->regs[VCPU_REGS_RSI];
- tss->edi = c->regs[VCPU_REGS_RDI];
+ tss->eax = ctxt->regs[VCPU_REGS_RAX];
+ tss->ecx = ctxt->regs[VCPU_REGS_RCX];
+ tss->edx = ctxt->regs[VCPU_REGS_RDX];
+ tss->ebx = ctxt->regs[VCPU_REGS_RBX];
+ tss->esp = ctxt->regs[VCPU_REGS_RSP];
+ tss->ebp = ctxt->regs[VCPU_REGS_RBP];
+ tss->esi = ctxt->regs[VCPU_REGS_RSI];
+ tss->edi = ctxt->regs[VCPU_REGS_RDI];
tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
@@ -2270,24 +2213,22 @@ static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
}
static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
struct tss_segment_32 *tss)
{
- struct decode_cache *c = &ctxt->decode;
int ret;
- if (ops->set_cr(ctxt, 3, tss->cr3))
+ if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
return emulate_gp(ctxt, 0);
- c->eip = tss->eip;
+ ctxt->_eip = tss->eip;
ctxt->eflags = tss->eflags | 2;
- c->regs[VCPU_REGS_RAX] = tss->eax;
- c->regs[VCPU_REGS_RCX] = tss->ecx;
- c->regs[VCPU_REGS_RDX] = tss->edx;
- c->regs[VCPU_REGS_RBX] = tss->ebx;
- c->regs[VCPU_REGS_RSP] = tss->esp;
- c->regs[VCPU_REGS_RBP] = tss->ebp;
- c->regs[VCPU_REGS_RSI] = tss->esi;
- c->regs[VCPU_REGS_RDI] = tss->edi;
+ ctxt->regs[VCPU_REGS_RAX] = tss->eax;
+ ctxt->regs[VCPU_REGS_RCX] = tss->ecx;
+ ctxt->regs[VCPU_REGS_RDX] = tss->edx;
+ ctxt->regs[VCPU_REGS_RBX] = tss->ebx;
+ ctxt->regs[VCPU_REGS_RSP] = tss->esp;
+ ctxt->regs[VCPU_REGS_RBP] = tss->ebp;
+ ctxt->regs[VCPU_REGS_RSI] = tss->esi;
+ ctxt->regs[VCPU_REGS_RDI] = tss->edi;
/*
* SDM says that segment selectors are loaded before segment
@@ -2305,25 +2246,25 @@ static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
* Now load segment descriptors. If fault happenes at this stage
* it is handled in a context of new task
*/
- ret = load_segment_descriptor(ctxt, ops, tss->ldt_selector, VCPU_SREG_LDTR);
+ ret = load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, ops, tss->es, VCPU_SREG_ES);
+ ret = load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, ops, tss->cs, VCPU_SREG_CS);
+ ret = load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, ops, tss->ss, VCPU_SREG_SS);
+ ret = load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, ops, tss->ds, VCPU_SREG_DS);
+ ret = load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, ops, tss->fs, VCPU_SREG_FS);
+ ret = load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, ops, tss->gs, VCPU_SREG_GS);
+ ret = load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS);
if (ret != X86EMUL_CONTINUE)
return ret;
@@ -2331,10 +2272,10 @@ static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
}
static int task_switch_32(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
u16 tss_selector, u16 old_tss_sel,
ulong old_tss_base, struct desc_struct *new_desc)
{
+ struct x86_emulate_ops *ops = ctxt->ops;
struct tss_segment_32 tss_seg;
int ret;
u32 new_tss_base = get_desc_base(new_desc);
@@ -2345,7 +2286,7 @@ static int task_switch_32(struct x86_emulate_ctxt *ctxt,
/* FIXME: need to provide precise fault address */
return ret;
- save_state_to_tss32(ctxt, ops, &tss_seg);
+ save_state_to_tss32(ctxt, &tss_seg);
ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
&ctxt->exception);
@@ -2371,14 +2312,14 @@ static int task_switch_32(struct x86_emulate_ctxt *ctxt,
return ret;
}
- return load_state_from_tss32(ctxt, ops, &tss_seg);
+ return load_state_from_tss32(ctxt, &tss_seg);
}
static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
- struct x86_emulate_ops *ops,
u16 tss_selector, int reason,
bool has_error_code, u32 error_code)
{
+ struct x86_emulate_ops *ops = ctxt->ops;
struct desc_struct curr_tss_desc, next_tss_desc;
int ret;
u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
@@ -2388,10 +2329,10 @@ static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
/* FIXME: old_tss_base == ~0 ? */
- ret = read_segment_descriptor(ctxt, ops, tss_selector, &next_tss_desc);
+ ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = read_segment_descriptor(ctxt, ops, old_tss_sel, &curr_tss_desc);
+ ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
if (ret != X86EMUL_CONTINUE)
return ret;
@@ -2413,8 +2354,7 @@ static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
- write_segment_descriptor(ctxt, ops, old_tss_sel,
- &curr_tss_desc);
+ write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
}
if (reason == TASK_SWITCH_IRET)
@@ -2426,10 +2366,10 @@ static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
old_tss_sel = 0xffff;
if (next_tss_desc.type & 8)
- ret = task_switch_32(ctxt, ops, tss_selector, old_tss_sel,
+ ret = task_switch_32(ctxt, tss_selector, old_tss_sel,
old_tss_base, &next_tss_desc);
else
- ret = task_switch_16(ctxt, ops, tss_selector, old_tss_sel,
+ ret = task_switch_16(ctxt, tss_selector, old_tss_sel,
old_tss_base, &next_tss_desc);
if (ret != X86EMUL_CONTINUE)
return ret;
@@ -2439,19 +2379,16 @@ static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
if (reason != TASK_SWITCH_IRET) {
next_tss_desc.type |= (1 << 1); /* set busy flag */
- write_segment_descriptor(ctxt, ops, tss_selector,
- &next_tss_desc);
+ write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
}
ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
if (has_error_code) {
- struct decode_cache *c = &ctxt->decode;
-
- c->op_bytes = c->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
- c->lock_prefix = 0;
- c->src.val = (unsigned long) error_code;
+ ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
+ ctxt->lock_prefix = 0;
+ ctxt->src.val = (unsigned long) error_code;
ret = em_push(ctxt);
}
@@ -2462,18 +2399,16 @@ int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
u16 tss_selector, int reason,
bool has_error_code, u32 error_code)
{
- struct x86_emulate_ops *ops = ctxt->ops;
- struct decode_cache *c = &ctxt->decode;
int rc;
- c->eip = ctxt->eip;
- c->dst.type = OP_NONE;
+ ctxt->_eip = ctxt->eip;
+ ctxt->dst.type = OP_NONE;
- rc = emulator_do_task_switch(ctxt, ops, tss_selector, reason,
+ rc = emulator_do_task_switch(ctxt, tss_selector, reason,
has_error_code, error_code);
if (rc == X86EMUL_CONTINUE)
- ctxt->eip = c->eip;
+ ctxt->eip = ctxt->_eip;
return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
}
@@ -2481,22 +2416,20 @@ int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
static void string_addr_inc(struct x86_emulate_ctxt *ctxt, unsigned seg,
int reg, struct operand *op)
{
- struct decode_cache *c = &ctxt->decode;
int df = (ctxt->eflags & EFLG_DF) ? -1 : 1;
- register_address_increment(c, &c->regs[reg], df * op->bytes);
- op->addr.mem.ea = register_address(c, c->regs[reg]);
+ register_address_increment(ctxt, &ctxt->regs[reg], df * op->bytes);
+ op->addr.mem.ea = register_address(ctxt, ctxt->regs[reg]);
op->addr.mem.seg = seg;
}
static int em_das(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
u8 al, old_al;
bool af, cf, old_cf;
cf = ctxt->eflags & X86_EFLAGS_CF;
- al = c->dst.val;
+ al = ctxt->dst.val;
old_al = al;
old_cf = cf;
@@ -2514,12 +2447,12 @@ static int em_das(struct x86_emulate_ctxt *ctxt)
cf = true;
}
- c->dst.val = al;
+ ctxt->dst.val = al;
/* Set PF, ZF, SF */
- c->src.type = OP_IMM;
- c->src.val = 0;
- c->src.bytes = 1;
- emulate_2op_SrcV("or", c->src, c->dst, ctxt->eflags);
+ ctxt->src.type = OP_IMM;
+ ctxt->src.val = 0;
+ ctxt->src.bytes = 1;
+ emulate_2op_SrcV("or", ctxt->src, ctxt->dst, ctxt->eflags);
ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
if (cf)
ctxt->eflags |= X86_EFLAGS_CF;
@@ -2530,175 +2463,189 @@ static int em_das(struct x86_emulate_ctxt *ctxt)
static int em_call_far(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
u16 sel, old_cs;
ulong old_eip;
int rc;
old_cs = get_segment_selector(ctxt, VCPU_SREG_CS);
- old_eip = c->eip;
+ old_eip = ctxt->_eip;
- memcpy(&sel, c->src.valptr + c->op_bytes, 2);
- if (load_segment_descriptor(ctxt, ctxt->ops, sel, VCPU_SREG_CS))
+ memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
+ if (load_segment_descriptor(ctxt, sel, VCPU_SREG_CS))
return X86EMUL_CONTINUE;
- c->eip = 0;
- memcpy(&c->eip, c->src.valptr, c->op_bytes);
+ ctxt->_eip = 0;
+ memcpy(&ctxt->_eip, ctxt->src.valptr, ctxt->op_bytes);
- c->src.val = old_cs;
+ ctxt->src.val = old_cs;
rc = em_push(ctxt);
if (rc != X86EMUL_CONTINUE)
return rc;
- c->src.val = old_eip;
+ ctxt->src.val = old_eip;
return em_push(ctxt);
}
static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
int rc;
- c->dst.type = OP_REG;
- c->dst.addr.reg = &c->eip;
- c->dst.bytes = c->op_bytes;
- rc = emulate_pop(ctxt, &c->dst.val, c->op_bytes);
+ ctxt->dst.type = OP_REG;
+ ctxt->dst.addr.reg = &ctxt->_eip;
+ ctxt->dst.bytes = ctxt->op_bytes;
+ rc = emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
- register_address_increment(c, &c->regs[VCPU_REGS_RSP], c->src.val);
+ register_address_increment(ctxt, &ctxt->regs[VCPU_REGS_RSP], ctxt->src.val);
return X86EMUL_CONTINUE;
}
static int em_add(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- emulate_2op_SrcV("add", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcV("add", ctxt->src, ctxt->dst, ctxt->eflags);
return X86EMUL_CONTINUE;
}
static int em_or(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- emulate_2op_SrcV("or", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcV("or", ctxt->src, ctxt->dst, ctxt->eflags);
return X86EMUL_CONTINUE;
}
static int em_adc(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- emulate_2op_SrcV("adc", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcV("adc", ctxt->src, ctxt->dst, ctxt->eflags);
return X86EMUL_CONTINUE;
}
static int em_sbb(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- emulate_2op_SrcV("sbb", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcV("sbb", ctxt->src, ctxt->dst, ctxt->eflags);
return X86EMUL_CONTINUE;
}
static int em_and(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- emulate_2op_SrcV("and", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcV("and", ctxt->src, ctxt->dst, ctxt->eflags);
return X86EMUL_CONTINUE;
}
static int em_sub(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- emulate_2op_SrcV("sub", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcV("sub", ctxt->src, ctxt->dst, ctxt->eflags);
return X86EMUL_CONTINUE;
}
static int em_xor(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- emulate_2op_SrcV("xor", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcV("xor", ctxt->src, ctxt->dst, ctxt->eflags);
return X86EMUL_CONTINUE;
}
static int em_cmp(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- emulate_2op_SrcV("cmp", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcV("cmp", ctxt->src, ctxt->dst, ctxt->eflags);
/* Disable writeback. */
- c->dst.type = OP_NONE;
+ ctxt->dst.type = OP_NONE;
return X86EMUL_CONTINUE;
}
-static int em_imul(struct x86_emulate_ctxt *ctxt)
+static int em_test(struct x86_emulate_ctxt *ctxt)
+{
+ emulate_2op_SrcV("test", ctxt->src, ctxt->dst, ctxt->eflags);
+ return X86EMUL_CONTINUE;
+}
+
+static int em_xchg(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
+ /* Write back the register source. */
+ ctxt->src.val = ctxt->dst.val;
+ write_register_operand(&ctxt->src);
- emulate_2op_SrcV_nobyte("imul", c->src, c->dst, ctxt->eflags);
+ /* Write back the memory destination with implicit LOCK prefix. */
+ ctxt->dst.val = ctxt->src.orig_val;
+ ctxt->lock_prefix = 1;
return X86EMUL_CONTINUE;
}
-static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
+static int em_imul(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
+ emulate_2op_SrcV_nobyte("imul", ctxt->src, ctxt->dst, ctxt->eflags);
+ return X86EMUL_CONTINUE;
+}
- c->dst.val = c->src2.val;
+static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
+{
+ ctxt->dst.val = ctxt->src2.val;
return em_imul(ctxt);
}
static int em_cwd(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- c->dst.type = OP_REG;
- c->dst.bytes = c->src.bytes;
- c->dst.addr.reg = &c->regs[VCPU_REGS_RDX];
- c->dst.val = ~((c->src.val >> (c->src.bytes * 8 - 1)) - 1);
+ ctxt->dst.type = OP_REG;
+ ctxt->dst.bytes = ctxt->src.bytes;
+ ctxt->dst.addr.reg = &ctxt->regs[VCPU_REGS_RDX];
+ ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
return X86EMUL_CONTINUE;
}
static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
u64 tsc = 0;
ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
- c->regs[VCPU_REGS_RAX] = (u32)tsc;
- c->regs[VCPU_REGS_RDX] = tsc >> 32;
+ ctxt->regs[VCPU_REGS_RAX] = (u32)tsc;
+ ctxt->regs[VCPU_REGS_RDX] = tsc >> 32;
return X86EMUL_CONTINUE;
}
static int em_mov(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
- c->dst.val = c->src.val;
+ ctxt->dst.val = ctxt->src.val;
return X86EMUL_CONTINUE;
}
+static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
+{
+ if (ctxt->modrm_reg > VCPU_SREG_GS)
+ return emulate_ud(ctxt);
+
+ ctxt->dst.val = get_segment_selector(ctxt, ctxt->modrm_reg);
+ return X86EMUL_CONTINUE;
+}
+
+static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
+{
+ u16 sel = ctxt->src.val;
+
+ if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
+ return emulate_ud(ctxt);
+
+ if (ctxt->modrm_reg == VCPU_SREG_SS)
+ ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
+
+ /* Disable writeback. */
+ ctxt->dst.type = OP_NONE;
+ return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
+}
+
static int em_movdqu(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
- memcpy(&c->dst.vec_val, &c->src.vec_val, c->op_bytes);
+ memcpy(&ctxt->dst.vec_val, &ctxt->src.vec_val, ctxt->op_bytes);
return X86EMUL_CONTINUE;
}
static int em_invlpg(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
int rc;
ulong linear;
- rc = linearize(ctxt, c->src.addr.mem, 1, false, &linear);
+ rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear);
if (rc == X86EMUL_CONTINUE)
ctxt->ops->invlpg(ctxt, linear);
/* Disable writeback. */
- c->dst.type = OP_NONE;
+ ctxt->dst.type = OP_NONE;
return X86EMUL_CONTINUE;
}
@@ -2714,10 +2661,9 @@ static int em_clts(struct x86_emulate_ctxt *ctxt)
static int em_vmcall(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
int rc;
- if (c->modrm_mod != 3 || c->modrm_rm != 1)
+ if (ctxt->modrm_mod != 3 || ctxt->modrm_rm != 1)
return X86EMUL_UNHANDLEABLE;
rc = ctxt->ops->fix_hypercall(ctxt);
@@ -2725,73 +2671,104 @@ static int em_vmcall(struct x86_emulate_ctxt *ctxt)
return rc;
/* Let the processor re-execute the fixed hypercall */
- c->eip = ctxt->eip;
+ ctxt->_eip = ctxt->eip;
/* Disable writeback. */
- c->dst.type = OP_NONE;
+ ctxt->dst.type = OP_NONE;
return X86EMUL_CONTINUE;
}
static int em_lgdt(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
struct desc_ptr desc_ptr;
int rc;
- rc = read_descriptor(ctxt, c->src.addr.mem,
+ rc = read_descriptor(ctxt, ctxt->src.addr.mem,
&desc_ptr.size, &desc_ptr.address,
- c->op_bytes);
+ ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
ctxt->ops->set_gdt(ctxt, &desc_ptr);
/* Disable writeback. */
- c->dst.type = OP_NONE;
+ ctxt->dst.type = OP_NONE;
return X86EMUL_CONTINUE;
}
static int em_vmmcall(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
int rc;
rc = ctxt->ops->fix_hypercall(ctxt);
/* Disable writeback. */
- c->dst.type = OP_NONE;
+ ctxt->dst.type = OP_NONE;
return rc;
}
static int em_lidt(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
struct desc_ptr desc_ptr;
int rc;
- rc = read_descriptor(ctxt, c->src.addr.mem,
+ rc = read_descriptor(ctxt, ctxt->src.addr.mem,
&desc_ptr.size, &desc_ptr.address,
- c->op_bytes);
+ ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
ctxt->ops->set_idt(ctxt, &desc_ptr);
/* Disable writeback. */
- c->dst.type = OP_NONE;
+ ctxt->dst.type = OP_NONE;
return X86EMUL_CONTINUE;
}
static int em_smsw(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- c->dst.bytes = 2;
- c->dst.val = ctxt->ops->get_cr(ctxt, 0);
+ ctxt->dst.bytes = 2;
+ ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
return X86EMUL_CONTINUE;
}
static int em_lmsw(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
- | (c->src.val & 0x0f));
- c->dst.type = OP_NONE;
+ | (ctxt->src.val & 0x0f));
+ ctxt->dst.type = OP_NONE;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_loop(struct x86_emulate_ctxt *ctxt)
+{
+ register_address_increment(ctxt, &ctxt->regs[VCPU_REGS_RCX], -1);
+ if ((address_mask(ctxt, ctxt->regs[VCPU_REGS_RCX]) != 0) &&
+ (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
+ jmp_rel(ctxt, ctxt->src.val);
+
+ return X86EMUL_CONTINUE;
+}
+
+static int em_jcxz(struct x86_emulate_ctxt *ctxt)
+{
+ if (address_mask(ctxt, ctxt->regs[VCPU_REGS_RCX]) == 0)
+ jmp_rel(ctxt, ctxt->src.val);
+
+ return X86EMUL_CONTINUE;
+}
+
+static int em_cli(struct x86_emulate_ctxt *ctxt)
+{
+ if (emulator_bad_iopl(ctxt))
+ return emulate_gp(ctxt, 0);
+
+ ctxt->eflags &= ~X86_EFLAGS_IF;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_sti(struct x86_emulate_ctxt *ctxt)
+{
+ if (emulator_bad_iopl(ctxt))
+ return emulate_gp(ctxt, 0);
+
+ ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
+ ctxt->eflags |= X86_EFLAGS_IF;
return X86EMUL_CONTINUE;
}
@@ -2809,9 +2786,7 @@ static bool valid_cr(int nr)
static int check_cr_read(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- if (!valid_cr(c->modrm_reg))
+ if (!valid_cr(ctxt->modrm_reg))
return emulate_ud(ctxt);
return X86EMUL_CONTINUE;
@@ -2819,9 +2794,8 @@ static int check_cr_read(struct x86_emulate_ctxt *ctxt)
static int check_cr_write(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
- u64 new_val = c->src.val64;
- int cr = c->modrm_reg;
+ u64 new_val = ctxt->src.val64;
+ int cr = ctxt->modrm_reg;
u64 efer = 0;
static u64 cr_reserved_bits[] = {
@@ -2898,8 +2872,7 @@ static int check_dr7_gd(struct x86_emulate_ctxt *ctxt)
static int check_dr_read(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
- int dr = c->modrm_reg;
+ int dr = ctxt->modrm_reg;
u64 cr4;
if (dr > 7)
@@ -2917,9 +2890,8 @@ static int check_dr_read(struct x86_emulate_ctxt *ctxt)
static int check_dr_write(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
- u64 new_val = c->src.val64;
- int dr = c->modrm_reg;
+ u64 new_val = ctxt->src.val64;
+ int dr = ctxt->modrm_reg;
if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
return emulate_gp(ctxt, 0);
@@ -2941,7 +2913,7 @@ static int check_svme(struct x86_emulate_ctxt *ctxt)
static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
{
- u64 rax = ctxt->decode.regs[VCPU_REGS_RAX];
+ u64 rax = ctxt->regs[VCPU_REGS_RAX];
/* Valid physical address? */
if (rax & 0xffff000000000000ULL)
@@ -2963,7 +2935,7 @@ static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
{
u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
- u64 rcx = ctxt->decode.regs[VCPU_REGS_RCX];
+ u64 rcx = ctxt->regs[VCPU_REGS_RCX];
if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
(rcx > 3))
@@ -2974,10 +2946,8 @@ static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
static int check_perm_in(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- c->dst.bytes = min(c->dst.bytes, 4u);
- if (!emulator_io_permited(ctxt, ctxt->ops, c->src.val, c->dst.bytes))
+ ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
+ if (!emulator_io_permited(ctxt, ctxt->src.val, ctxt->dst.bytes))
return emulate_gp(ctxt, 0);
return X86EMUL_CONTINUE;
@@ -2985,10 +2955,8 @@ static int check_perm_in(struct x86_emulate_ctxt *ctxt)
static int check_perm_out(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
- c->src.bytes = min(c->src.bytes, 4u);
- if (!emulator_io_permited(ctxt, ctxt->ops, c->dst.val, c->src.bytes))
+ ctxt->src.bytes = min(ctxt->src.bytes, 4u);
+ if (!emulator_io_permited(ctxt, ctxt->dst.val, ctxt->src.bytes))
return emulate_gp(ctxt, 0);
return X86EMUL_CONTINUE;
@@ -3165,12 +3133,15 @@ static struct opcode opcode_table[256] = {
G(DstMem | SrcImm | ModRM | Group, group1),
G(ByteOp | DstMem | SrcImm | ModRM | No64 | Group, group1),
G(DstMem | SrcImmByte | ModRM | Group, group1),
- D2bv(DstMem | SrcReg | ModRM), D2bv(DstMem | SrcReg | ModRM | Lock),
+ I2bv(DstMem | SrcReg | ModRM, em_test),
+ I2bv(DstMem | SrcReg | ModRM | Lock, em_xchg),
/* 0x88 - 0x8F */
I2bv(DstMem | SrcReg | ModRM | Mov, em_mov),
I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
- D(DstMem | SrcNone | ModRM | Mov), D(ModRM | SrcMem | NoAccess | DstReg),
- D(ImplicitOps | SrcMem16 | ModRM), G(0, group1A),
+ I(DstMem | SrcNone | ModRM | Mov, em_mov_rm_sreg),
+ D(ModRM | SrcMem | NoAccess | DstReg),
+ I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
+ G(0, group1A),
/* 0x90 - 0x97 */
DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
/* 0x98 - 0x9F */
@@ -3184,7 +3155,7 @@ static struct opcode opcode_table[256] = {
I2bv(SrcSI | DstDI | Mov | String, em_mov),
I2bv(SrcSI | DstDI | String, em_cmp),
/* 0xA8 - 0xAF */
- D2bv(DstAcc | SrcImm),
+ I2bv(DstAcc | SrcImm, em_test),
I2bv(SrcAcc | DstDI | Mov | String, em_mov),
I2bv(SrcSI | DstAcc | Mov | String, em_mov),
I2bv(SrcAcc | DstDI | String, em_cmp),
@@ -3195,25 +3166,26 @@ static struct opcode opcode_table[256] = {
/* 0xC0 - 0xC7 */
D2bv(DstMem | SrcImmByte | ModRM),
I(ImplicitOps | Stack | SrcImmU16, em_ret_near_imm),
- D(ImplicitOps | Stack),
+ I(ImplicitOps | Stack, em_ret),
D(DstReg | SrcMemFAddr | ModRM | No64), D(DstReg | SrcMemFAddr | ModRM | No64),
G(ByteOp, group11), G(0, group11),
/* 0xC8 - 0xCF */
- N, N, N, D(ImplicitOps | Stack),
+ N, N, N, I(ImplicitOps | Stack, em_ret_far),
D(ImplicitOps), DI(SrcImmByte, intn),
- D(ImplicitOps | No64), DI(ImplicitOps, iret),
+ D(ImplicitOps | No64), II(ImplicitOps, em_iret, iret),
/* 0xD0 - 0xD7 */
D2bv(DstMem | SrcOne | ModRM), D2bv(DstMem | ModRM),
N, N, N, N,
/* 0xD8 - 0xDF */
N, N, N, N, N, N, N, N,
/* 0xE0 - 0xE7 */
- X4(D(SrcImmByte)),
+ X3(I(SrcImmByte, em_loop)),
+ I(SrcImmByte, em_jcxz),
D2bvIP(SrcImmUByte | DstAcc, in, check_perm_in),
D2bvIP(SrcAcc | DstImmUByte, out, check_perm_out),
/* 0xE8 - 0xEF */
D(SrcImm | Stack), D(SrcImm | ImplicitOps),
- D(SrcImmFAddr | No64), D(SrcImmByte | ImplicitOps),
+ I(SrcImmFAddr | No64, em_jmp_far), D(SrcImmByte | ImplicitOps),
D2bvIP(SrcDX | DstAcc, in, check_perm_in),
D2bvIP(SrcAcc | DstDX, out, check_perm_out),
/* 0xF0 - 0xF7 */
@@ -3221,14 +3193,16 @@ static struct opcode opcode_table[256] = {
DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
G(ByteOp, group3), G(0, group3),
/* 0xF8 - 0xFF */
- D(ImplicitOps), D(ImplicitOps), D(ImplicitOps), D(ImplicitOps),
+ D(ImplicitOps), D(ImplicitOps),
+ I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
};
static struct opcode twobyte_table[256] = {
/* 0x00 - 0x0F */
G(0, group6), GD(0, &group7), N, N,
- N, D(ImplicitOps | VendorSpecific), DI(ImplicitOps | Priv, clts), N,
+ N, I(ImplicitOps | VendorSpecific, em_syscall),
+ II(ImplicitOps | Priv, em_clts, clts), N,
DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
N, D(ImplicitOps | ModRM), N, N,
/* 0x10 - 0x1F */
@@ -3245,7 +3219,8 @@ static struct opcode twobyte_table[256] = {
IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
DI(ImplicitOps | Priv, rdmsr),
DIP(ImplicitOps | Priv, rdpmc, check_rdpmc),
- D(ImplicitOps | VendorSpecific), D(ImplicitOps | Priv | VendorSpecific),
+ I(ImplicitOps | VendorSpecific, em_sysenter),
+ I(ImplicitOps | Priv | VendorSpecific, em_sysexit),
N, N,
N, N, N, N, N, N, N, N,
/* 0x40 - 0x4F */
@@ -3313,11 +3288,11 @@ static struct opcode twobyte_table[256] = {
#undef I2bv
#undef I6ALU
-static unsigned imm_size(struct decode_cache *c)
+static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
{
unsigned size;
- size = (c->d & ByteOp) ? 1 : c->op_bytes;
+ size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
if (size == 8)
size = 4;
return size;
@@ -3326,23 +3301,21 @@ static unsigned imm_size(struct decode_cache *c)
static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
unsigned size, bool sign_extension)
{
- struct decode_cache *c = &ctxt->decode;
- struct x86_emulate_ops *ops = ctxt->ops;
int rc = X86EMUL_CONTINUE;
op->type = OP_IMM;
op->bytes = size;
- op->addr.mem.ea = c->eip;
+ op->addr.mem.ea = ctxt->_eip;
/* NB. Immediates are sign-extended as necessary. */
switch (op->bytes) {
case 1:
- op->val = insn_fetch(s8, 1, c->eip);
+ op->val = insn_fetch(s8, 1, ctxt->_eip);
break;
case 2:
- op->val = insn_fetch(s16, 2, c->eip);
+ op->val = insn_fetch(s16, 2, ctxt->_eip);
break;
case 4:
- op->val = insn_fetch(s32, 4, c->eip);
+ op->val = insn_fetch(s32, 4, ctxt->_eip);
break;
}
if (!sign_extension) {
@@ -3362,11 +3335,8 @@ done:
return rc;
}
-int
-x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
+int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
{
- struct x86_emulate_ops *ops = ctxt->ops;
- struct decode_cache *c = &ctxt->decode;
int rc = X86EMUL_CONTINUE;
int mode = ctxt->mode;
int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
@@ -3374,11 +3344,11 @@ x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
struct opcode opcode;
struct operand memop = { .type = OP_NONE }, *memopp = NULL;
- c->eip = ctxt->eip;
- c->fetch.start = c->eip;
- c->fetch.end = c->fetch.start + insn_len;
+ ctxt->_eip = ctxt->eip;
+ ctxt->fetch.start = ctxt->_eip;
+ ctxt->fetch.end = ctxt->fetch.start + insn_len;
if (insn_len > 0)
- memcpy(c->fetch.data, insn, insn_len);
+ memcpy(ctxt->fetch.data, insn, insn_len);
switch (mode) {
case X86EMUL_MODE_REAL:
@@ -3399,46 +3369,46 @@ x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
return -1;
}
- c->op_bytes = def_op_bytes;
- c->ad_bytes = def_ad_bytes;
+ ctxt->op_bytes = def_op_bytes;
+ ctxt->ad_bytes = def_ad_bytes;
/* Legacy prefixes. */
for (;;) {
- switch (c->b = insn_fetch(u8, 1, c->eip)) {
+ switch (ctxt->b = insn_fetch(u8, 1, ctxt->_eip)) {
case 0x66: /* operand-size override */
op_prefix = true;
/* switch between 2/4 bytes */
- c->op_bytes = def_op_bytes ^ 6;
+ ctxt->op_bytes = def_op_bytes ^ 6;
break;
case 0x67: /* address-size override */
if (mode == X86EMUL_MODE_PROT64)
/* switch between 4/8 bytes */
- c->ad_bytes = def_ad_bytes ^ 12;
+ ctxt->ad_bytes = def_ad_bytes ^ 12;
else
/* switch between 2/4 bytes */
- c->ad_bytes = def_ad_bytes ^ 6;
+ ctxt->ad_bytes = def_ad_bytes ^ 6;
break;
case 0x26: /* ES override */
case 0x2e: /* CS override */
case 0x36: /* SS override */
case 0x3e: /* DS override */
- set_seg_override(c, (c->b >> 3) & 3);
+ set_seg_override(ctxt, (ctxt->b >> 3) & 3);
break;
case 0x64: /* FS override */
case 0x65: /* GS override */
- set_seg_override(c, c->b & 7);
+ set_seg_override(ctxt, ctxt->b & 7);
break;
case 0x40 ... 0x4f: /* REX */
if (mode != X86EMUL_MODE_PROT64)
goto done_prefixes;
- c->rex_prefix = c->b;
+ ctxt->rex_prefix = ctxt->b;
continue;
case 0xf0: /* LOCK */
- c->lock_prefix = 1;
+ ctxt->lock_prefix = 1;
break;
case 0xf2: /* REPNE/REPNZ */
case 0xf3: /* REP/REPE/REPZ */
- c->rep_prefix = c->b;
+ ctxt->rep_prefix = ctxt->b;
break;
default:
goto done_prefixes;
@@ -3446,50 +3416,50 @@ x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
/* Any legacy prefix after a REX prefix nullifies its effect. */
- c->rex_prefix = 0;
+ ctxt->rex_prefix = 0;
}
done_prefixes:
/* REX prefix. */
- if (c->rex_prefix & 8)
- c->op_bytes = 8; /* REX.W */
+ if (ctxt->rex_prefix & 8)
+ ctxt->op_bytes = 8; /* REX.W */
/* Opcode byte(s). */
- opcode = opcode_table[c->b];
+ opcode = opcode_table[ctxt->b];
/* Two-byte opcode? */
- if (c->b == 0x0f) {
- c->twobyte = 1;
- c->b = insn_fetch(u8, 1, c->eip);
- opcode = twobyte_table[c->b];
+ if (ctxt->b == 0x0f) {
+ ctxt->twobyte = 1;
+ ctxt->b = insn_fetch(u8, 1, ctxt->_eip);
+ opcode = twobyte_table[ctxt->b];
}
- c->d = opcode.flags;
+ ctxt->d = opcode.flags;
- while (c->d & GroupMask) {
- switch (c->d & GroupMask) {
+ while (ctxt->d & GroupMask) {
+ switch (ctxt->d & GroupMask) {
case Group:
- c->modrm = insn_fetch(u8, 1, c->eip);
- --c->eip;
- goffset = (c->modrm >> 3) & 7;
+ ctxt->modrm = insn_fetch(u8, 1, ctxt->_eip);
+ --ctxt->_eip;
+ goffset = (ctxt->modrm >> 3) & 7;
opcode = opcode.u.group[goffset];
break;
case GroupDual:
- c->modrm = insn_fetch(u8, 1, c->eip);
- --c->eip;
- goffset = (c->modrm >> 3) & 7;
- if ((c->modrm >> 6) == 3)
+ ctxt->modrm = insn_fetch(u8, 1, ctxt->_eip);
+ --ctxt->_eip;
+ goffset = (ctxt->modrm >> 3) & 7;
+ if ((ctxt->modrm >> 6) == 3)
opcode = opcode.u.gdual->mod3[goffset];
else
opcode = opcode.u.gdual->mod012[goffset];
break;
case RMExt:
- goffset = c->modrm & 7;
+ goffset = ctxt->modrm & 7;
opcode = opcode.u.group[goffset];
break;
case Prefix:
- if (c->rep_prefix && op_prefix)
+ if (ctxt->rep_prefix && op_prefix)
return X86EMUL_UNHANDLEABLE;
- simd_prefix = op_prefix ? 0x66 : c->rep_prefix;
+ simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
switch (simd_prefix) {
case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
@@ -3501,61 +3471,61 @@ done_prefixes:
return X86EMUL_UNHANDLEABLE;
}
- c->d &= ~GroupMask;
- c->d |= opcode.flags;
+ ctxt->d &= ~GroupMask;
+ ctxt->d |= opcode.flags;
}
- c->execute = opcode.u.execute;
- c->check_perm = opcode.check_perm;
- c->intercept = opcode.intercept;
+ ctxt->execute = opcode.u.execute;
+ ctxt->check_perm = opcode.check_perm;
+ ctxt->intercept = opcode.intercept;
/* Unrecognised? */
- if (c->d == 0 || (c->d & Undefined))
+ if (ctxt->d == 0 || (ctxt->d & Undefined))
return -1;
- if (!(c->d & VendorSpecific) && ctxt->only_vendor_specific_insn)
+ if (!(ctxt->d & VendorSpecific) && ctxt->only_vendor_specific_insn)
return -1;
- if (mode == X86EMUL_MODE_PROT64 && (c->d & Stack))
- c->op_bytes = 8;
+ if (mode == X86EMUL_MODE_PROT64 && (ctxt->d & Stack))
+ ctxt->op_bytes = 8;
- if (c->d & Op3264) {
+ if (ctxt->d & Op3264) {
if (mode == X86EMUL_MODE_PROT64)
- c->op_bytes = 8;
+ ctxt->op_bytes = 8;
else
- c->op_bytes = 4;
+ ctxt->op_bytes = 4;
}
- if (c->d & Sse)
- c->op_bytes = 16;
+ if (ctxt->d & Sse)
+ ctxt->op_bytes = 16;
/* ModRM and SIB bytes. */
- if (c->d & ModRM) {
- rc = decode_modrm(ctxt, ops, &memop);
- if (!c->has_seg_override)
- set_seg_override(c, c->modrm_seg);
- } else if (c->d & MemAbs)
- rc = decode_abs(ctxt, ops, &memop);
+ if (ctxt->d & ModRM) {
+ rc = decode_modrm(ctxt, &memop);
+ if (!ctxt->has_seg_override)
+ set_seg_override(ctxt, ctxt->modrm_seg);
+ } else if (ctxt->d & MemAbs)
+ rc = decode_abs(ctxt, &memop);
if (rc != X86EMUL_CONTINUE)
goto done;
- if (!c->has_seg_override)
- set_seg_override(c, VCPU_SREG_DS);
+ if (!ctxt->has_seg_override)
+ set_seg_override(ctxt, VCPU_SREG_DS);
- memop.addr.mem.seg = seg_override(ctxt, c);
+ memop.addr.mem.seg = seg_override(ctxt);
- if (memop.type == OP_MEM && c->ad_bytes != 8)
+ if (memop.type == OP_MEM && ctxt->ad_bytes != 8)
memop.addr.mem.ea = (u32)memop.addr.mem.ea;
/*
* Decode and fetch the source operand: register, memory
* or immediate.
*/
- switch (c->d & SrcMask) {
+ switch (ctxt->d & SrcMask) {
case SrcNone:
break;
case SrcReg:
- decode_register_operand(ctxt, &c->src, c, 0);
+ decode_register_operand(ctxt, &ctxt->src, 0);
break;
case SrcMem16:
memop.bytes = 2;
@@ -3564,60 +3534,60 @@ done_prefixes:
memop.bytes = 4;
goto srcmem_common;
case SrcMem:
- memop.bytes = (c->d & ByteOp) ? 1 :
- c->op_bytes;
+ memop.bytes = (ctxt->d & ByteOp) ? 1 :
+ ctxt->op_bytes;
srcmem_common:
- c->src = memop;
- memopp = &c->src;
+ ctxt->src = memop;
+ memopp = &ctxt->src;
break;
case SrcImmU16:
- rc = decode_imm(ctxt, &c->src, 2, false);
+ rc = decode_imm(ctxt, &ctxt->src, 2, false);
break;
case SrcImm:
- rc = decode_imm(ctxt, &c->src, imm_size(c), true);
+ rc = decode_imm(ctxt, &ctxt->src, imm_size(ctxt), true);
break;
case SrcImmU:
- rc = decode_imm(ctxt, &c->src, imm_size(c), false);
+ rc = decode_imm(ctxt, &ctxt->src, imm_size(ctxt), false);
break;
case SrcImmByte:
- rc = decode_imm(ctxt, &c->src, 1, true);
+ rc = decode_imm(ctxt, &ctxt->src, 1, true);
break;
case SrcImmUByte:
- rc = decode_imm(ctxt, &c->src, 1, false);
+ rc = decode_imm(ctxt, &ctxt->src, 1, false);
break;
case SrcAcc:
- c->src.type = OP_REG;
- c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
- c->src.addr.reg = &c->regs[VCPU_REGS_RAX];
- fetch_register_operand(&c->src);
+ ctxt->src.type = OP_REG;
+ ctxt->src.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ ctxt->src.addr.reg = &ctxt->regs[VCPU_REGS_RAX];
+ fetch_register_operand(&ctxt->src);
break;
case SrcOne:
- c->src.bytes = 1;
- c->src.val = 1;
+ ctxt->src.bytes = 1;
+ ctxt->src.val = 1;
break;
case SrcSI:
- c->src.type = OP_MEM;
- c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
- c->src.addr.mem.ea =
- register_address(c, c->regs[VCPU_REGS_RSI]);
- c->src.addr.mem.seg = seg_override(ctxt, c);
- c->src.val = 0;
+ ctxt->src.type = OP_MEM;
+ ctxt->src.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ ctxt->src.addr.mem.ea =
+ register_address(ctxt, ctxt->regs[VCPU_REGS_RSI]);
+ ctxt->src.addr.mem.seg = seg_override(ctxt);
+ ctxt->src.val = 0;
break;
case SrcImmFAddr:
- c->src.type = OP_IMM;
- c->src.addr.mem.ea = c->eip;
- c->src.bytes = c->op_bytes + 2;
- insn_fetch_arr(c->src.valptr, c->src.bytes, c->eip);
+ ctxt->src.type = OP_IMM;
+ ctxt->src.addr.mem.ea = ctxt->_eip;
+ ctxt->src.bytes = ctxt->op_bytes + 2;
+ insn_fetch_arr(ctxt->src.valptr, ctxt->src.bytes, ctxt->_eip);
break;
case SrcMemFAddr:
- memop.bytes = c->op_bytes + 2;
+ memop.bytes = ctxt->op_bytes + 2;
goto srcmem_common;
break;
case SrcDX:
- c->src.type = OP_REG;
- c->src.bytes = 2;
- c->src.addr.reg = &c->regs[VCPU_REGS_RDX];
- fetch_register_operand(&c->src);
+ ctxt->src.type = OP_REG;
+ ctxt->src.bytes = 2;
+ ctxt->src.addr.reg = &ctxt->regs[VCPU_REGS_RDX];
+ fetch_register_operand(&ctxt->src);
break;
}
@@ -3628,22 +3598,22 @@ done_prefixes:
* Decode and fetch the second source operand: register, memory
* or immediate.
*/
- switch (c->d & Src2Mask) {
+ switch (ctxt->d & Src2Mask) {
case Src2None:
break;
case Src2CL:
- c->src2.bytes = 1;
- c->src2.val = c->regs[VCPU_REGS_RCX] & 0x8;
+ ctxt->src2.bytes = 1;
+ ctxt->src2.val = ctxt->regs[VCPU_REGS_RCX] & 0x8;
break;
case Src2ImmByte:
- rc = decode_imm(ctxt, &c->src2, 1, true);
+ rc = decode_imm(ctxt, &ctxt->src2, 1, true);
break;
case Src2One:
- c->src2.bytes = 1;
- c->src2.val = 1;
+ ctxt->src2.bytes = 1;
+ ctxt->src2.val = 1;
break;
case Src2Imm:
- rc = decode_imm(ctxt, &c->src2, imm_size(c), true);
+ rc = decode_imm(ctxt, &ctxt->src2, imm_size(ctxt), true);
break;
}
@@ -3651,68 +3621,66 @@ done_prefixes:
goto done;
/* Decode and fetch the destination operand: register or memory. */
- switch (c->d & DstMask) {
+ switch (ctxt->d & DstMask) {
case DstReg:
- decode_register_operand(ctxt, &c->dst, c,
- c->twobyte && (c->b == 0xb6 || c->b == 0xb7));
+ decode_register_operand(ctxt, &ctxt->dst,
+ ctxt->twobyte && (ctxt->b == 0xb6 || ctxt->b == 0xb7));
break;
case DstImmUByte:
- c->dst.type = OP_IMM;
- c->dst.addr.mem.ea = c->eip;
- c->dst.bytes = 1;
- c->dst.val = insn_fetch(u8, 1, c->eip);
+ ctxt->dst.type = OP_IMM;
+ ctxt->dst.addr.mem.ea = ctxt->_eip;
+ ctxt->dst.bytes = 1;
+ ctxt->dst.val = insn_fetch(u8, 1, ctxt->_eip);
break;
case DstMem:
case DstMem64:
- c->dst = memop;
- memopp = &c->dst;
- if ((c->d & DstMask) == DstMem64)
- c->dst.bytes = 8;
+ ctxt->dst = memop;
+ memopp = &ctxt->dst;
+ if ((ctxt->d & DstMask) == DstMem64)
+ ctxt->dst.bytes = 8;
else
- c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
- if (c->d & BitOp)
- fetch_bit_operand(c);
- c->dst.orig_val = c->dst.val;
+ ctxt->dst.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ if (ctxt->d & BitOp)
+ fetch_bit_operand(ctxt);
+ ctxt->dst.orig_val = ctxt->dst.val;
break;
case DstAcc:
- c->dst.type = OP_REG;
- c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
- c->dst.addr.reg = &c->regs[VCPU_REGS_RAX];
- fetch_register_operand(&c->dst);
- c->dst.orig_val = c->dst.val;
+ ctxt->dst.type = OP_REG;
+ ctxt->dst.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ ctxt->dst.addr.reg = &ctxt->regs[VCPU_REGS_RAX];
+ fetch_register_operand(&ctxt->dst);
+ ctxt->dst.orig_val = ctxt->dst.val;
break;
case DstDI:
- c->dst.type = OP_MEM;
- c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
- c->dst.addr.mem.ea =
- register_address(c, c->regs[VCPU_REGS_RDI]);
- c->dst.addr.mem.seg = VCPU_SREG_ES;
- c->dst.val = 0;
+ ctxt->dst.type = OP_MEM;
+ ctxt->dst.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ ctxt->dst.addr.mem.ea =
+ register_address(ctxt, ctxt->regs[VCPU_REGS_RDI]);
+ ctxt->dst.addr.mem.seg = VCPU_SREG_ES;
+ ctxt->dst.val = 0;
break;
case DstDX:
- c->dst.type = OP_REG;
- c->dst.bytes = 2;
- c->dst.addr.reg = &c->regs[VCPU_REGS_RDX];
- fetch_register_operand(&c->dst);
+ ctxt->dst.type = OP_REG;
+ ctxt->dst.bytes = 2;
+ ctxt->dst.addr.reg = &ctxt->regs[VCPU_REGS_RDX];
+ fetch_register_operand(&ctxt->dst);
break;
case ImplicitOps:
/* Special instructions do their own operand decoding. */
default:
- c->dst.type = OP_NONE; /* Disable writeback. */
+ ctxt->dst.type = OP_NONE; /* Disable writeback. */
break;
}
done:
- if (memopp && memopp->type == OP_MEM && c->rip_relative)
- memopp->addr.mem.ea += c->eip;
+ if (memopp && memopp->type == OP_MEM && ctxt->rip_relative)
+ memopp->addr.mem.ea += ctxt->_eip;
return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
}
static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
{
- struct decode_cache *c = &ctxt->decode;
-
/* The second termination condition only applies for REPE
* and REPNE. Test if the repeat string operation prefix is
* REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
@@ -3720,304 +3688,232 @@ static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
* - if REPE/REPZ and ZF = 0 then done
* - if REPNE/REPNZ and ZF = 1 then done
*/
- if (((c->b == 0xa6) || (c->b == 0xa7) ||
- (c->b == 0xae) || (c->b == 0xaf))
- && (((c->rep_prefix == REPE_PREFIX) &&
+ if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
+ (ctxt->b == 0xae) || (ctxt->b == 0xaf))
+ && (((ctxt->rep_prefix == REPE_PREFIX) &&
((ctxt->eflags & EFLG_ZF) == 0))
- || ((c->rep_prefix == REPNE_PREFIX) &&
+ || ((ctxt->rep_prefix == REPNE_PREFIX) &&
((ctxt->eflags & EFLG_ZF) == EFLG_ZF))))
return true;
return false;
}
-int
-x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
+int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
{
struct x86_emulate_ops *ops = ctxt->ops;
u64 msr_data;
- struct decode_cache *c = &ctxt->decode;
int rc = X86EMUL_CONTINUE;
- int saved_dst_type = c->dst.type;
- int irq; /* Used for int 3, int, and into */
+ int saved_dst_type = ctxt->dst.type;
- ctxt->decode.mem_read.pos = 0;
+ ctxt->mem_read.pos = 0;
- if (ctxt->mode == X86EMUL_MODE_PROT64 && (c->d & No64)) {
+ if (ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) {
rc = emulate_ud(ctxt);
goto done;
}
/* LOCK prefix is allowed only with some instructions */
- if (c->lock_prefix && (!(c->d & Lock) || c->dst.type != OP_MEM)) {
+ if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
rc = emulate_ud(ctxt);
goto done;
}
- if ((c->d & SrcMask) == SrcMemFAddr && c->src.type != OP_MEM) {
+ if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
rc = emulate_ud(ctxt);
goto done;
}
- if ((c->d & Sse)
+ if ((ctxt->d & Sse)
&& ((ops->get_cr(ctxt, 0) & X86_CR0_EM)
|| !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
rc = emulate_ud(ctxt);
goto done;
}
- if ((c->d & Sse) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
+ if ((ctxt->d & Sse) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
rc = emulate_nm(ctxt);
goto done;
}
- if (unlikely(ctxt->guest_mode) && c->intercept) {
- rc = emulator_check_intercept(ctxt, c->intercept,
+ if (unlikely(ctxt->guest_mode) && ctxt->intercept) {
+ rc = emulator_check_intercept(ctxt, ctxt->intercept,
X86_ICPT_PRE_EXCEPT);
if (rc != X86EMUL_CONTINUE)
goto done;
}
/* Privileged instruction can be executed only in CPL=0 */
- if ((c->d & Priv) && ops->cpl(ctxt)) {
+ if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
rc = emulate_gp(ctxt, 0);
goto done;
}
/* Instruction can only be executed in protected mode */
- if ((c->d & Prot) && !(ctxt->mode & X86EMUL_MODE_PROT)) {
+ if ((ctxt->d & Prot) && !(ctxt->mode & X86EMUL_MODE_PROT)) {
rc = emulate_ud(ctxt);
goto done;
}
/* Do instruction specific permission checks */
- if (c->check_perm) {
- rc = c->check_perm(ctxt);
+ if (ctxt->check_perm) {
+ rc = ctxt->check_perm(ctxt);
if (rc != X86EMUL_CONTINUE)
goto done;
}
- if (unlikely(ctxt->guest_mode) && c->intercept) {
- rc = emulator_check_intercept(ctxt, c->intercept,
+ if (unlikely(ctxt->guest_mode) && ctxt->intercept) {
+ rc = emulator_check_intercept(ctxt, ctxt->intercept,
X86_ICPT_POST_EXCEPT);
if (rc != X86EMUL_CONTINUE)
goto done;
}
- if (c->rep_prefix && (c->d & String)) {
+ if (ctxt->rep_prefix && (ctxt->d & String)) {
/* All REP prefixes have the same first termination condition */
- if (address_mask(c, c->regs[VCPU_REGS_RCX]) == 0) {
- ctxt->eip = c->eip;
+ if (address_mask(ctxt, ctxt->regs[VCPU_REGS_RCX]) == 0) {
+ ctxt->eip = ctxt->_eip;
goto done;
}
}
- if ((c->src.type == OP_MEM) && !(c->d & NoAccess)) {
- rc = segmented_read(ctxt, c->src.addr.mem,
- c->src.valptr, c->src.bytes);
+ if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
+ rc = segmented_read(ctxt, ctxt->src.addr.mem,
+ ctxt->src.valptr, ctxt->src.bytes);
if (rc != X86EMUL_CONTINUE)
goto done;
- c->src.orig_val64 = c->src.val64;
+ ctxt->src.orig_val64 = ctxt->src.val64;
}
- if (c->src2.type == OP_MEM) {
- rc = segmented_read(ctxt, c->src2.addr.mem,
- &c->src2.val, c->src2.bytes);
+ if (ctxt->src2.type == OP_MEM) {
+ rc = segmented_read(ctxt, ctxt->src2.addr.mem,
+ &ctxt->src2.val, ctxt->src2.bytes);
if (rc != X86EMUL_CONTINUE)
goto done;
}
- if ((c->d & DstMask) == ImplicitOps)
+ if ((ctxt->d & DstMask) == ImplicitOps)
goto special_insn;
- if ((c->dst.type == OP_MEM) && !(c->d & Mov)) {
+ if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
/* optimisation - avoid slow emulated read if Mov */
- rc = segmented_read(ctxt, c->dst.addr.mem,
- &c->dst.val, c->dst.bytes);
+ rc = segmented_read(ctxt, ctxt->dst.addr.mem,
+ &ctxt->dst.val, ctxt->dst.bytes);
if (rc != X86EMUL_CONTINUE)
goto done;
}
- c->dst.orig_val = c->dst.val;
+ ctxt->dst.orig_val = ctxt->dst.val;
special_insn:
- if (unlikely(ctxt->guest_mode) && c->intercept) {
- rc = emulator_check_intercept(ctxt, c->intercept,
+ if (unlikely(ctxt->guest_mode) && ctxt->intercept) {
+ rc = emulator_check_intercept(ctxt, ctxt->intercept,
X86_ICPT_POST_MEMACCESS);
if (rc != X86EMUL_CONTINUE)
goto done;
}
- if (c->execute) {
- rc = c->execute(ctxt);
+ if (ctxt->execute) {
+ rc = ctxt->execute(ctxt);
if (rc != X86EMUL_CONTINUE)
goto done;
goto writeback;
}
- if (c->twobyte)
+ if (ctxt->twobyte)
goto twobyte_insn;
- switch (c->b) {
+ switch (ctxt->b) {
case 0x06: /* push es */
- rc = emulate_push_sreg(ctxt, ops, VCPU_SREG_ES);
+ rc = emulate_push_sreg(ctxt, VCPU_SREG_ES);
break;
case 0x07: /* pop es */
- rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_ES);
+ rc = emulate_pop_sreg(ctxt, VCPU_SREG_ES);
break;
case 0x0e: /* push cs */
- rc = emulate_push_sreg(ctxt, ops, VCPU_SREG_CS);
+ rc = emulate_push_sreg(ctxt, VCPU_SREG_CS);
break;
case 0x16: /* push ss */
- rc = emulate_push_sreg(ctxt, ops, VCPU_SREG_SS);
+ rc = emulate_push_sreg(ctxt, VCPU_SREG_SS);
break;
case 0x17: /* pop ss */
- rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_SS);
+ rc = emulate_pop_sreg(ctxt, VCPU_SREG_SS);
break;
case 0x1e: /* push ds */
- rc = emulate_push_sreg(ctxt, ops, VCPU_SREG_DS);
+ rc = emulate_push_sreg(ctxt, VCPU_SREG_DS);
break;
case 0x1f: /* pop ds */
- rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_DS);
+ rc = emulate_pop_sreg(ctxt, VCPU_SREG_DS);
break;
case 0x40 ... 0x47: /* inc r16/r32 */
- emulate_1op("inc", c->dst, ctxt->eflags);
+ emulate_1op("inc", ctxt->dst, ctxt->eflags);
break;
case 0x48 ... 0x4f: /* dec r16/r32 */
- emulate_1op("dec", c->dst, ctxt->eflags);
+ emulate_1op("dec", ctxt->dst, ctxt->eflags);
break;
case 0x63: /* movsxd */
if (ctxt->mode != X86EMUL_MODE_PROT64)
goto cannot_emulate;
- c->dst.val = (s32) c->src.val;
+ ctxt->dst.val = (s32) ctxt->src.val;
break;
case 0x6c: /* insb */
case 0x6d: /* insw/insd */
- c->src.val = c->regs[VCPU_REGS_RDX];
+ ctxt->src.val = ctxt->regs[VCPU_REGS_RDX];
goto do_io_in;
case 0x6e: /* outsb */
case 0x6f: /* outsw/outsd */
- c->dst.val = c->regs[VCPU_REGS_RDX];
+ ctxt->dst.val = ctxt->regs[VCPU_REGS_RDX];
goto do_io_out;
break;
case 0x70 ... 0x7f: /* jcc (short) */
- if (test_cc(c->b, ctxt->eflags))
- jmp_rel(c, c->src.val);
- break;
- case 0x84 ... 0x85:
- test:
- emulate_2op_SrcV("test", c->src, c->dst, ctxt->eflags);
- break;
- case 0x86 ... 0x87: /* xchg */
- xchg:
- /* Write back the register source. */
- c->src.val = c->dst.val;
- write_register_operand(&c->src);
- /*
- * Write back the memory destination with implicit LOCK
- * prefix.
- */
- c->dst.val = c->src.orig_val;
- c->lock_prefix = 1;
- break;
- case 0x8c: /* mov r/m, sreg */
- if (c->modrm_reg > VCPU_SREG_GS) {
- rc = emulate_ud(ctxt);
- goto done;
- }
- c->dst.val = get_segment_selector(ctxt, c->modrm_reg);
+ if (test_cc(ctxt->b, ctxt->eflags))
+ jmp_rel(ctxt, ctxt->src.val);
break;
case 0x8d: /* lea r16/r32, m */
- c->dst.val = c->src.addr.mem.ea;
+ ctxt->dst.val = ctxt->src.addr.mem.ea;
break;
- case 0x8e: { /* mov seg, r/m16 */
- uint16_t sel;
-
- sel = c->src.val;
-
- if (c->modrm_reg == VCPU_SREG_CS ||
- c->modrm_reg > VCPU_SREG_GS) {
- rc = emulate_ud(ctxt);
- goto done;
- }
-
- if (c->modrm_reg == VCPU_SREG_SS)
- ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
-
- rc = load_segment_descriptor(ctxt, ops, sel, c->modrm_reg);
-
- c->dst.type = OP_NONE; /* Disable writeback. */
- break;
- }
case 0x8f: /* pop (sole member of Grp1a) */
rc = em_grp1a(ctxt);
break;
case 0x90 ... 0x97: /* nop / xchg reg, rax */
- if (c->dst.addr.reg == &c->regs[VCPU_REGS_RAX])
+ if (ctxt->dst.addr.reg == &ctxt->regs[VCPU_REGS_RAX])
break;
- goto xchg;
+ rc = em_xchg(ctxt);
+ break;
case 0x98: /* cbw/cwde/cdqe */
- switch (c->op_bytes) {
- case 2: c->dst.val = (s8)c->dst.val; break;
- case 4: c->dst.val = (s16)c->dst.val; break;
- case 8: c->dst.val = (s32)c->dst.val; break;
+ switch (ctxt->op_bytes) {
+ case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
+ case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
+ case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
}
break;
- case 0xa8 ... 0xa9: /* test ax, imm */
- goto test;
case 0xc0 ... 0xc1:
rc = em_grp2(ctxt);
break;
- case 0xc3: /* ret */
- c->dst.type = OP_REG;
- c->dst.addr.reg = &c->eip;
- c->dst.bytes = c->op_bytes;
- rc = em_pop(ctxt);
- break;
case 0xc4: /* les */
- rc = emulate_load_segment(ctxt, ops, VCPU_SREG_ES);
+ rc = emulate_load_segment(ctxt, VCPU_SREG_ES);
break;
case 0xc5: /* lds */
- rc = emulate_load_segment(ctxt, ops, VCPU_SREG_DS);
- break;
- case 0xcb: /* ret far */
- rc = emulate_ret_far(ctxt, ops);
+ rc = emulate_load_segment(ctxt, VCPU_SREG_DS);
break;
case 0xcc: /* int3 */
- irq = 3;
- goto do_interrupt;
+ rc = emulate_int(ctxt, 3);
+ break;
case 0xcd: /* int n */
- irq = c->src.val;
- do_interrupt:
- rc = emulate_int(ctxt, ops, irq);
+ rc = emulate_int(ctxt, ctxt->src.val);
break;
case 0xce: /* into */
- if (ctxt->eflags & EFLG_OF) {
- irq = 4;
- goto do_interrupt;
- }
- break;
- case 0xcf: /* iret */
- rc = emulate_iret(ctxt, ops);
+ if (ctxt->eflags & EFLG_OF)
+ rc = emulate_int(ctxt, 4);
break;
case 0xd0 ... 0xd1: /* Grp2 */
rc = em_grp2(ctxt);
break;
case 0xd2 ... 0xd3: /* Grp2 */
- c->src.val = c->regs[VCPU_REGS_RCX];
+ ctxt->src.val = ctxt->regs[VCPU_REGS_RCX];
rc = em_grp2(ctxt);
break;
- case 0xe0 ... 0xe2: /* loop/loopz/loopnz */
- register_address_increment(c, &c->regs[VCPU_REGS_RCX], -1);
- if (address_mask(c, c->regs[VCPU_REGS_RCX]) != 0 &&
- (c->b == 0xe2 || test_cc(c->b ^ 0x5, ctxt->eflags)))
- jmp_rel(c, c->src.val);
- break;
- case 0xe3: /* jcxz/jecxz/jrcxz */
- if (address_mask(c, c->regs[VCPU_REGS_RCX]) == 0)
- jmp_rel(c, c->src.val);
- break;
case 0xe4: /* inb */
case 0xe5: /* in */
goto do_io_in;
@@ -4025,35 +3921,30 @@ special_insn:
case 0xe7: /* out */
goto do_io_out;
case 0xe8: /* call (near) */ {
- long int rel = c->src.val;
- c->src.val = (unsigned long) c->eip;
- jmp_rel(c, rel);
+ long int rel = ctxt->src.val;
+ ctxt->src.val = (unsigned long) ctxt->_eip;
+ jmp_rel(ctxt, rel);
rc = em_push(ctxt);
break;
}
case 0xe9: /* jmp rel */
- goto jmp;
- case 0xea: /* jmp far */
- rc = em_jmp_far(ctxt);
- break;
- case 0xeb:
- jmp: /* jmp rel short */
- jmp_rel(c, c->src.val);
- c->dst.type = OP_NONE; /* Disable writeback. */
+ case 0xeb: /* jmp rel short */
+ jmp_rel(ctxt, ctxt->src.val);
+ ctxt->dst.type = OP_NONE; /* Disable writeback. */
break;
case 0xec: /* in al,dx */
case 0xed: /* in (e/r)ax,dx */
do_io_in:
- if (!pio_in_emulated(ctxt, ops, c->dst.bytes, c->src.val,
- &c->dst.val))
+ if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
+ &ctxt->dst.val))
goto done; /* IO is needed */
break;
case 0xee: /* out dx,al */
case 0xef: /* out dx,(e/r)ax */
do_io_out:
- ops->pio_out_emulated(ctxt, c->src.bytes, c->dst.val,
- &c->src.val, 1);
- c->dst.type = OP_NONE; /* Disable writeback. */
+ ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
+ &ctxt->src.val, 1);
+ ctxt->dst.type = OP_NONE; /* Disable writeback. */
break;
case 0xf4: /* hlt */
ctxt->ops->halt(ctxt);
@@ -4071,22 +3962,6 @@ special_insn:
case 0xf9: /* stc */
ctxt->eflags |= EFLG_CF;
break;
- case 0xfa: /* cli */
- if (emulator_bad_iopl(ctxt, ops)) {
- rc = emulate_gp(ctxt, 0);
- goto done;
- } else
- ctxt->eflags &= ~X86_EFLAGS_IF;
- break;
- case 0xfb: /* sti */
- if (emulator_bad_iopl(ctxt, ops)) {
- rc = emulate_gp(ctxt, 0);
- goto done;
- } else {
- ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
- ctxt->eflags |= X86_EFLAGS_IF;
- }
- break;
case 0xfc: /* cld */
ctxt->eflags &= ~EFLG_DF;
break;
@@ -4115,40 +3990,40 @@ writeback:
* restore dst type in case the decoding will be reused
* (happens for string instruction )
*/
- c->dst.type = saved_dst_type;
+ ctxt->dst.type = saved_dst_type;
- if ((c->d & SrcMask) == SrcSI)
- string_addr_inc(ctxt, seg_override(ctxt, c),
- VCPU_REGS_RSI, &c->src);
+ if ((ctxt->d & SrcMask) == SrcSI)
+ string_addr_inc(ctxt, seg_override(ctxt),
+ VCPU_REGS_RSI, &ctxt->src);
- if ((c->d & DstMask) == DstDI)
+ if ((ctxt->d & DstMask) == DstDI)
string_addr_inc(ctxt, VCPU_SREG_ES, VCPU_REGS_RDI,
- &c->dst);
+ &ctxt->dst);
- if (c->rep_prefix && (c->d & String)) {
- struct read_cache *r = &ctxt->decode.io_read;
- register_address_increment(c, &c->regs[VCPU_REGS_RCX], -1);
+ if (ctxt->rep_prefix && (ctxt->d & String)) {
+ struct read_cache *r = &ctxt->io_read;
+ register_address_increment(ctxt, &ctxt->regs[VCPU_REGS_RCX], -1);
if (!string_insn_completed(ctxt)) {
/*
* Re-enter guest when pio read ahead buffer is empty
* or, if it is not used, after each 1024 iteration.
*/
- if ((r->end != 0 || c->regs[VCPU_REGS_RCX] & 0x3ff) &&
+ if ((r->end != 0 || ctxt->regs[VCPU_REGS_RCX] & 0x3ff) &&
(r->end == 0 || r->end != r->pos)) {
/*
* Reset read cache. Usually happens before
* decode, but since instruction is restarted
* we have to do it here.
*/
- ctxt->decode.mem_read.end = 0;
+ ctxt->mem_read.end = 0;
return EMULATION_RESTART;
}
goto done; /* skip rip writeback */
}
}
- ctxt->eip = c->eip;
+ ctxt->eip = ctxt->_eip;
done:
if (rc == X86EMUL_PROPAGATE_FAULT)
@@ -4159,13 +4034,7 @@ done:
return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
twobyte_insn:
- switch (c->b) {
- case 0x05: /* syscall */
- rc = emulate_syscall(ctxt, ops);
- break;
- case 0x06:
- rc = em_clts(ctxt);
- break;
+ switch (ctxt->b) {
case 0x09: /* wbinvd */
(ctxt->ops->wbinvd)(ctxt);
break;
@@ -4174,21 +4043,21 @@ twobyte_insn:
case 0x18: /* Grp16 (prefetch/nop) */
break;
case 0x20: /* mov cr, reg */
- c->dst.val = ops->get_cr(ctxt, c->modrm_reg);
+ ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
break;
case 0x21: /* mov from dr to reg */
- ops->get_dr(ctxt, c->modrm_reg, &c->dst.val);
+ ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val);
break;
case 0x22: /* mov reg, cr */
- if (ops->set_cr(ctxt, c->modrm_reg, c->src.val)) {
+ if (ops->set_cr(ctxt, ctxt->modrm_reg, ctxt->src.val)) {
emulate_gp(ctxt, 0);
rc = X86EMUL_PROPAGATE_FAULT;
goto done;
}
- c->dst.type = OP_NONE;
+ ctxt->dst.type = OP_NONE;
break;
case 0x23: /* mov from reg to dr */
- if (ops->set_dr(ctxt, c->modrm_reg, c->src.val &
+ if (ops->set_dr(ctxt, ctxt->modrm_reg, ctxt->src.val &
((ctxt->mode == X86EMUL_MODE_PROT64) ?
~0ULL : ~0U)) < 0) {
/* #UD condition is already handled by the code above */
@@ -4197,13 +4066,13 @@ twobyte_insn:
goto done;
}
- c->dst.type = OP_NONE; /* no writeback */
+ ctxt->dst.type = OP_NONE; /* no writeback */
break;
case 0x30:
/* wrmsr */
- msr_data = (u32)c->regs[VCPU_REGS_RAX]
- | ((u64)c->regs[VCPU_REGS_RDX] << 32);
- if (ops->set_msr(ctxt, c->regs[VCPU_REGS_RCX], msr_data)) {
+ msr_data = (u32)ctxt->regs[VCPU_REGS_RAX]
+ | ((u64)ctxt->regs[VCPU_REGS_RDX] << 32);
+ if (ops->set_msr(ctxt, ctxt->regs[VCPU_REGS_RCX], msr_data)) {
emulate_gp(ctxt, 0);
rc = X86EMUL_PROPAGATE_FAULT;
goto done;
@@ -4212,64 +4081,58 @@ twobyte_insn:
break;
case 0x32:
/* rdmsr */
- if (ops->get_msr(ctxt, c->regs[VCPU_REGS_RCX], &msr_data)) {
+ if (ops->get_msr(ctxt, ctxt->regs[VCPU_REGS_RCX], &msr_data)) {
emulate_gp(ctxt, 0);
rc = X86EMUL_PROPAGATE_FAULT;
goto done;
} else {
- c->regs[VCPU_REGS_RAX] = (u32)msr_data;
- c->regs[VCPU_REGS_RDX] = msr_data >> 32;
+ ctxt->regs[VCPU_REGS_RAX] = (u32)msr_data;
+ ctxt->regs[VCPU_REGS_RDX] = msr_data >> 32;
}
rc = X86EMUL_CONTINUE;
break;
- case 0x34: /* sysenter */
- rc = emulate_sysenter(ctxt, ops);
- break;
- case 0x35: /* sysexit */
- rc = emulate_sysexit(ctxt, ops);
- break;
case 0x40 ... 0x4f: /* cmov */
- c->dst.val = c->dst.orig_val = c->src.val;
- if (!test_cc(c->b, ctxt->eflags))
- c->dst.type = OP_NONE; /* no writeback */
+ ctxt->dst.val = ctxt->dst.orig_val = ctxt->src.val;
+ if (!test_cc(ctxt->b, ctxt->eflags))
+ ctxt->dst.type = OP_NONE; /* no writeback */
break;
case 0x80 ... 0x8f: /* jnz rel, etc*/
- if (test_cc(c->b, ctxt->eflags))
- jmp_rel(c, c->src.val);
+ if (test_cc(ctxt->b, ctxt->eflags))
+ jmp_rel(ctxt, ctxt->src.val);
break;
case 0x90 ... 0x9f: /* setcc r/m8 */
- c->dst.val = test_cc(c->b, ctxt->eflags);
+ ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
break;
case 0xa0: /* push fs */
- rc = emulate_push_sreg(ctxt, ops, VCPU_SREG_FS);
+ rc = emulate_push_sreg(ctxt, VCPU_SREG_FS);
break;
case 0xa1: /* pop fs */
- rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_FS);
+ rc = emulate_pop_sreg(ctxt, VCPU_SREG_FS);
break;
case 0xa3:
bt: /* bt */
- c->dst.type = OP_NONE;
+ ctxt->dst.type = OP_NONE;
/* only subword offset */
- c->src.val &= (c->dst.bytes << 3) - 1;
- emulate_2op_SrcV_nobyte("bt", c->src, c->dst, ctxt->eflags);
+ ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
+ emulate_2op_SrcV_nobyte("bt", ctxt->src, ctxt->dst, ctxt->eflags);
break;
case 0xa4: /* shld imm8, r, r/m */
case 0xa5: /* shld cl, r, r/m */
- emulate_2op_cl("shld", c->src2, c->src, c->dst, ctxt->eflags);
+ emulate_2op_cl("shld", ctxt->src2, ctxt->src, ctxt->dst, ctxt->eflags);
break;
case 0xa8: /* push gs */
- rc = emulate_push_sreg(ctxt, ops, VCPU_SREG_GS);
+ rc = emulate_push_sreg(ctxt, VCPU_SREG_GS);
break;
case 0xa9: /* pop gs */
- rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_GS);
+ rc = emulate_pop_sreg(ctxt, VCPU_SREG_GS);
break;
case 0xab:
bts: /* bts */
- emulate_2op_SrcV_nobyte("bts", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcV_nobyte("bts", ctxt->src, ctxt->dst, ctxt->eflags);
break;
case 0xac: /* shrd imm8, r, r/m */
case 0xad: /* shrd cl, r, r/m */
- emulate_2op_cl("shrd", c->src2, c->src, c->dst, ctxt->eflags);
+ emulate_2op_cl("shrd", ctxt->src2, ctxt->src, ctxt->dst, ctxt->eflags);
break;
case 0xae: /* clflush */
break;
@@ -4278,38 +4141,38 @@ twobyte_insn:
* Save real source value, then compare EAX against
* destination.
*/
- c->src.orig_val = c->src.val;
- c->src.val = c->regs[VCPU_REGS_RAX];
- emulate_2op_SrcV("cmp", c->src, c->dst, ctxt->eflags);
+ ctxt->src.orig_val = ctxt->src.val;
+ ctxt->src.val = ctxt->regs[VCPU_REGS_RAX];
+ emulate_2op_SrcV("cmp", ctxt->src, ctxt->dst, ctxt->eflags);
if (ctxt->eflags & EFLG_ZF) {
/* Success: write back to memory. */
- c->dst.val = c->src.orig_val;
+ ctxt->dst.val = ctxt->src.orig_val;
} else {
/* Failure: write the value we saw to EAX. */
- c->dst.type = OP_REG;
- c->dst.addr.reg = (unsigned long *)&c->regs[VCPU_REGS_RAX];
+ ctxt->dst.type = OP_REG;
+ ctxt->dst.addr.reg = (unsigned long *)&ctxt->regs[VCPU_REGS_RAX];
}
break;
case 0xb2: /* lss */
- rc = emulate_load_segment(ctxt, ops, VCPU_SREG_SS);
+ rc = emulate_load_segment(ctxt, VCPU_SREG_SS);
break;
case 0xb3:
btr: /* btr */
- emulate_2op_SrcV_nobyte("btr", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcV_nobyte("btr", ctxt->src, ctxt->dst, ctxt->eflags);
break;
case 0xb4: /* lfs */
- rc = emulate_load_segment(ctxt, ops, VCPU_SREG_FS);
+ rc = emulate_load_segment(ctxt, VCPU_SREG_FS);
break;
case 0xb5: /* lgs */
- rc = emulate_load_segment(ctxt, ops, VCPU_SREG_GS);
+ rc = emulate_load_segment(ctxt, VCPU_SREG_GS);
break;
case 0xb6 ... 0xb7: /* movzx */
- c->dst.bytes = c->op_bytes;
- c->dst.val = (c->d & ByteOp) ? (u8) c->src.val
- : (u16) c->src.val;
+ ctxt->dst.bytes = ctxt->op_bytes;
+ ctxt->dst.val = (ctxt->d & ByteOp) ? (u8) ctxt->src.val
+ : (u16) ctxt->src.val;
break;
case 0xba: /* Grp8 */
- switch (c->modrm_reg & 3) {
+ switch (ctxt->modrm_reg & 3) {
case 0:
goto bt;
case 1:
@@ -4322,47 +4185,47 @@ twobyte_insn:
break;
case 0xbb:
btc: /* btc */
- emulate_2op_SrcV_nobyte("btc", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcV_nobyte("btc", ctxt->src, ctxt->dst, ctxt->eflags);
break;
case 0xbc: { /* bsf */
u8 zf;
__asm__ ("bsf %2, %0; setz %1"
- : "=r"(c->dst.val), "=q"(zf)
- : "r"(c->src.val));
+ : "=r"(ctxt->dst.val), "=q"(zf)
+ : "r"(ctxt->src.val));
ctxt->eflags &= ~X86_EFLAGS_ZF;
if (zf) {
ctxt->eflags |= X86_EFLAGS_ZF;
- c->dst.type = OP_NONE; /* Disable writeback. */
+ ctxt->dst.type = OP_NONE; /* Disable writeback. */
}
break;
}
case 0xbd: { /* bsr */
u8 zf;
__asm__ ("bsr %2, %0; setz %1"
- : "=r"(c->dst.val), "=q"(zf)
- : "r"(c->src.val));
+ : "=r"(ctxt->dst.val), "=q"(zf)
+ : "r"(ctxt->src.val));
ctxt->eflags &= ~X86_EFLAGS_ZF;
if (zf) {
ctxt->eflags |= X86_EFLAGS_ZF;
- c->dst.type = OP_NONE; /* Disable writeback. */
+ ctxt->dst.type = OP_NONE; /* Disable writeback. */
}
break;
}
case 0xbe ... 0xbf: /* movsx */
- c->dst.bytes = c->op_bytes;
- c->dst.val = (c->d & ByteOp) ? (s8) c->src.val :
- (s16) c->src.val;
+ ctxt->dst.bytes = ctxt->op_bytes;
+ ctxt->dst.val = (ctxt->d & ByteOp) ? (s8) ctxt->src.val :
+ (s16) ctxt->src.val;
break;
case 0xc0 ... 0xc1: /* xadd */
- emulate_2op_SrcV("add", c->src, c->dst, ctxt->eflags);
+ emulate_2op_SrcV("add", ctxt->src, ctxt->dst, ctxt->eflags);
/* Write back the register source. */
- c->src.val = c->dst.orig_val;
- write_register_operand(&c->src);
+ ctxt->src.val = ctxt->dst.orig_val;
+ write_register_operand(&ctxt->src);
break;
case 0xc3: /* movnti */
- c->dst.bytes = c->op_bytes;
- c->dst.val = (c->op_bytes == 4) ? (u32) c->src.val :
- (u64) c->src.val;
+ ctxt->dst.bytes = ctxt->op_bytes;
+ ctxt->dst.val = (ctxt->op_bytes == 4) ? (u32) ctxt->src.val :
+ (u64) ctxt->src.val;
break;
case 0xc7: /* Grp9 (cmpxchg8b) */
rc = em_grp9(ctxt);
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
index aee38623b768..9335e1bf72ad 100644
--- a/arch/x86/kvm/mmu.c
+++ b/arch/x86/kvm/mmu.c
@@ -148,7 +148,7 @@ module_param(oos_shadow, bool, 0644);
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
| PT64_NX_MASK)
-#define RMAP_EXT 4
+#define PTE_LIST_EXT 4
#define ACC_EXEC_MASK 1
#define ACC_WRITE_MASK PT_WRITABLE_MASK
@@ -164,16 +164,16 @@ module_param(oos_shadow, bool, 0644);
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
-struct kvm_rmap_desc {
- u64 *sptes[RMAP_EXT];
- struct kvm_rmap_desc *more;
+struct pte_list_desc {
+ u64 *sptes[PTE_LIST_EXT];
+ struct pte_list_desc *more;
};
struct kvm_shadow_walk_iterator {
u64 addr;
hpa_t shadow_addr;
- int level;
u64 *sptep;
+ int level;
unsigned index;
};
@@ -182,32 +182,68 @@ struct kvm_shadow_walk_iterator {
shadow_walk_okay(&(_walker)); \
shadow_walk_next(&(_walker)))
-typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
+#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
+ for (shadow_walk_init(&(_walker), _vcpu, _addr); \
+ shadow_walk_okay(&(_walker)) && \
+ ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
+ __shadow_walk_next(&(_walker), spte))
-static struct kmem_cache *pte_chain_cache;
-static struct kmem_cache *rmap_desc_cache;
+static struct kmem_cache *pte_list_desc_cache;
static struct kmem_cache *mmu_page_header_cache;
static struct percpu_counter kvm_total_used_mmu_pages;
-static u64 __read_mostly shadow_trap_nonpresent_pte;
-static u64 __read_mostly shadow_notrap_nonpresent_pte;
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
+static u64 __read_mostly shadow_mmio_mask;
-static inline u64 rsvd_bits(int s, int e)
+static void mmu_spte_set(u64 *sptep, u64 spte);
+
+void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
- return ((1ULL << (e - s + 1)) - 1) << s;
+ shadow_mmio_mask = mmio_mask;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
+
+static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
+{
+ access &= ACC_WRITE_MASK | ACC_USER_MASK;
+
+ trace_mark_mmio_spte(sptep, gfn, access);
+ mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
}
-void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
+static bool is_mmio_spte(u64 spte)
{
- shadow_trap_nonpresent_pte = trap_pte;
- shadow_notrap_nonpresent_pte = notrap_pte;
+ return (spte & shadow_mmio_mask) == shadow_mmio_mask;
+}
+
+static gfn_t get_mmio_spte_gfn(u64 spte)
+{
+ return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
+}
+
+static unsigned get_mmio_spte_access(u64 spte)
+{
+ return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
+}
+
+static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
+{
+ if (unlikely(is_noslot_pfn(pfn))) {
+ mark_mmio_spte(sptep, gfn, access);
+ return true;
+ }
+
+ return false;
+}
+
+static inline u64 rsvd_bits(int s, int e)
+{
+ return ((1ULL << (e - s + 1)) - 1) << s;
}
-EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
u64 dirty_mask, u64 nx_mask, u64 x_mask)
@@ -220,11 +256,6 @@ void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
-static bool is_write_protection(struct kvm_vcpu *vcpu)
-{
- return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
-}
-
static int is_cpuid_PSE36(void)
{
return 1;
@@ -237,8 +268,7 @@ static int is_nx(struct kvm_vcpu *vcpu)
static int is_shadow_present_pte(u64 pte)
{
- return pte != shadow_trap_nonpresent_pte
- && pte != shadow_notrap_nonpresent_pte;
+ return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
}
static int is_large_pte(u64 pte)
@@ -246,11 +276,6 @@ static int is_large_pte(u64 pte)
return pte & PT_PAGE_SIZE_MASK;
}
-static int is_writable_pte(unsigned long pte)
-{
- return pte & PT_WRITABLE_MASK;
-}
-
static int is_dirty_gpte(unsigned long pte)
{
return pte & PT_DIRTY_MASK;
@@ -282,26 +307,154 @@ static gfn_t pse36_gfn_delta(u32 gpte)
return (gpte & PT32_DIR_PSE36_MASK) << shift;
}
+#ifdef CONFIG_X86_64
static void __set_spte(u64 *sptep, u64 spte)
{
- set_64bit(sptep, spte);
+ *sptep = spte;
}
-static u64 __xchg_spte(u64 *sptep, u64 new_spte)
+static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
-#ifdef CONFIG_X86_64
- return xchg(sptep, new_spte);
+ *sptep = spte;
+}
+
+static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
+{
+ return xchg(sptep, spte);
+}
+
+static u64 __get_spte_lockless(u64 *sptep)
+{
+ return ACCESS_ONCE(*sptep);
+}
+
+static bool __check_direct_spte_mmio_pf(u64 spte)
+{
+ /* It is valid if the spte is zapped. */
+ return spte == 0ull;
+}
#else
- u64 old_spte;
+union split_spte {
+ struct {
+ u32 spte_low;
+ u32 spte_high;
+ };
+ u64 spte;
+};
- do {
- old_spte = *sptep;
- } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
+static void count_spte_clear(u64 *sptep, u64 spte)
+{
+ struct kvm_mmu_page *sp = page_header(__pa(sptep));
- return old_spte;
-#endif
+ if (is_shadow_present_pte(spte))
+ return;
+
+ /* Ensure the spte is completely set before we increase the count */
+ smp_wmb();
+ sp->clear_spte_count++;
+}
+
+static void __set_spte(u64 *sptep, u64 spte)
+{
+ union split_spte *ssptep, sspte;
+
+ ssptep = (union split_spte *)sptep;
+ sspte = (union split_spte)spte;
+
+ ssptep->spte_high = sspte.spte_high;
+
+ /*
+ * If we map the spte from nonpresent to present, We should store
+ * the high bits firstly, then set present bit, so cpu can not
+ * fetch this spte while we are setting the spte.
+ */
+ smp_wmb();
+
+ ssptep->spte_low = sspte.spte_low;
}
+static void __update_clear_spte_fast(u64 *sptep, u64 spte)
+{
+ union split_spte *ssptep, sspte;
+
+ ssptep = (union split_spte *)sptep;
+ sspte = (union split_spte)spte;
+
+ ssptep->spte_low = sspte.spte_low;
+
+ /*
+ * If we map the spte from present to nonpresent, we should clear
+ * present bit firstly to avoid vcpu fetch the old high bits.
+ */
+ smp_wmb();
+
+ ssptep->spte_high = sspte.spte_high;
+ count_spte_clear(sptep, spte);
+}
+
+static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
+{
+ union split_spte *ssptep, sspte, orig;
+
+ ssptep = (union split_spte *)sptep;
+ sspte = (union split_spte)spte;
+
+ /* xchg acts as a barrier before the setting of the high bits */
+ orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
+ orig.spte_high = ssptep->spte_high = sspte.spte_high;
+ count_spte_clear(sptep, spte);
+
+ return orig.spte;
+}
+
+/*
+ * The idea using the light way get the spte on x86_32 guest is from
+ * gup_get_pte(arch/x86/mm/gup.c).
+ * The difference is we can not catch the spte tlb flush if we leave
+ * guest mode, so we emulate it by increase clear_spte_count when spte
+ * is cleared.
+ */
+static u64 __get_spte_lockless(u64 *sptep)
+{
+ struct kvm_mmu_page *sp = page_header(__pa(sptep));
+ union split_spte spte, *orig = (union split_spte *)sptep;
+ int count;
+
+retry:
+ count = sp->clear_spte_count;
+ smp_rmb();
+
+ spte.spte_low = orig->spte_low;
+ smp_rmb();
+
+ spte.spte_high = orig->spte_high;
+ smp_rmb();
+
+ if (unlikely(spte.spte_low != orig->spte_low ||
+ count != sp->clear_spte_count))
+ goto retry;
+
+ return spte.spte;
+}
+
+static bool __check_direct_spte_mmio_pf(u64 spte)
+{
+ union split_spte sspte = (union split_spte)spte;
+ u32 high_mmio_mask = shadow_mmio_mask >> 32;
+
+ /* It is valid if the spte is zapped. */
+ if (spte == 0ull)
+ return true;
+
+ /* It is valid if the spte is being zapped. */
+ if (sspte.spte_low == 0ull &&
+ (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
+ return true;
+
+ return false;
+}
+#endif
+
static bool spte_has_volatile_bits(u64 spte)
{
if (!shadow_accessed_mask)
@@ -322,12 +475,30 @@ static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
return (old_spte & bit_mask) && !(new_spte & bit_mask);
}
-static void update_spte(u64 *sptep, u64 new_spte)
+/* Rules for using mmu_spte_set:
+ * Set the sptep from nonpresent to present.
+ * Note: the sptep being assigned *must* be either not present
+ * or in a state where the hardware will not attempt to update
+ * the spte.
+ */
+static void mmu_spte_set(u64 *sptep, u64 new_spte)
+{
+ WARN_ON(is_shadow_present_pte(*sptep));
+ __set_spte(sptep, new_spte);
+}
+
+/* Rules for using mmu_spte_update:
+ * Update the state bits, it means the mapped pfn is not changged.
+ */
+static void mmu_spte_update(u64 *sptep, u64 new_spte)
{
u64 mask, old_spte = *sptep;
WARN_ON(!is_rmap_spte(new_spte));
+ if (!is_shadow_present_pte(old_spte))
+ return mmu_spte_set(sptep, new_spte);
+
new_spte |= old_spte & shadow_dirty_mask;
mask = shadow_accessed_mask;
@@ -335,9 +506,9 @@ static void update_spte(u64 *sptep, u64 new_spte)
mask |= shadow_dirty_mask;
if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
- __set_spte(sptep, new_spte);
+ __update_clear_spte_fast(sptep, new_spte);
else
- old_spte = __xchg_spte(sptep, new_spte);
+ old_spte = __update_clear_spte_slow(sptep, new_spte);
if (!shadow_accessed_mask)
return;
@@ -348,6 +519,64 @@ static void update_spte(u64 *sptep, u64 new_spte)
kvm_set_pfn_dirty(spte_to_pfn(old_spte));
}
+/*
+ * Rules for using mmu_spte_clear_track_bits:
+ * It sets the sptep from present to nonpresent, and track the
+ * state bits, it is used to clear the last level sptep.
+ */
+static int mmu_spte_clear_track_bits(u64 *sptep)
+{
+ pfn_t pfn;
+ u64 old_spte = *sptep;
+
+ if (!spte_has_volatile_bits(old_spte))
+ __update_clear_spte_fast(sptep, 0ull);
+ else
+ old_spte = __update_clear_spte_slow(sptep, 0ull);
+
+ if (!is_rmap_spte(old_spte))
+ return 0;
+
+ pfn = spte_to_pfn(old_spte);
+ if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
+ kvm_set_pfn_accessed(pfn);
+ if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
+ kvm_set_pfn_dirty(pfn);
+ return 1;
+}
+
+/*
+ * Rules for using mmu_spte_clear_no_track:
+ * Directly clear spte without caring the state bits of sptep,
+ * it is used to set the upper level spte.
+ */
+static void mmu_spte_clear_no_track(u64 *sptep)
+{
+ __update_clear_spte_fast(sptep, 0ull);
+}
+
+static u64 mmu_spte_get_lockless(u64 *sptep)
+{
+ return __get_spte_lockless(sptep);
+}
+
+static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
+{
+ rcu_read_lock();
+ atomic_inc(&vcpu->kvm->arch.reader_counter);
+
+ /* Increase the counter before walking shadow page table */
+ smp_mb__after_atomic_inc();
+}
+
+static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
+{
+ /* Decrease the counter after walking shadow page table finished */
+ smp_mb__before_atomic_dec();
+ atomic_dec(&vcpu->kvm->arch.reader_counter);
+ rcu_read_unlock();
+}
+
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
struct kmem_cache *base_cache, int min)
{
@@ -397,12 +626,8 @@ static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
{
int r;
- r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
- pte_chain_cache, 4);
- if (r)
- goto out;
- r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
- rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
+ r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
+ pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
if (r)
goto out;
r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
@@ -416,8 +641,8 @@ out:
static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
- mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
- mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
+ mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
+ pte_list_desc_cache);
mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
mmu_page_header_cache);
@@ -433,26 +658,15 @@ static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
return p;
}
-static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
-{
- return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
- sizeof(struct kvm_pte_chain));
-}
-
-static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
+static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
{
- kmem_cache_free(pte_chain_cache, pc);
+ return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
+ sizeof(struct pte_list_desc));
}
-static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
+static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
{
- return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
- sizeof(struct kvm_rmap_desc));
-}
-
-static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
-{
- kmem_cache_free(rmap_desc_cache, rd);
+ kmem_cache_free(pte_list_desc_cache, pte_list_desc);
}
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
@@ -498,6 +712,7 @@ static void account_shadowed(struct kvm *kvm, gfn_t gfn)
linfo = lpage_info_slot(gfn, slot, i);
linfo->write_count += 1;
}
+ kvm->arch.indirect_shadow_pages++;
}
static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
@@ -513,6 +728,7 @@ static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
linfo->write_count -= 1;
WARN_ON(linfo->write_count < 0);
}
+ kvm->arch.indirect_shadow_pages--;
}
static int has_wrprotected_page(struct kvm *kvm,
@@ -588,67 +804,42 @@ static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
}
/*
- * Take gfn and return the reverse mapping to it.
- */
-
-static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
-{
- struct kvm_memory_slot *slot;
- struct kvm_lpage_info *linfo;
-
- slot = gfn_to_memslot(kvm, gfn);
- if (likely(level == PT_PAGE_TABLE_LEVEL))
- return &slot->rmap[gfn - slot->base_gfn];
-
- linfo = lpage_info_slot(gfn, slot, level);
-
- return &linfo->rmap_pde;
-}
-
-/*
- * Reverse mapping data structures:
+ * Pte mapping structures:
*
- * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
- * that points to page_address(page).
+ * If pte_list bit zero is zero, then pte_list point to the spte.
*
- * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
- * containing more mappings.
+ * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
+ * pte_list_desc containing more mappings.
*
- * Returns the number of rmap entries before the spte was added or zero if
+ * Returns the number of pte entries before the spte was added or zero if
* the spte was not added.
*
*/
-static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
+static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
+ unsigned long *pte_list)
{
- struct kvm_mmu_page *sp;
- struct kvm_rmap_desc *desc;
- unsigned long *rmapp;
+ struct pte_list_desc *desc;
int i, count = 0;
- if (!is_rmap_spte(*spte))
- return count;
- sp = page_header(__pa(spte));
- kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
- rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
- if (!*rmapp) {
- rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
- *rmapp = (unsigned long)spte;
- } else if (!(*rmapp & 1)) {
- rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
- desc = mmu_alloc_rmap_desc(vcpu);
- desc->sptes[0] = (u64 *)*rmapp;
+ if (!*pte_list) {
+ rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
+ *pte_list = (unsigned long)spte;
+ } else if (!(*pte_list & 1)) {
+ rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
+ desc = mmu_alloc_pte_list_desc(vcpu);
+ desc->sptes[0] = (u64 *)*pte_list;
desc->sptes[1] = spte;
- *rmapp = (unsigned long)desc | 1;
+ *pte_list = (unsigned long)desc | 1;
++count;
} else {
- rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
- desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
- while (desc->sptes[RMAP_EXT-1] && desc->more) {
+ rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
+ desc = (struct pte_list_desc *)(*pte_list & ~1ul);
+ while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
desc = desc->more;
- count += RMAP_EXT;
+ count += PTE_LIST_EXT;
}
- if (desc->sptes[RMAP_EXT-1]) {
- desc->more = mmu_alloc_rmap_desc(vcpu);
+ if (desc->sptes[PTE_LIST_EXT-1]) {
+ desc->more = mmu_alloc_pte_list_desc(vcpu);
desc = desc->more;
}
for (i = 0; desc->sptes[i]; ++i)
@@ -658,59 +849,78 @@ static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
return count;
}
-static void rmap_desc_remove_entry(unsigned long *rmapp,
- struct kvm_rmap_desc *desc,
- int i,
- struct kvm_rmap_desc *prev_desc)
+static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
+{
+ struct pte_list_desc *desc;
+ u64 *prev_spte;
+ int i;
+
+ if (!*pte_list)
+ return NULL;
+ else if (!(*pte_list & 1)) {
+ if (!spte)
+ return (u64 *)*pte_list;
+ return NULL;
+ }
+ desc = (struct pte_list_desc *)(*pte_list & ~1ul);
+ prev_spte = NULL;
+ while (desc) {
+ for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
+ if (prev_spte == spte)
+ return desc->sptes[i];
+ prev_spte = desc->sptes[i];
+ }
+ desc = desc->more;
+ }
+ return NULL;
+}
+
+static void
+pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
+ int i, struct pte_list_desc *prev_desc)
{
int j;
- for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
+ for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
;
desc->sptes[i] = desc->sptes[j];
desc->sptes[j] = NULL;
if (j != 0)
return;
if (!prev_desc && !desc->more)
- *rmapp = (unsigned long)desc->sptes[0];
+ *pte_list = (unsigned long)desc->sptes[0];
else
if (prev_desc)
prev_desc->more = desc->more;
else
- *rmapp = (unsigned long)desc->more | 1;
- mmu_free_rmap_desc(desc);
+ *pte_list = (unsigned long)desc->more | 1;
+ mmu_free_pte_list_desc(desc);
}
-static void rmap_remove(struct kvm *kvm, u64 *spte)
+static void pte_list_remove(u64 *spte, unsigned long *pte_list)
{
- struct kvm_rmap_desc *desc;
- struct kvm_rmap_desc *prev_desc;
- struct kvm_mmu_page *sp;
- gfn_t gfn;
- unsigned long *rmapp;
+ struct pte_list_desc *desc;
+ struct pte_list_desc *prev_desc;
int i;
- sp = page_header(__pa(spte));
- gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
- rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
- if (!*rmapp) {
- printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
+ if (!*pte_list) {
+ printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
BUG();
- } else if (!(*rmapp & 1)) {
- rmap_printk("rmap_remove: %p 1->0\n", spte);
- if ((u64 *)*rmapp != spte) {
- printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
+ } else if (!(*pte_list & 1)) {
+ rmap_printk("pte_list_remove: %p 1->0\n", spte);
+ if ((u64 *)*pte_list != spte) {
+ printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
BUG();
}
- *rmapp = 0;
+ *pte_list = 0;
} else {
- rmap_printk("rmap_remove: %p many->many\n", spte);
- desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
+ rmap_printk("pte_list_remove: %p many->many\n", spte);
+ desc = (struct pte_list_desc *)(*pte_list & ~1ul);
prev_desc = NULL;
while (desc) {
- for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
+ for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
if (desc->sptes[i] == spte) {
- rmap_desc_remove_entry(rmapp,
+ pte_list_desc_remove_entry(pte_list,
desc, i,
prev_desc);
return;
@@ -718,62 +928,80 @@ static void rmap_remove(struct kvm *kvm, u64 *spte)
prev_desc = desc;
desc = desc->more;
}
- pr_err("rmap_remove: %p many->many\n", spte);
+ pr_err("pte_list_remove: %p many->many\n", spte);
BUG();
}
}
-static int set_spte_track_bits(u64 *sptep, u64 new_spte)
+typedef void (*pte_list_walk_fn) (u64 *spte);
+static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
- pfn_t pfn;
- u64 old_spte = *sptep;
+ struct pte_list_desc *desc;
+ int i;
- if (!spte_has_volatile_bits(old_spte))
- __set_spte(sptep, new_spte);
- else
- old_spte = __xchg_spte(sptep, new_spte);
+ if (!*pte_list)
+ return;
- if (!is_rmap_spte(old_spte))
- return 0;
+ if (!(*pte_list & 1))
+ return fn((u64 *)*pte_list);
- pfn = spte_to_pfn(old_spte);
- if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
- kvm_set_pfn_accessed(pfn);
- if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
- kvm_set_pfn_dirty(pfn);
- return 1;
+ desc = (struct pte_list_desc *)(*pte_list & ~1ul);
+ while (desc) {
+ for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
+ fn(desc->sptes[i]);
+ desc = desc->more;
+ }
}
-static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
+/*
+ * Take gfn and return the reverse mapping to it.
+ */
+static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
- if (set_spte_track_bits(sptep, new_spte))
- rmap_remove(kvm, sptep);
+ struct kvm_memory_slot *slot;
+ struct kvm_lpage_info *linfo;
+
+ slot = gfn_to_memslot(kvm, gfn);
+ if (likely(level == PT_PAGE_TABLE_LEVEL))
+ return &slot->rmap[gfn - slot->base_gfn];
+
+ linfo = lpage_info_slot(gfn, slot, level);
+
+ return &linfo->rmap_pde;
+}
+
+static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
+{
+ struct kvm_mmu_page *sp;
+ unsigned long *rmapp;
+
+ sp = page_header(__pa(spte));
+ kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
+ rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
+ return pte_list_add(vcpu, spte, rmapp);
}
static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
{
- struct kvm_rmap_desc *desc;
- u64 *prev_spte;
- int i;
+ return pte_list_next(rmapp, spte);
+}
- if (!*rmapp)
- return NULL;
- else if (!(*rmapp & 1)) {
- if (!spte)
- return (u64 *)*rmapp;
- return NULL;
- }
- desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
- prev_spte = NULL;
- while (desc) {
- for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
- if (prev_spte == spte)
- return desc->sptes[i];
- prev_spte = desc->sptes[i];
- }
- desc = desc->more;
- }
- return NULL;
+static void rmap_remove(struct kvm *kvm, u64 *spte)
+{
+ struct kvm_mmu_page *sp;
+ gfn_t gfn;
+ unsigned long *rmapp;
+
+ sp = page_header(__pa(spte));
+ gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
+ rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
+ pte_list_remove(spte, rmapp);
+}
+
+static void drop_spte(struct kvm *kvm, u64 *sptep)
+{
+ if (mmu_spte_clear_track_bits(sptep))
+ rmap_remove(kvm, sptep);
}
static int rmap_write_protect(struct kvm *kvm, u64 gfn)
@@ -790,7 +1018,7 @@ static int rmap_write_protect(struct kvm *kvm, u64 gfn)
BUG_ON(!(*spte & PT_PRESENT_MASK));
rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
if (is_writable_pte(*spte)) {
- update_spte(spte, *spte & ~PT_WRITABLE_MASK);
+ mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
write_protected = 1;
}
spte = rmap_next(kvm, rmapp, spte);
@@ -807,8 +1035,7 @@ static int rmap_write_protect(struct kvm *kvm, u64 gfn)
BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
if (is_writable_pte(*spte)) {
- drop_spte(kvm, spte,
- shadow_trap_nonpresent_pte);
+ drop_spte(kvm, spte);
--kvm->stat.lpages;
spte = NULL;
write_protected = 1;
@@ -829,7 +1056,7 @@ static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
while ((spte = rmap_next(kvm, rmapp, NULL))) {
BUG_ON(!(*spte & PT_PRESENT_MASK));
rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
- drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
+ drop_spte(kvm, spte);
need_tlb_flush = 1;
}
return need_tlb_flush;
@@ -851,7 +1078,7 @@ static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
need_flush = 1;
if (pte_write(*ptep)) {
- drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
+ drop_spte(kvm, spte);
spte = rmap_next(kvm, rmapp, NULL);
} else {
new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
@@ -860,7 +1087,8 @@ static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
new_spte &= ~PT_WRITABLE_MASK;
new_spte &= ~SPTE_HOST_WRITEABLE;
new_spte &= ~shadow_accessed_mask;
- set_spte_track_bits(spte, new_spte);
+ mmu_spte_clear_track_bits(spte);
+ mmu_spte_set(spte, new_spte);
spte = rmap_next(kvm, rmapp, spte);
}
}
@@ -1032,151 +1260,89 @@ static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}
-static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+/*
+ * Remove the sp from shadow page cache, after call it,
+ * we can not find this sp from the cache, and the shadow
+ * page table is still valid.
+ * It should be under the protection of mmu lock.
+ */
+static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
{
ASSERT(is_empty_shadow_page(sp->spt));
hlist_del(&sp->hash_link);
- list_del(&sp->link);
- free_page((unsigned long)sp->spt);
if (!sp->role.direct)
free_page((unsigned long)sp->gfns);
- kmem_cache_free(mmu_page_header_cache, sp);
- kvm_mod_used_mmu_pages(kvm, -1);
}
-static unsigned kvm_page_table_hashfn(gfn_t gfn)
+/*
+ * Free the shadow page table and the sp, we can do it
+ * out of the protection of mmu lock.
+ */
+static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
{
- return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
+ list_del(&sp->link);
+ free_page((unsigned long)sp->spt);
+ kmem_cache_free(mmu_page_header_cache, sp);
}
-static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
- u64 *parent_pte, int direct)
+static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
- struct kvm_mmu_page *sp;
-
- sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
- sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
- if (!direct)
- sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
- PAGE_SIZE);
- set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
- list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
- bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
- sp->multimapped = 0;
- sp->parent_pte = parent_pte;
- kvm_mod_used_mmu_pages(vcpu->kvm, +1);
- return sp;
+ return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
}
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp, u64 *parent_pte)
{
- struct kvm_pte_chain *pte_chain;
- struct hlist_node *node;
- int i;
-
if (!parent_pte)
return;
- if (!sp->multimapped) {
- u64 *old = sp->parent_pte;
- if (!old) {
- sp->parent_pte = parent_pte;
- return;
- }
- sp->multimapped = 1;
- pte_chain = mmu_alloc_pte_chain(vcpu);
- INIT_HLIST_HEAD(&sp->parent_ptes);
- hlist_add_head(&pte_chain->link, &sp->parent_ptes);
- pte_chain->parent_ptes[0] = old;
- }
- hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
- if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
- continue;
- for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
- if (!pte_chain->parent_ptes[i]) {
- pte_chain->parent_ptes[i] = parent_pte;
- return;
- }
- }
- pte_chain = mmu_alloc_pte_chain(vcpu);
- BUG_ON(!pte_chain);
- hlist_add_head(&pte_chain->link, &sp->parent_ptes);
- pte_chain->parent_ptes[0] = parent_pte;
+ pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
}
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
u64 *parent_pte)
{
- struct kvm_pte_chain *pte_chain;
- struct hlist_node *node;
- int i;
-
- if (!sp->multimapped) {
- BUG_ON(sp->parent_pte != parent_pte);
- sp->parent_pte = NULL;
- return;
- }
- hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
- for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
- if (!pte_chain->parent_ptes[i])
- break;
- if (pte_chain->parent_ptes[i] != parent_pte)
- continue;
- while (i + 1 < NR_PTE_CHAIN_ENTRIES
- && pte_chain->parent_ptes[i + 1]) {
- pte_chain->parent_ptes[i]
- = pte_chain->parent_ptes[i + 1];
- ++i;
- }
- pte_chain->parent_ptes[i] = NULL;
- if (i == 0) {
- hlist_del(&pte_chain->link);
- mmu_free_pte_chain(pte_chain);
- if (hlist_empty(&sp->parent_ptes)) {
- sp->multimapped = 0;
- sp->parent_pte = NULL;
- }
- }
- return;
- }
- BUG();
+ pte_list_remove(parent_pte, &sp->parent_ptes);
}
-static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
+static void drop_parent_pte(struct kvm_mmu_page *sp,
+ u64 *parent_pte)
{
- struct kvm_pte_chain *pte_chain;
- struct hlist_node *node;
- struct kvm_mmu_page *parent_sp;
- int i;
-
- if (!sp->multimapped && sp->parent_pte) {
- parent_sp = page_header(__pa(sp->parent_pte));
- fn(parent_sp, sp->parent_pte);
- return;
- }
-
- hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
- for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
- u64 *spte = pte_chain->parent_ptes[i];
+ mmu_page_remove_parent_pte(sp, parent_pte);
+ mmu_spte_clear_no_track(parent_pte);
+}
- if (!spte)
- break;
- parent_sp = page_header(__pa(spte));
- fn(parent_sp, spte);
- }
+static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
+ u64 *parent_pte, int direct)
+{
+ struct kvm_mmu_page *sp;
+ sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
+ sizeof *sp);
+ sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
+ if (!direct)
+ sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
+ PAGE_SIZE);
+ set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
+ list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
+ bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
+ sp->parent_ptes = 0;
+ mmu_page_add_parent_pte(vcpu, sp, parent_pte);
+ kvm_mod_used_mmu_pages(vcpu->kvm, +1);
+ return sp;
}
-static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
+static void mark_unsync(u64 *spte);
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
{
- mmu_parent_walk(sp, mark_unsync);
+ pte_list_walk(&sp->parent_ptes, mark_unsync);
}
-static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
+static void mark_unsync(u64 *spte)
{
+ struct kvm_mmu_page *sp;
unsigned int index;
+ sp = page_header(__pa(spte));
index = spte - sp->spt;
if (__test_and_set_bit(index, sp->unsync_child_bitmap))
return;
@@ -1185,15 +1351,6 @@ static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
kvm_mmu_mark_parents_unsync(sp);
}
-static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp)
-{
- int i;
-
- for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
- sp->spt[i] = shadow_trap_nonpresent_pte;
-}
-
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp)
{
@@ -1475,6 +1632,14 @@ static void mmu_sync_children(struct kvm_vcpu *vcpu,
}
}
+static void init_shadow_page_table(struct kvm_mmu_page *sp)
+{
+ int i;
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
+ sp->spt[i] = 0ull;
+}
+
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
gfn_t gfn,
gva_t gaddr,
@@ -1537,10 +1702,7 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
account_shadowed(vcpu->kvm, gfn);
}
- if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
- vcpu->arch.mmu.prefetch_page(vcpu, sp);
- else
- nonpaging_prefetch_page(vcpu, sp);
+ init_shadow_page_table(sp);
trace_kvm_mmu_get_page(sp, true);
return sp;
}
@@ -1572,21 +1734,28 @@ static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
if (iterator->level < PT_PAGE_TABLE_LEVEL)
return false;
- if (iterator->level == PT_PAGE_TABLE_LEVEL)
- if (is_large_pte(*iterator->sptep))
- return false;
-
iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
return true;
}
-static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
+static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
+ u64 spte)
{
- iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
+ if (is_last_spte(spte, iterator->level)) {
+ iterator->level = 0;
+ return;
+ }
+
+ iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
--iterator->level;
}
+static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
+{
+ return __shadow_walk_next(iterator, *iterator->sptep);
+}
+
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
{
u64 spte;
@@ -1594,13 +1763,13 @@ static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
spte = __pa(sp->spt)
| PT_PRESENT_MASK | PT_ACCESSED_MASK
| PT_WRITABLE_MASK | PT_USER_MASK;
- __set_spte(sptep, spte);
+ mmu_spte_set(sptep, spte);
}
static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
if (is_large_pte(*sptep)) {
- drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
+ drop_spte(vcpu->kvm, sptep);
kvm_flush_remote_tlbs(vcpu->kvm);
}
}
@@ -1622,38 +1791,39 @@ static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
if (child->role.access == direct_access)
return;
- mmu_page_remove_parent_pte(child, sptep);
- __set_spte(sptep, shadow_trap_nonpresent_pte);
+ drop_parent_pte(child, sptep);
kvm_flush_remote_tlbs(vcpu->kvm);
}
}
+static void mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
+ u64 *spte)
+{
+ u64 pte;
+ struct kvm_mmu_page *child;
+
+ pte = *spte;
+ if (is_shadow_present_pte(pte)) {
+ if (is_last_spte(pte, sp->role.level))
+ drop_spte(kvm, spte);
+ else {
+ child = page_header(pte & PT64_BASE_ADDR_MASK);
+ drop_parent_pte(child, spte);
+ }
+ } else if (is_mmio_spte(pte))
+ mmu_spte_clear_no_track(spte);
+
+ if (is_large_pte(pte))
+ --kvm->stat.lpages;
+}
+
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
struct kvm_mmu_page *sp)
{
unsigned i;
- u64 *pt;
- u64 ent;
-
- pt = sp->spt;
-
- for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
- ent = pt[i];
-
- if (is_shadow_present_pte(ent)) {
- if (!is_last_spte(ent, sp->role.level)) {
- ent &= PT64_BASE_ADDR_MASK;
- mmu_page_remove_parent_pte(page_header(ent),
- &pt[i]);
- } else {
- if (is_large_pte(ent))
- --kvm->stat.lpages;
- drop_spte(kvm, &pt[i],
- shadow_trap_nonpresent_pte);
- }
- }
- pt[i] = shadow_trap_nonpresent_pte;
- }
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
+ mmu_page_zap_pte(kvm, sp, sp->spt + i);
}
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
@@ -1674,20 +1844,8 @@ static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
{
u64 *parent_pte;
- while (sp->multimapped || sp->parent_pte) {
- if (!sp->multimapped)
- parent_pte = sp->parent_pte;
- else {
- struct kvm_pte_chain *chain;
-
- chain = container_of(sp->parent_ptes.first,
- struct kvm_pte_chain, link);
- parent_pte = chain->parent_ptes[0];
- }
- BUG_ON(!parent_pte);
- kvm_mmu_put_page(sp, parent_pte);
- __set_spte(parent_pte, shadow_trap_nonpresent_pte);
- }
+ while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
+ drop_parent_pte(sp, parent_pte);
}
static int mmu_zap_unsync_children(struct kvm *kvm,
@@ -1734,6 +1892,7 @@ static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
/* Count self */
ret++;
list_move(&sp->link, invalid_list);
+ kvm_mod_used_mmu_pages(kvm, -1);
} else {
list_move(&sp->link, &kvm->arch.active_mmu_pages);
kvm_reload_remote_mmus(kvm);
@@ -1744,6 +1903,30 @@ static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
return ret;
}
+static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
+{
+ struct kvm_mmu_page *sp;
+
+ list_for_each_entry(sp, invalid_list, link)
+ kvm_mmu_isolate_page(sp);
+}
+
+static void free_pages_rcu(struct rcu_head *head)
+{
+ struct kvm_mmu_page *next, *sp;
+
+ sp = container_of(head, struct kvm_mmu_page, rcu);
+ while (sp) {
+ if (!list_empty(&sp->link))
+ next = list_first_entry(&sp->link,
+ struct kvm_mmu_page, link);
+ else
+ next = NULL;
+ kvm_mmu_free_page(sp);
+ sp = next;
+ }
+}
+
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
struct list_head *invalid_list)
{
@@ -1754,10 +1937,21 @@ static void kvm_mmu_commit_zap_page(struct kvm *kvm,
kvm_flush_remote_tlbs(kvm);
+ if (atomic_read(&kvm->arch.reader_counter)) {
+ kvm_mmu_isolate_pages(invalid_list);
+ sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
+ list_del_init(invalid_list);
+
+ trace_kvm_mmu_delay_free_pages(sp);
+ call_rcu(&sp->rcu, free_pages_rcu);
+ return;
+ }
+
do {
sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
WARN_ON(!sp->role.invalid || sp->root_count);
- kvm_mmu_free_page(kvm, sp);
+ kvm_mmu_isolate_page(sp);
+ kvm_mmu_free_page(sp);
} while (!list_empty(invalid_list));
}
@@ -1783,8 +1977,8 @@ void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
page = container_of(kvm->arch.active_mmu_pages.prev,
struct kvm_mmu_page, link);
kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
}
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
}
@@ -1833,20 +2027,6 @@ static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
__set_bit(slot, sp->slot_bitmap);
}
-static void mmu_convert_notrap(struct kvm_mmu_page *sp)
-{
- int i;
- u64 *pt = sp->spt;
-
- if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
- return;
-
- for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
- if (pt[i] == shadow_notrap_nonpresent_pte)
- __set_spte(&pt[i], shadow_trap_nonpresent_pte);
- }
-}
-
/*
* The function is based on mtrr_type_lookup() in
* arch/x86/kernel/cpu/mtrr/generic.c
@@ -1959,7 +2139,6 @@ static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
sp->unsync = 1;
kvm_mmu_mark_parents_unsync(sp);
- mmu_convert_notrap(sp);
}
static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
@@ -2002,13 +2181,16 @@ static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
unsigned pte_access, int user_fault,
- int write_fault, int dirty, int level,
+ int write_fault, int level,
gfn_t gfn, pfn_t pfn, bool speculative,
bool can_unsync, bool host_writable)
{
u64 spte, entry = *sptep;
int ret = 0;
+ if (set_mmio_spte(sptep, gfn, pfn, pte_access))
+ return 0;
+
/*
* We don't set the accessed bit, since we sometimes want to see
* whether the guest actually used the pte (in order to detect
@@ -2017,8 +2199,7 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
spte = PT_PRESENT_MASK;
if (!speculative)
spte |= shadow_accessed_mask;
- if (!dirty)
- pte_access &= ~ACC_WRITE_MASK;
+
if (pte_access & ACC_EXEC_MASK)
spte |= shadow_x_mask;
else
@@ -2045,15 +2226,24 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
if (level > PT_PAGE_TABLE_LEVEL &&
has_wrprotected_page(vcpu->kvm, gfn, level)) {
ret = 1;
- drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
+ drop_spte(vcpu->kvm, sptep);
goto done;
}
spte |= PT_WRITABLE_MASK;
if (!vcpu->arch.mmu.direct_map
- && !(pte_access & ACC_WRITE_MASK))
+ && !(pte_access & ACC_WRITE_MASK)) {
spte &= ~PT_USER_MASK;
+ /*
+ * If we converted a user page to a kernel page,
+ * so that the kernel can write to it when cr0.wp=0,
+ * then we should prevent the kernel from executing it
+ * if SMEP is enabled.
+ */
+ if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
+ spte |= PT64_NX_MASK;
+ }
/*
* Optimization: for pte sync, if spte was writable the hash
@@ -2078,7 +2268,7 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
mark_page_dirty(vcpu->kvm, gfn);
set_pte:
- update_spte(sptep, spte);
+ mmu_spte_update(sptep, spte);
/*
* If we overwrite a writable spte with a read-only one we
* should flush remote TLBs. Otherwise rmap_write_protect
@@ -2093,8 +2283,8 @@ done:
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
unsigned pt_access, unsigned pte_access,
- int user_fault, int write_fault, int dirty,
- int *ptwrite, int level, gfn_t gfn,
+ int user_fault, int write_fault,
+ int *emulate, int level, gfn_t gfn,
pfn_t pfn, bool speculative,
bool host_writable)
{
@@ -2117,26 +2307,28 @@ static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
u64 pte = *sptep;
child = page_header(pte & PT64_BASE_ADDR_MASK);
- mmu_page_remove_parent_pte(child, sptep);
- __set_spte(sptep, shadow_trap_nonpresent_pte);
+ drop_parent_pte(child, sptep);
kvm_flush_remote_tlbs(vcpu->kvm);
} else if (pfn != spte_to_pfn(*sptep)) {
pgprintk("hfn old %llx new %llx\n",
spte_to_pfn(*sptep), pfn);
- drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
+ drop_spte(vcpu->kvm, sptep);
kvm_flush_remote_tlbs(vcpu->kvm);
} else
was_rmapped = 1;
}
if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
- dirty, level, gfn, pfn, speculative, true,
+ level, gfn, pfn, speculative, true,
host_writable)) {
if (write_fault)
- *ptwrite = 1;
+ *emulate = 1;
kvm_mmu_flush_tlb(vcpu);
}
+ if (unlikely(is_mmio_spte(*sptep) && emulate))
+ *emulate = 1;
+
pgprintk("%s: setting spte %llx\n", __func__, *sptep);
pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
is_large_pte(*sptep)? "2MB" : "4kB",
@@ -2145,11 +2337,13 @@ static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
if (!was_rmapped && is_large_pte(*sptep))
++vcpu->kvm->stat.lpages;
- page_header_update_slot(vcpu->kvm, sptep, gfn);
- if (!was_rmapped) {
- rmap_count = rmap_add(vcpu, sptep, gfn);
- if (rmap_count > RMAP_RECYCLE_THRESHOLD)
- rmap_recycle(vcpu, sptep, gfn);
+ if (is_shadow_present_pte(*sptep)) {
+ page_header_update_slot(vcpu->kvm, sptep, gfn);
+ if (!was_rmapped) {
+ rmap_count = rmap_add(vcpu, sptep, gfn);
+ if (rmap_count > RMAP_RECYCLE_THRESHOLD)
+ rmap_recycle(vcpu, sptep, gfn);
+ }
}
kvm_release_pfn_clean(pfn);
if (speculative) {
@@ -2170,8 +2364,8 @@ static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
if (!slot) {
- get_page(bad_page);
- return page_to_pfn(bad_page);
+ get_page(fault_page);
+ return page_to_pfn(fault_page);
}
hva = gfn_to_hva_memslot(slot, gfn);
@@ -2198,7 +2392,7 @@ static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
for (i = 0; i < ret; i++, gfn++, start++)
mmu_set_spte(vcpu, start, ACC_ALL,
- access, 0, 0, 1, NULL,
+ access, 0, 0, NULL,
sp->role.level, gfn,
page_to_pfn(pages[i]), true, true);
@@ -2217,7 +2411,7 @@ static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
spte = sp->spt + i;
for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
- if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
+ if (is_shadow_present_pte(*spte) || spte == sptep) {
if (!start)
continue;
if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
@@ -2254,7 +2448,7 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
{
struct kvm_shadow_walk_iterator iterator;
struct kvm_mmu_page *sp;
- int pt_write = 0;
+ int emulate = 0;
gfn_t pseudo_gfn;
for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
@@ -2262,14 +2456,14 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
unsigned pte_access = ACC_ALL;
mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
- 0, write, 1, &pt_write,
+ 0, write, &emulate,
level, gfn, pfn, prefault, map_writable);
direct_pte_prefetch(vcpu, iterator.sptep);
++vcpu->stat.pf_fixed;
break;
}
- if (*iterator.sptep == shadow_trap_nonpresent_pte) {
+ if (!is_shadow_present_pte(*iterator.sptep)) {
u64 base_addr = iterator.addr;
base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
@@ -2283,14 +2477,14 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
return -ENOMEM;
}
- __set_spte(iterator.sptep,
- __pa(sp->spt)
- | PT_PRESENT_MASK | PT_WRITABLE_MASK
- | shadow_user_mask | shadow_x_mask
- | shadow_accessed_mask);
+ mmu_spte_set(iterator.sptep,
+ __pa(sp->spt)
+ | PT_PRESENT_MASK | PT_WRITABLE_MASK
+ | shadow_user_mask | shadow_x_mask
+ | shadow_accessed_mask);
}
}
- return pt_write;
+ return emulate;
}
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
@@ -2306,16 +2500,15 @@ static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *
send_sig_info(SIGBUS, &info, tsk);
}
-static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
+static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
{
kvm_release_pfn_clean(pfn);
if (is_hwpoison_pfn(pfn)) {
- kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
+ kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
return 0;
- } else if (is_fault_pfn(pfn))
- return -EFAULT;
+ }
- return 1;
+ return -EFAULT;
}
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
@@ -2360,6 +2553,30 @@ static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
}
}
+static bool mmu_invalid_pfn(pfn_t pfn)
+{
+ return unlikely(is_invalid_pfn(pfn));
+}
+
+static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
+ pfn_t pfn, unsigned access, int *ret_val)
+{
+ bool ret = true;
+
+ /* The pfn is invalid, report the error! */
+ if (unlikely(is_invalid_pfn(pfn))) {
+ *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
+ goto exit;
+ }
+
+ if (unlikely(is_noslot_pfn(pfn)))
+ vcpu_cache_mmio_info(vcpu, gva, gfn, access);
+
+ ret = false;
+exit:
+ return ret;
+}
+
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
gva_t gva, pfn_t *pfn, bool write, bool *writable);
@@ -2394,9 +2611,8 @@ static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
return 0;
- /* mmio */
- if (is_error_pfn(pfn))
- return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
+ if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
+ return r;
spin_lock(&vcpu->kvm->mmu_lock);
if (mmu_notifier_retry(vcpu, mmu_seq))
@@ -2623,6 +2839,7 @@ static void mmu_sync_roots(struct kvm_vcpu *vcpu)
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
return;
+ vcpu_clear_mmio_info(vcpu, ~0ul);
trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
hpa_t root = vcpu->arch.mmu.root_hpa;
@@ -2667,6 +2884,94 @@ static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
}
+static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
+{
+ if (direct)
+ return vcpu_match_mmio_gpa(vcpu, addr);
+
+ return vcpu_match_mmio_gva(vcpu, addr);
+}
+
+
+/*
+ * On direct hosts, the last spte is only allows two states
+ * for mmio page fault:
+ * - It is the mmio spte
+ * - It is zapped or it is being zapped.
+ *
+ * This function completely checks the spte when the last spte
+ * is not the mmio spte.
+ */
+static bool check_direct_spte_mmio_pf(u64 spte)
+{
+ return __check_direct_spte_mmio_pf(spte);
+}
+
+static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
+{
+ struct kvm_shadow_walk_iterator iterator;
+ u64 spte = 0ull;
+
+ walk_shadow_page_lockless_begin(vcpu);
+ for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
+ if (!is_shadow_present_pte(spte))
+ break;
+ walk_shadow_page_lockless_end(vcpu);
+
+ return spte;
+}
+
+/*
+ * If it is a real mmio page fault, return 1 and emulat the instruction
+ * directly, return 0 to let CPU fault again on the address, -1 is
+ * returned if bug is detected.
+ */
+int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
+{
+ u64 spte;
+
+ if (quickly_check_mmio_pf(vcpu, addr, direct))
+ return 1;
+
+ spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
+
+ if (is_mmio_spte(spte)) {
+ gfn_t gfn = get_mmio_spte_gfn(spte);
+ unsigned access = get_mmio_spte_access(spte);
+
+ if (direct)
+ addr = 0;
+
+ trace_handle_mmio_page_fault(addr, gfn, access);
+ vcpu_cache_mmio_info(vcpu, addr, gfn, access);
+ return 1;
+ }
+
+ /*
+ * It's ok if the gva is remapped by other cpus on shadow guest,
+ * it's a BUG if the gfn is not a mmio page.
+ */
+ if (direct && !check_direct_spte_mmio_pf(spte))
+ return -1;
+
+ /*
+ * If the page table is zapped by other cpus, let CPU fault again on
+ * the address.
+ */
+ return 0;
+}
+EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
+
+static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
+ u32 error_code, bool direct)
+{
+ int ret;
+
+ ret = handle_mmio_page_fault_common(vcpu, addr, direct);
+ WARN_ON(ret < 0);
+ return ret;
+}
+
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
u32 error_code, bool prefault)
{
@@ -2674,6 +2979,10 @@ static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
int r;
pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
+
+ if (unlikely(error_code & PFERR_RSVD_MASK))
+ return handle_mmio_page_fault(vcpu, gva, error_code, true);
+
r = mmu_topup_memory_caches(vcpu);
if (r)
return r;
@@ -2750,6 +3059,9 @@ static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
ASSERT(vcpu);
ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
+ if (unlikely(error_code & PFERR_RSVD_MASK))
+ return handle_mmio_page_fault(vcpu, gpa, error_code, true);
+
r = mmu_topup_memory_caches(vcpu);
if (r)
return r;
@@ -2767,9 +3079,9 @@ static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
return 0;
- /* mmio */
- if (is_error_pfn(pfn))
- return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
+ if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
+ return r;
+
spin_lock(&vcpu->kvm->mmu_lock);
if (mmu_notifier_retry(vcpu, mmu_seq))
goto out_unlock;
@@ -2800,7 +3112,6 @@ static int nonpaging_init_context(struct kvm_vcpu *vcpu,
context->page_fault = nonpaging_page_fault;
context->gva_to_gpa = nonpaging_gva_to_gpa;
context->free = nonpaging_free;
- context->prefetch_page = nonpaging_prefetch_page;
context->sync_page = nonpaging_sync_page;
context->invlpg = nonpaging_invlpg;
context->update_pte = nonpaging_update_pte;
@@ -2848,6 +3159,23 @@ static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
}
+static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
+ int *nr_present)
+{
+ if (unlikely(is_mmio_spte(*sptep))) {
+ if (gfn != get_mmio_spte_gfn(*sptep)) {
+ mmu_spte_clear_no_track(sptep);
+ return true;
+ }
+
+ (*nr_present)++;
+ mark_mmio_spte(sptep, gfn, access);
+ return true;
+ }
+
+ return false;
+}
+
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE
@@ -2930,7 +3258,6 @@ static int paging64_init_context_common(struct kvm_vcpu *vcpu,
context->new_cr3 = paging_new_cr3;
context->page_fault = paging64_page_fault;
context->gva_to_gpa = paging64_gva_to_gpa;
- context->prefetch_page = paging64_prefetch_page;
context->sync_page = paging64_sync_page;
context->invlpg = paging64_invlpg;
context->update_pte = paging64_update_pte;
@@ -2959,7 +3286,6 @@ static int paging32_init_context(struct kvm_vcpu *vcpu,
context->page_fault = paging32_page_fault;
context->gva_to_gpa = paging32_gva_to_gpa;
context->free = paging_free;
- context->prefetch_page = paging32_prefetch_page;
context->sync_page = paging32_sync_page;
context->invlpg = paging32_invlpg;
context->update_pte = paging32_update_pte;
@@ -2984,7 +3310,6 @@ static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
context->new_cr3 = nonpaging_new_cr3;
context->page_fault = tdp_page_fault;
context->free = nonpaging_free;
- context->prefetch_page = nonpaging_prefetch_page;
context->sync_page = nonpaging_sync_page;
context->invlpg = nonpaging_invlpg;
context->update_pte = nonpaging_update_pte;
@@ -3023,6 +3348,7 @@ static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
int r;
+ bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
ASSERT(vcpu);
ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
@@ -3037,6 +3363,8 @@ int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
+ vcpu->arch.mmu.base_role.smep_andnot_wp
+ = smep && !is_write_protection(vcpu);
return r;
}
@@ -3141,27 +3469,6 @@ void kvm_mmu_unload(struct kvm_vcpu *vcpu)
}
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
-static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp,
- u64 *spte)
-{
- u64 pte;
- struct kvm_mmu_page *child;
-
- pte = *spte;
- if (is_shadow_present_pte(pte)) {
- if (is_last_spte(pte, sp->role.level))
- drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
- else {
- child = page_header(pte & PT64_BASE_ADDR_MASK);
- mmu_page_remove_parent_pte(child, spte);
- }
- }
- __set_spte(spte, shadow_trap_nonpresent_pte);
- if (is_large_pte(pte))
- --vcpu->kvm->stat.lpages;
-}
-
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp, u64 *spte,
const void *new)
@@ -3233,6 +3540,13 @@ void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
int level, npte, invlpg_counter, r, flooded = 0;
bool remote_flush, local_flush, zap_page;
+ /*
+ * If we don't have indirect shadow pages, it means no page is
+ * write-protected, so we can exit simply.
+ */
+ if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
+ return;
+
zap_page = remote_flush = local_flush = false;
offset = offset_in_page(gpa);
@@ -3336,7 +3650,7 @@ void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
spte = &sp->spt[page_offset / sizeof(*spte)];
while (npte--) {
entry = *spte;
- mmu_pte_write_zap_pte(vcpu, sp, spte);
+ mmu_page_zap_pte(vcpu->kvm, sp, spte);
if (gentry &&
!((sp->role.word ^ vcpu->arch.mmu.base_role.word)
& mask.word))
@@ -3380,9 +3694,9 @@ void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
struct kvm_mmu_page, link);
kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
- kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
++vcpu->kvm->stat.mmu_recycled;
}
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
}
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
@@ -3506,15 +3820,15 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
continue;
if (is_large_pte(pt[i])) {
- drop_spte(kvm, &pt[i],
- shadow_trap_nonpresent_pte);
+ drop_spte(kvm, &pt[i]);
--kvm->stat.lpages;
continue;
}
/* avoid RMW */
if (is_writable_pte(pt[i]))
- update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
+ mmu_spte_update(&pt[i],
+ pt[i] & ~PT_WRITABLE_MASK);
}
}
kvm_flush_remote_tlbs(kvm);
@@ -3590,25 +3904,18 @@ static struct shrinker mmu_shrinker = {
static void mmu_destroy_caches(void)
{
- if (pte_chain_cache)
- kmem_cache_destroy(pte_chain_cache);
- if (rmap_desc_cache)
- kmem_cache_destroy(rmap_desc_cache);
+ if (pte_list_desc_cache)
+ kmem_cache_destroy(pte_list_desc_cache);
if (mmu_page_header_cache)
kmem_cache_destroy(mmu_page_header_cache);
}
int kvm_mmu_module_init(void)
{
- pte_chain_cache = kmem_cache_create("kvm_pte_chain",
- sizeof(struct kvm_pte_chain),
- 0, 0, NULL);
- if (!pte_chain_cache)
- goto nomem;
- rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
- sizeof(struct kvm_rmap_desc),
+ pte_list_desc_cache = kmem_cache_create("pte_list_desc",
+ sizeof(struct pte_list_desc),
0, 0, NULL);
- if (!rmap_desc_cache)
+ if (!pte_list_desc_cache)
goto nomem;
mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
@@ -3775,16 +4082,17 @@ out:
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
struct kvm_shadow_walk_iterator iterator;
+ u64 spte;
int nr_sptes = 0;
- spin_lock(&vcpu->kvm->mmu_lock);
- for_each_shadow_entry(vcpu, addr, iterator) {
- sptes[iterator.level-1] = *iterator.sptep;
+ walk_shadow_page_lockless_begin(vcpu);
+ for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
+ sptes[iterator.level-1] = spte;
nr_sptes++;
- if (!is_shadow_present_pte(*iterator.sptep))
+ if (!is_shadow_present_pte(spte))
break;
}
- spin_unlock(&vcpu->kvm->mmu_lock);
+ walk_shadow_page_lockless_end(vcpu);
return nr_sptes;
}
diff --git a/arch/x86/kvm/mmu.h b/arch/x86/kvm/mmu.h
index 7086ca85d3e7..e374db9af021 100644
--- a/arch/x86/kvm/mmu.h
+++ b/arch/x86/kvm/mmu.h
@@ -49,6 +49,8 @@
#define PFERR_FETCH_MASK (1U << 4)
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]);
+void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
+int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct);
int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
@@ -76,4 +78,27 @@ static inline int is_present_gpte(unsigned long pte)
return pte & PT_PRESENT_MASK;
}
+static inline int is_writable_pte(unsigned long pte)
+{
+ return pte & PT_WRITABLE_MASK;
+}
+
+static inline bool is_write_protection(struct kvm_vcpu *vcpu)
+{
+ return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
+}
+
+static inline bool check_write_user_access(struct kvm_vcpu *vcpu,
+ bool write_fault, bool user_fault,
+ unsigned long pte)
+{
+ if (unlikely(write_fault && !is_writable_pte(pte)
+ && (user_fault || is_write_protection(vcpu))))
+ return false;
+
+ if (unlikely(user_fault && !(pte & PT_USER_MASK)))
+ return false;
+
+ return true;
+}
#endif
diff --git a/arch/x86/kvm/mmu_audit.c b/arch/x86/kvm/mmu_audit.c
index 5f6223b8bcf7..2460a265be23 100644
--- a/arch/x86/kvm/mmu_audit.c
+++ b/arch/x86/kvm/mmu_audit.c
@@ -99,18 +99,6 @@ static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level)
"level = %d\n", sp, level);
return;
}
-
- if (*sptep == shadow_notrap_nonpresent_pte) {
- audit_printk(vcpu->kvm, "notrap spte in unsync "
- "sp: %p\n", sp);
- return;
- }
- }
-
- if (sp->role.direct && *sptep == shadow_notrap_nonpresent_pte) {
- audit_printk(vcpu->kvm, "notrap spte in direct sp: %p\n",
- sp);
- return;
}
if (!is_shadow_present_pte(*sptep) || !is_last_spte(*sptep, level))
diff --git a/arch/x86/kvm/mmutrace.h b/arch/x86/kvm/mmutrace.h
index b60b4fdb3eda..eed67f34146d 100644
--- a/arch/x86/kvm/mmutrace.h
+++ b/arch/x86/kvm/mmutrace.h
@@ -196,6 +196,54 @@ DEFINE_EVENT(kvm_mmu_page_class, kvm_mmu_prepare_zap_page,
TP_ARGS(sp)
);
+DEFINE_EVENT(kvm_mmu_page_class, kvm_mmu_delay_free_pages,
+ TP_PROTO(struct kvm_mmu_page *sp),
+
+ TP_ARGS(sp)
+);
+
+TRACE_EVENT(
+ mark_mmio_spte,
+ TP_PROTO(u64 *sptep, gfn_t gfn, unsigned access),
+ TP_ARGS(sptep, gfn, access),
+
+ TP_STRUCT__entry(
+ __field(void *, sptep)
+ __field(gfn_t, gfn)
+ __field(unsigned, access)
+ ),
+
+ TP_fast_assign(
+ __entry->sptep = sptep;
+ __entry->gfn = gfn;
+ __entry->access = access;
+ ),
+
+ TP_printk("sptep:%p gfn %llx access %x", __entry->sptep, __entry->gfn,
+ __entry->access)
+);
+
+TRACE_EVENT(
+ handle_mmio_page_fault,
+ TP_PROTO(u64 addr, gfn_t gfn, unsigned access),
+ TP_ARGS(addr, gfn, access),
+
+ TP_STRUCT__entry(
+ __field(u64, addr)
+ __field(gfn_t, gfn)
+ __field(unsigned, access)
+ ),
+
+ TP_fast_assign(
+ __entry->addr = addr;
+ __entry->gfn = gfn;
+ __entry->access = access;
+ ),
+
+ TP_printk("addr:%llx gfn %llx access %x", __entry->addr, __entry->gfn,
+ __entry->access)
+);
+
TRACE_EVENT(
kvm_mmu_audit,
TP_PROTO(struct kvm_vcpu *vcpu, int audit_point),
diff --git a/arch/x86/kvm/paging_tmpl.h b/arch/x86/kvm/paging_tmpl.h
index 9d03ad4dd5ec..507e2b844cfa 100644
--- a/arch/x86/kvm/paging_tmpl.h
+++ b/arch/x86/kvm/paging_tmpl.h
@@ -101,11 +101,15 @@ static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
return (ret != orig_pte);
}
-static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
+static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte,
+ bool last)
{
unsigned access;
access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
+ if (last && !is_dirty_gpte(gpte))
+ access &= ~ACC_WRITE_MASK;
+
#if PTTYPE == 64
if (vcpu->arch.mmu.nx)
access &= ~(gpte >> PT64_NX_SHIFT);
@@ -113,6 +117,24 @@ static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
return access;
}
+static bool FNAME(is_last_gpte)(struct guest_walker *walker,
+ struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+ pt_element_t gpte)
+{
+ if (walker->level == PT_PAGE_TABLE_LEVEL)
+ return true;
+
+ if ((walker->level == PT_DIRECTORY_LEVEL) && is_large_pte(gpte) &&
+ (PTTYPE == 64 || is_pse(vcpu)))
+ return true;
+
+ if ((walker->level == PT_PDPE_LEVEL) && is_large_pte(gpte) &&
+ (mmu->root_level == PT64_ROOT_LEVEL))
+ return true;
+
+ return false;
+}
+
/*
* Fetch a guest pte for a guest virtual address
*/
@@ -125,18 +147,17 @@ static int FNAME(walk_addr_generic)(struct guest_walker *walker,
gfn_t table_gfn;
unsigned index, pt_access, uninitialized_var(pte_access);
gpa_t pte_gpa;
- bool eperm, present, rsvd_fault;
- int offset, write_fault, user_fault, fetch_fault;
-
- write_fault = access & PFERR_WRITE_MASK;
- user_fault = access & PFERR_USER_MASK;
- fetch_fault = access & PFERR_FETCH_MASK;
+ bool eperm;
+ int offset;
+ const int write_fault = access & PFERR_WRITE_MASK;
+ const int user_fault = access & PFERR_USER_MASK;
+ const int fetch_fault = access & PFERR_FETCH_MASK;
+ u16 errcode = 0;
trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
fetch_fault);
-walk:
- present = true;
- eperm = rsvd_fault = false;
+retry_walk:
+ eperm = false;
walker->level = mmu->root_level;
pte = mmu->get_cr3(vcpu);
@@ -144,10 +165,8 @@ walk:
if (walker->level == PT32E_ROOT_LEVEL) {
pte = kvm_pdptr_read_mmu(vcpu, mmu, (addr >> 30) & 3);
trace_kvm_mmu_paging_element(pte, walker->level);
- if (!is_present_gpte(pte)) {
- present = false;
+ if (!is_present_gpte(pte))
goto error;
- }
--walker->level;
}
#endif
@@ -170,42 +189,31 @@ walk:
real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
PFERR_USER_MASK|PFERR_WRITE_MASK);
- if (unlikely(real_gfn == UNMAPPED_GVA)) {
- present = false;
- break;
- }
+ if (unlikely(real_gfn == UNMAPPED_GVA))
+ goto error;
real_gfn = gpa_to_gfn(real_gfn);
host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
- if (unlikely(kvm_is_error_hva(host_addr))) {
- present = false;
- break;
- }
+ if (unlikely(kvm_is_error_hva(host_addr)))
+ goto error;
ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
- if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) {
- present = false;
- break;
- }
+ if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
+ goto error;
trace_kvm_mmu_paging_element(pte, walker->level);
- if (unlikely(!is_present_gpte(pte))) {
- present = false;
- break;
- }
+ if (unlikely(!is_present_gpte(pte)))
+ goto error;
if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
walker->level))) {
- rsvd_fault = true;
- break;
+ errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
+ goto error;
}
- if (unlikely(write_fault && !is_writable_pte(pte)
- && (user_fault || is_write_protection(vcpu))))
- eperm = true;
-
- if (unlikely(user_fault && !(pte & PT_USER_MASK)))
+ if (!check_write_user_access(vcpu, write_fault, user_fault,
+ pte))
eperm = true;
#if PTTYPE == 64
@@ -213,39 +221,35 @@ walk:
eperm = true;
#endif
- if (!eperm && !rsvd_fault
- && unlikely(!(pte & PT_ACCESSED_MASK))) {
+ if (!eperm && unlikely(!(pte & PT_ACCESSED_MASK))) {
int ret;
trace_kvm_mmu_set_accessed_bit(table_gfn, index,
sizeof(pte));
ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
pte, pte|PT_ACCESSED_MASK);
- if (unlikely(ret < 0)) {
- present = false;
- break;
- } else if (ret)
- goto walk;
+ if (unlikely(ret < 0))
+ goto error;
+ else if (ret)
+ goto retry_walk;
mark_page_dirty(vcpu->kvm, table_gfn);
pte |= PT_ACCESSED_MASK;
}
- pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
-
walker->ptes[walker->level - 1] = pte;
- if ((walker->level == PT_PAGE_TABLE_LEVEL) ||
- ((walker->level == PT_DIRECTORY_LEVEL) &&
- is_large_pte(pte) &&
- (PTTYPE == 64 || is_pse(vcpu))) ||
- ((walker->level == PT_PDPE_LEVEL) &&
- is_large_pte(pte) &&
- mmu->root_level == PT64_ROOT_LEVEL)) {
+ if (FNAME(is_last_gpte)(walker, vcpu, mmu, pte)) {
int lvl = walker->level;
gpa_t real_gpa;
gfn_t gfn;
u32 ac;
+ /* check if the kernel is fetching from user page */
+ if (unlikely(pte_access & PT_USER_MASK) &&
+ kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
+ if (fetch_fault && !user_fault)
+ eperm = true;
+
gfn = gpte_to_gfn_lvl(pte, lvl);
gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
@@ -266,12 +270,14 @@ walk:
break;
}
- pt_access = pte_access;
+ pt_access &= FNAME(gpte_access)(vcpu, pte, false);
--walker->level;
}
- if (unlikely(!present || eperm || rsvd_fault))
+ if (unlikely(eperm)) {
+ errcode |= PFERR_PRESENT_MASK;
goto error;
+ }
if (write_fault && unlikely(!is_dirty_gpte(pte))) {
int ret;
@@ -279,17 +285,17 @@ walk:
trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
pte, pte|PT_DIRTY_MASK);
- if (unlikely(ret < 0)) {
- present = false;
+ if (unlikely(ret < 0))
goto error;
- } else if (ret)
- goto walk;
+ else if (ret)
+ goto retry_walk;
mark_page_dirty(vcpu->kvm, table_gfn);
pte |= PT_DIRTY_MASK;
walker->ptes[walker->level - 1] = pte;
}
+ pte_access = pt_access & FNAME(gpte_access)(vcpu, pte, true);
walker->pt_access = pt_access;
walker->pte_access = pte_access;
pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
@@ -297,19 +303,14 @@ walk:
return 1;
error:
+ errcode |= write_fault | user_fault;
+ if (fetch_fault && (mmu->nx ||
+ kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
+ errcode |= PFERR_FETCH_MASK;
+
walker->fault.vector = PF_VECTOR;
walker->fault.error_code_valid = true;
- walker->fault.error_code = 0;
- if (present)
- walker->fault.error_code |= PFERR_PRESENT_MASK;
-
- walker->fault.error_code |= write_fault | user_fault;
-
- if (fetch_fault && mmu->nx)
- walker->fault.error_code |= PFERR_FETCH_MASK;
- if (rsvd_fault)
- walker->fault.error_code |= PFERR_RSVD_MASK;
-
+ walker->fault.error_code = errcode;
walker->fault.address = addr;
walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
@@ -336,16 +337,11 @@ static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp, u64 *spte,
pt_element_t gpte)
{
- u64 nonpresent = shadow_trap_nonpresent_pte;
-
if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
goto no_present;
- if (!is_present_gpte(gpte)) {
- if (!sp->unsync)
- nonpresent = shadow_notrap_nonpresent_pte;
+ if (!is_present_gpte(gpte))
goto no_present;
- }
if (!(gpte & PT_ACCESSED_MASK))
goto no_present;
@@ -353,7 +349,7 @@ static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
return false;
no_present:
- drop_spte(vcpu->kvm, spte, nonpresent);
+ drop_spte(vcpu->kvm, spte);
return true;
}
@@ -369,9 +365,9 @@ static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
return;
pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
- pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
+ pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte, true);
pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
- if (is_error_pfn(pfn)) {
+ if (mmu_invalid_pfn(pfn)) {
kvm_release_pfn_clean(pfn);
return;
}
@@ -381,7 +377,7 @@ static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
* vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
*/
mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
- is_dirty_gpte(gpte), NULL, PT_PAGE_TABLE_LEVEL,
+ NULL, PT_PAGE_TABLE_LEVEL,
gpte_to_gfn(gpte), pfn, true, true);
}
@@ -432,12 +428,11 @@ static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
unsigned pte_access;
gfn_t gfn;
pfn_t pfn;
- bool dirty;
if (spte == sptep)
continue;
- if (*spte != shadow_trap_nonpresent_pte)
+ if (is_shadow_present_pte(*spte))
continue;
gpte = gptep[i];
@@ -445,18 +440,18 @@ static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
continue;
- pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
+ pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte,
+ true);
gfn = gpte_to_gfn(gpte);
- dirty = is_dirty_gpte(gpte);
pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
- (pte_access & ACC_WRITE_MASK) && dirty);
- if (is_error_pfn(pfn)) {
+ pte_access & ACC_WRITE_MASK);
+ if (mmu_invalid_pfn(pfn)) {
kvm_release_pfn_clean(pfn);
break;
}
mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
- dirty, NULL, PT_PAGE_TABLE_LEVEL, gfn,
+ NULL, PT_PAGE_TABLE_LEVEL, gfn,
pfn, true, true);
}
}
@@ -467,12 +462,11 @@ static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
struct guest_walker *gw,
int user_fault, int write_fault, int hlevel,
- int *ptwrite, pfn_t pfn, bool map_writable,
+ int *emulate, pfn_t pfn, bool map_writable,
bool prefault)
{
unsigned access = gw->pt_access;
struct kvm_mmu_page *sp = NULL;
- bool dirty = is_dirty_gpte(gw->ptes[gw->level - 1]);
int top_level;
unsigned direct_access;
struct kvm_shadow_walk_iterator it;
@@ -480,9 +474,7 @@ static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
if (!is_present_gpte(gw->ptes[gw->level - 1]))
return NULL;
- direct_access = gw->pt_access & gw->pte_access;
- if (!dirty)
- direct_access &= ~ACC_WRITE_MASK;
+ direct_access = gw->pte_access;
top_level = vcpu->arch.mmu.root_level;
if (top_level == PT32E_ROOT_LEVEL)
@@ -540,8 +532,8 @@ static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
link_shadow_page(it.sptep, sp);
}
- mmu_set_spte(vcpu, it.sptep, access, gw->pte_access & access,
- user_fault, write_fault, dirty, ptwrite, it.level,
+ mmu_set_spte(vcpu, it.sptep, access, gw->pte_access,
+ user_fault, write_fault, emulate, it.level,
gw->gfn, pfn, prefault, map_writable);
FNAME(pte_prefetch)(vcpu, gw, it.sptep);
@@ -575,7 +567,7 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
int user_fault = error_code & PFERR_USER_MASK;
struct guest_walker walker;
u64 *sptep;
- int write_pt = 0;
+ int emulate = 0;
int r;
pfn_t pfn;
int level = PT_PAGE_TABLE_LEVEL;
@@ -585,6 +577,10 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
+ if (unlikely(error_code & PFERR_RSVD_MASK))
+ return handle_mmio_page_fault(vcpu, addr, error_code,
+ mmu_is_nested(vcpu));
+
r = mmu_topup_memory_caches(vcpu);
if (r)
return r;
@@ -623,9 +619,9 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
&map_writable))
return 0;
- /* mmio */
- if (is_error_pfn(pfn))
- return kvm_handle_bad_page(vcpu->kvm, walker.gfn, pfn);
+ if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
+ walker.gfn, pfn, walker.pte_access, &r))
+ return r;
spin_lock(&vcpu->kvm->mmu_lock);
if (mmu_notifier_retry(vcpu, mmu_seq))
@@ -636,19 +632,19 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
if (!force_pt_level)
transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
- level, &write_pt, pfn, map_writable, prefault);
+ level, &emulate, pfn, map_writable, prefault);
(void)sptep;
- pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
- sptep, *sptep, write_pt);
+ pgprintk("%s: shadow pte %p %llx emulate %d\n", __func__,
+ sptep, *sptep, emulate);
- if (!write_pt)
+ if (!emulate)
vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
++vcpu->stat.pf_fixed;
trace_kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
spin_unlock(&vcpu->kvm->mmu_lock);
- return write_pt;
+ return emulate;
out_unlock:
spin_unlock(&vcpu->kvm->mmu_lock);
@@ -665,6 +661,8 @@ static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
u64 *sptep;
int need_flush = 0;
+ vcpu_clear_mmio_info(vcpu, gva);
+
spin_lock(&vcpu->kvm->mmu_lock);
for_each_shadow_entry(vcpu, gva, iterator) {
@@ -688,11 +686,11 @@ static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
if (is_shadow_present_pte(*sptep)) {
if (is_large_pte(*sptep))
--vcpu->kvm->stat.lpages;
- drop_spte(vcpu->kvm, sptep,
- shadow_trap_nonpresent_pte);
+ drop_spte(vcpu->kvm, sptep);
need_flush = 1;
- } else
- __set_spte(sptep, shadow_trap_nonpresent_pte);
+ } else if (is_mmio_spte(*sptep))
+ mmu_spte_clear_no_track(sptep);
+
break;
}
@@ -752,36 +750,6 @@ static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
return gpa;
}
-static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp)
-{
- int i, j, offset, r;
- pt_element_t pt[256 / sizeof(pt_element_t)];
- gpa_t pte_gpa;
-
- if (sp->role.direct
- || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
- nonpaging_prefetch_page(vcpu, sp);
- return;
- }
-
- pte_gpa = gfn_to_gpa(sp->gfn);
- if (PTTYPE == 32) {
- offset = sp->role.quadrant << PT64_LEVEL_BITS;
- pte_gpa += offset * sizeof(pt_element_t);
- }
-
- for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
- r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
- pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
- for (j = 0; j < ARRAY_SIZE(pt); ++j)
- if (r || is_present_gpte(pt[j]))
- sp->spt[i+j] = shadow_trap_nonpresent_pte;
- else
- sp->spt[i+j] = shadow_notrap_nonpresent_pte;
- }
-}
-
/*
* Using the cached information from sp->gfns is safe because:
* - The spte has a reference to the struct page, so the pfn for a given gfn
@@ -817,7 +785,7 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
gpa_t pte_gpa;
gfn_t gfn;
- if (!is_shadow_present_pte(sp->spt[i]))
+ if (!sp->spt[i])
continue;
pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
@@ -826,26 +794,30 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
sizeof(pt_element_t)))
return -EINVAL;
- gfn = gpte_to_gfn(gpte);
-
if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
vcpu->kvm->tlbs_dirty++;
continue;
}
+ gfn = gpte_to_gfn(gpte);
+ pte_access = sp->role.access;
+ pte_access &= FNAME(gpte_access)(vcpu, gpte, true);
+
+ if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
+ continue;
+
if (gfn != sp->gfns[i]) {
- drop_spte(vcpu->kvm, &sp->spt[i],
- shadow_trap_nonpresent_pte);
+ drop_spte(vcpu->kvm, &sp->spt[i]);
vcpu->kvm->tlbs_dirty++;
continue;
}
nr_present++;
- pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
+
host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
- is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn,
+ PT_PAGE_TABLE_LEVEL, gfn,
spte_to_pfn(sp->spt[i]), true, false,
host_writable);
}
diff --git a/arch/x86/kvm/svm.c b/arch/x86/kvm/svm.c
index 506e4fe23adc..475d1c948501 100644
--- a/arch/x86/kvm/svm.c
+++ b/arch/x86/kvm/svm.c
@@ -1496,11 +1496,14 @@ static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
update_cr0_intercept(svm);
}
-static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
+ if (cr4 & X86_CR4_VMXE)
+ return 1;
+
if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
svm_flush_tlb(vcpu);
@@ -1510,6 +1513,7 @@ static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
cr4 |= host_cr4_mce;
to_svm(vcpu)->vmcb->save.cr4 = cr4;
mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
+ return 0;
}
static void svm_set_segment(struct kvm_vcpu *vcpu,
diff --git a/arch/x86/kvm/trace.h b/arch/x86/kvm/trace.h
index db932760ea82..3ff898c104f7 100644
--- a/arch/x86/kvm/trace.h
+++ b/arch/x86/kvm/trace.h
@@ -675,12 +675,12 @@ TRACE_EVENT(kvm_emulate_insn,
),
TP_fast_assign(
- __entry->rip = vcpu->arch.emulate_ctxt.decode.fetch.start;
+ __entry->rip = vcpu->arch.emulate_ctxt.fetch.start;
__entry->csbase = kvm_x86_ops->get_segment_base(vcpu, VCPU_SREG_CS);
- __entry->len = vcpu->arch.emulate_ctxt.decode.eip
- - vcpu->arch.emulate_ctxt.decode.fetch.start;
+ __entry->len = vcpu->arch.emulate_ctxt._eip
+ - vcpu->arch.emulate_ctxt.fetch.start;
memcpy(__entry->insn,
- vcpu->arch.emulate_ctxt.decode.fetch.data,
+ vcpu->arch.emulate_ctxt.fetch.data,
15);
__entry->flags = kei_decode_mode(vcpu->arch.emulate_ctxt.mode);
__entry->failed = failed;
@@ -698,6 +698,29 @@ TRACE_EVENT(kvm_emulate_insn,
#define trace_kvm_emulate_insn_start(vcpu) trace_kvm_emulate_insn(vcpu, 0)
#define trace_kvm_emulate_insn_failed(vcpu) trace_kvm_emulate_insn(vcpu, 1)
+TRACE_EVENT(
+ vcpu_match_mmio,
+ TP_PROTO(gva_t gva, gpa_t gpa, bool write, bool gpa_match),
+ TP_ARGS(gva, gpa, write, gpa_match),
+
+ TP_STRUCT__entry(
+ __field(gva_t, gva)
+ __field(gpa_t, gpa)
+ __field(bool, write)
+ __field(bool, gpa_match)
+ ),
+
+ TP_fast_assign(
+ __entry->gva = gva;
+ __entry->gpa = gpa;
+ __entry->write = write;
+ __entry->gpa_match = gpa_match
+ ),
+
+ TP_printk("gva %#lx gpa %#llx %s %s", __entry->gva, __entry->gpa,
+ __entry->write ? "Write" : "Read",
+ __entry->gpa_match ? "GPA" : "GVA")
+);
#endif /* _TRACE_KVM_H */
#undef TRACE_INCLUDE_PATH
diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c
index d48ec60ea421..e65a158dee64 100644
--- a/arch/x86/kvm/vmx.c
+++ b/arch/x86/kvm/vmx.c
@@ -43,13 +43,12 @@
#include "trace.h"
#define __ex(x) __kvm_handle_fault_on_reboot(x)
+#define __ex_clear(x, reg) \
+ ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
-static int __read_mostly bypass_guest_pf = 1;
-module_param(bypass_guest_pf, bool, S_IRUGO);
-
static int __read_mostly enable_vpid = 1;
module_param_named(vpid, enable_vpid, bool, 0444);
@@ -72,6 +71,14 @@ module_param(vmm_exclusive, bool, S_IRUGO);
static int __read_mostly yield_on_hlt = 1;
module_param(yield_on_hlt, bool, S_IRUGO);
+/*
+ * If nested=1, nested virtualization is supported, i.e., guests may use
+ * VMX and be a hypervisor for its own guests. If nested=0, guests may not
+ * use VMX instructions.
+ */
+static int __read_mostly nested = 0;
+module_param(nested, bool, S_IRUGO);
+
#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
(X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
#define KVM_GUEST_CR0_MASK \
@@ -109,6 +116,7 @@ static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
module_param(ple_window, int, S_IRUGO);
#define NR_AUTOLOAD_MSRS 1
+#define VMCS02_POOL_SIZE 1
struct vmcs {
u32 revision_id;
@@ -116,17 +124,237 @@ struct vmcs {
char data[0];
};
+/*
+ * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
+ * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
+ * loaded on this CPU (so we can clear them if the CPU goes down).
+ */
+struct loaded_vmcs {
+ struct vmcs *vmcs;
+ int cpu;
+ int launched;
+ struct list_head loaded_vmcss_on_cpu_link;
+};
+
struct shared_msr_entry {
unsigned index;
u64 data;
u64 mask;
};
+/*
+ * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
+ * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
+ * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
+ * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
+ * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
+ * More than one of these structures may exist, if L1 runs multiple L2 guests.
+ * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
+ * underlying hardware which will be used to run L2.
+ * This structure is packed to ensure that its layout is identical across
+ * machines (necessary for live migration).
+ * If there are changes in this struct, VMCS12_REVISION must be changed.
+ */
+typedef u64 natural_width;
+struct __packed vmcs12 {
+ /* According to the Intel spec, a VMCS region must start with the
+ * following two fields. Then follow implementation-specific data.
+ */
+ u32 revision_id;
+ u32 abort;
+
+ u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
+ u32 padding[7]; /* room for future expansion */
+
+ u64 io_bitmap_a;
+ u64 io_bitmap_b;
+ u64 msr_bitmap;
+ u64 vm_exit_msr_store_addr;
+ u64 vm_exit_msr_load_addr;
+ u64 vm_entry_msr_load_addr;
+ u64 tsc_offset;
+ u64 virtual_apic_page_addr;
+ u64 apic_access_addr;
+ u64 ept_pointer;
+ u64 guest_physical_address;
+ u64 vmcs_link_pointer;
+ u64 guest_ia32_debugctl;
+ u64 guest_ia32_pat;
+ u64 guest_ia32_efer;
+ u64 guest_ia32_perf_global_ctrl;
+ u64 guest_pdptr0;
+ u64 guest_pdptr1;
+ u64 guest_pdptr2;
+ u64 guest_pdptr3;
+ u64 host_ia32_pat;
+ u64 host_ia32_efer;
+ u64 host_ia32_perf_global_ctrl;
+ u64 padding64[8]; /* room for future expansion */
+ /*
+ * To allow migration of L1 (complete with its L2 guests) between
+ * machines of different natural widths (32 or 64 bit), we cannot have
+ * unsigned long fields with no explict size. We use u64 (aliased
+ * natural_width) instead. Luckily, x86 is little-endian.
+ */
+ natural_width cr0_guest_host_mask;
+ natural_width cr4_guest_host_mask;
+ natural_width cr0_read_shadow;
+ natural_width cr4_read_shadow;
+ natural_width cr3_target_value0;
+ natural_width cr3_target_value1;
+ natural_width cr3_target_value2;
+ natural_width cr3_target_value3;
+ natural_width exit_qualification;
+ natural_width guest_linear_address;
+ natural_width guest_cr0;
+ natural_width guest_cr3;
+ natural_width guest_cr4;
+ natural_width guest_es_base;
+ natural_width guest_cs_base;
+ natural_width guest_ss_base;
+ natural_width guest_ds_base;
+ natural_width guest_fs_base;
+ natural_width guest_gs_base;
+ natural_width guest_ldtr_base;
+ natural_width guest_tr_base;
+ natural_width guest_gdtr_base;
+ natural_width guest_idtr_base;
+ natural_width guest_dr7;
+ natural_width guest_rsp;
+ natural_width guest_rip;
+ natural_width guest_rflags;
+ natural_width guest_pending_dbg_exceptions;
+ natural_width guest_sysenter_esp;
+ natural_width guest_sysenter_eip;
+ natural_width host_cr0;
+ natural_width host_cr3;
+ natural_width host_cr4;
+ natural_width host_fs_base;
+ natural_width host_gs_base;
+ natural_width host_tr_base;
+ natural_width host_gdtr_base;
+ natural_width host_idtr_base;
+ natural_width host_ia32_sysenter_esp;
+ natural_width host_ia32_sysenter_eip;
+ natural_width host_rsp;
+ natural_width host_rip;
+ natural_width paddingl[8]; /* room for future expansion */
+ u32 pin_based_vm_exec_control;
+ u32 cpu_based_vm_exec_control;
+ u32 exception_bitmap;
+ u32 page_fault_error_code_mask;
+ u32 page_fault_error_code_match;
+ u32 cr3_target_count;
+ u32 vm_exit_controls;
+ u32 vm_exit_msr_store_count;
+ u32 vm_exit_msr_load_count;
+ u32 vm_entry_controls;
+ u32 vm_entry_msr_load_count;
+ u32 vm_entry_intr_info_field;
+ u32 vm_entry_exception_error_code;
+ u32 vm_entry_instruction_len;
+ u32 tpr_threshold;
+ u32 secondary_vm_exec_control;
+ u32 vm_instruction_error;
+ u32 vm_exit_reason;
+ u32 vm_exit_intr_info;
+ u32 vm_exit_intr_error_code;
+ u32 idt_vectoring_info_field;
+ u32 idt_vectoring_error_code;
+ u32 vm_exit_instruction_len;
+ u32 vmx_instruction_info;
+ u32 guest_es_limit;
+ u32 guest_cs_limit;
+ u32 guest_ss_limit;
+ u32 guest_ds_limit;
+ u32 guest_fs_limit;
+ u32 guest_gs_limit;
+ u32 guest_ldtr_limit;
+ u32 guest_tr_limit;
+ u32 guest_gdtr_limit;
+ u32 guest_idtr_limit;
+ u32 guest_es_ar_bytes;
+ u32 guest_cs_ar_bytes;
+ u32 guest_ss_ar_bytes;
+ u32 guest_ds_ar_bytes;
+ u32 guest_fs_ar_bytes;
+ u32 guest_gs_ar_bytes;
+ u32 guest_ldtr_ar_bytes;
+ u32 guest_tr_ar_bytes;
+ u32 guest_interruptibility_info;
+ u32 guest_activity_state;
+ u32 guest_sysenter_cs;
+ u32 host_ia32_sysenter_cs;
+ u32 padding32[8]; /* room for future expansion */
+ u16 virtual_processor_id;
+ u16 guest_es_selector;
+ u16 guest_cs_selector;
+ u16 guest_ss_selector;
+ u16 guest_ds_selector;
+ u16 guest_fs_selector;
+ u16 guest_gs_selector;
+ u16 guest_ldtr_selector;
+ u16 guest_tr_selector;
+ u16 host_es_selector;
+ u16 host_cs_selector;
+ u16 host_ss_selector;
+ u16 host_ds_selector;
+ u16 host_fs_selector;
+ u16 host_gs_selector;
+ u16 host_tr_selector;
+};
+
+/*
+ * VMCS12_REVISION is an arbitrary id that should be changed if the content or
+ * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
+ * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
+ */
+#define VMCS12_REVISION 0x11e57ed0
+
+/*
+ * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
+ * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
+ * current implementation, 4K are reserved to avoid future complications.
+ */
+#define VMCS12_SIZE 0x1000
+
+/* Used to remember the last vmcs02 used for some recently used vmcs12s */
+struct vmcs02_list {
+ struct list_head list;
+ gpa_t vmptr;
+ struct loaded_vmcs vmcs02;
+};
+
+/*
+ * The nested_vmx structure is part of vcpu_vmx, and holds information we need
+ * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
+ */
+struct nested_vmx {
+ /* Has the level1 guest done vmxon? */
+ bool vmxon;
+
+ /* The guest-physical address of the current VMCS L1 keeps for L2 */
+ gpa_t current_vmptr;
+ /* The host-usable pointer to the above */
+ struct page *current_vmcs12_page;
+ struct vmcs12 *current_vmcs12;
+
+ /* vmcs02_list cache of VMCSs recently used to run L2 guests */
+ struct list_head vmcs02_pool;
+ int vmcs02_num;
+ u64 vmcs01_tsc_offset;
+ /* L2 must run next, and mustn't decide to exit to L1. */
+ bool nested_run_pending;
+ /*
+ * Guest pages referred to in vmcs02 with host-physical pointers, so
+ * we must keep them pinned while L2 runs.
+ */
+ struct page *apic_access_page;
+};
+
struct vcpu_vmx {
struct kvm_vcpu vcpu;
- struct list_head local_vcpus_link;
unsigned long host_rsp;
- int launched;
u8 fail;
u8 cpl;
bool nmi_known_unmasked;
@@ -140,7 +368,14 @@ struct vcpu_vmx {
u64 msr_host_kernel_gs_base;
u64 msr_guest_kernel_gs_base;
#endif
- struct vmcs *vmcs;
+ /*
+ * loaded_vmcs points to the VMCS currently used in this vcpu. For a
+ * non-nested (L1) guest, it always points to vmcs01. For a nested
+ * guest (L2), it points to a different VMCS.
+ */
+ struct loaded_vmcs vmcs01;
+ struct loaded_vmcs *loaded_vmcs;
+ bool __launched; /* temporary, used in vmx_vcpu_run */
struct msr_autoload {
unsigned nr;
struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
@@ -176,6 +411,9 @@ struct vcpu_vmx {
u32 exit_reason;
bool rdtscp_enabled;
+
+ /* Support for a guest hypervisor (nested VMX) */
+ struct nested_vmx nested;
};
enum segment_cache_field {
@@ -192,6 +430,174 @@ static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
return container_of(vcpu, struct vcpu_vmx, vcpu);
}
+#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
+#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
+#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
+ [number##_HIGH] = VMCS12_OFFSET(name)+4
+
+static unsigned short vmcs_field_to_offset_table[] = {
+ FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
+ FIELD(GUEST_ES_SELECTOR, guest_es_selector),
+ FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
+ FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
+ FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
+ FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
+ FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
+ FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
+ FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
+ FIELD(HOST_ES_SELECTOR, host_es_selector),
+ FIELD(HOST_CS_SELECTOR, host_cs_selector),
+ FIELD(HOST_SS_SELECTOR, host_ss_selector),
+ FIELD(HOST_DS_SELECTOR, host_ds_selector),
+ FIELD(HOST_FS_SELECTOR, host_fs_selector),
+ FIELD(HOST_GS_SELECTOR, host_gs_selector),
+ FIELD(HOST_TR_SELECTOR, host_tr_selector),
+ FIELD64(IO_BITMAP_A, io_bitmap_a),
+ FIELD64(IO_BITMAP_B, io_bitmap_b),
+ FIELD64(MSR_BITMAP, msr_bitmap),
+ FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
+ FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
+ FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
+ FIELD64(TSC_OFFSET, tsc_offset),
+ FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
+ FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
+ FIELD64(EPT_POINTER, ept_pointer),
+ FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
+ FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
+ FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
+ FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
+ FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
+ FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
+ FIELD64(GUEST_PDPTR0, guest_pdptr0),
+ FIELD64(GUEST_PDPTR1, guest_pdptr1),
+ FIELD64(GUEST_PDPTR2, guest_pdptr2),
+ FIELD64(GUEST_PDPTR3, guest_pdptr3),
+ FIELD64(HOST_IA32_PAT, host_ia32_pat),
+ FIELD64(HOST_IA32_EFER, host_ia32_efer),
+ FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
+ FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
+ FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
+ FIELD(EXCEPTION_BITMAP, exception_bitmap),
+ FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
+ FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
+ FIELD(CR3_TARGET_COUNT, cr3_target_count),
+ FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
+ FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
+ FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
+ FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
+ FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
+ FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
+ FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
+ FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
+ FIELD(TPR_THRESHOLD, tpr_threshold),
+ FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
+ FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
+ FIELD(VM_EXIT_REASON, vm_exit_reason),
+ FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
+ FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
+ FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
+ FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
+ FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
+ FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
+ FIELD(GUEST_ES_LIMIT, guest_es_limit),
+ FIELD(GUEST_CS_LIMIT, guest_cs_limit),
+ FIELD(GUEST_SS_LIMIT, guest_ss_limit),
+ FIELD(GUEST_DS_LIMIT, guest_ds_limit),
+ FIELD(GUEST_FS_LIMIT, guest_fs_limit),
+ FIELD(GUEST_GS_LIMIT, guest_gs_limit),
+ FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
+ FIELD(GUEST_TR_LIMIT, guest_tr_limit),
+ FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
+ FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
+ FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
+ FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
+ FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
+ FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
+ FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
+ FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
+ FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
+ FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
+ FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
+ FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
+ FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
+ FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
+ FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
+ FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
+ FIELD(CR0_READ_SHADOW, cr0_read_shadow),
+ FIELD(CR4_READ_SHADOW, cr4_read_shadow),
+ FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
+ FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
+ FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
+ FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
+ FIELD(EXIT_QUALIFICATION, exit_qualification),
+ FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
+ FIELD(GUEST_CR0, guest_cr0),
+ FIELD(GUEST_CR3, guest_cr3),
+ FIELD(GUEST_CR4, guest_cr4),
+ FIELD(GUEST_ES_BASE, guest_es_base),
+ FIELD(GUEST_CS_BASE, guest_cs_base),
+ FIELD(GUEST_SS_BASE, guest_ss_base),
+ FIELD(GUEST_DS_BASE, guest_ds_base),
+ FIELD(GUEST_FS_BASE, guest_fs_base),
+ FIELD(GUEST_GS_BASE, guest_gs_base),
+ FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
+ FIELD(GUEST_TR_BASE, guest_tr_base),
+ FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
+ FIELD(GUEST_IDTR_BASE, guest_idtr_base),
+ FIELD(GUEST_DR7, guest_dr7),
+ FIELD(GUEST_RSP, guest_rsp),
+ FIELD(GUEST_RIP, guest_rip),
+ FIELD(GUEST_RFLAGS, guest_rflags),
+ FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
+ FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
+ FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
+ FIELD(HOST_CR0, host_cr0),
+ FIELD(HOST_CR3, host_cr3),
+ FIELD(HOST_CR4, host_cr4),
+ FIELD(HOST_FS_BASE, host_fs_base),
+ FIELD(HOST_GS_BASE, host_gs_base),
+ FIELD(HOST_TR_BASE, host_tr_base),
+ FIELD(HOST_GDTR_BASE, host_gdtr_base),
+ FIELD(HOST_IDTR_BASE, host_idtr_base),
+ FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
+ FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
+ FIELD(HOST_RSP, host_rsp),
+ FIELD(HOST_RIP, host_rip),
+};
+static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
+
+static inline short vmcs_field_to_offset(unsigned long field)
+{
+ if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
+ return -1;
+ return vmcs_field_to_offset_table[field];
+}
+
+static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.current_vmcs12;
+}
+
+static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
+{
+ struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
+ if (is_error_page(page)) {
+ kvm_release_page_clean(page);
+ return NULL;
+ }
+ return page;
+}
+
+static void nested_release_page(struct page *page)
+{
+ kvm_release_page_dirty(page);
+}
+
+static void nested_release_page_clean(struct page *page)
+{
+ kvm_release_page_clean(page);
+}
+
static u64 construct_eptp(unsigned long root_hpa);
static void kvm_cpu_vmxon(u64 addr);
static void kvm_cpu_vmxoff(void);
@@ -200,7 +606,11 @@ static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
-static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
+/*
+ * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
+ * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
+ */
+static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
static unsigned long *vmx_io_bitmap_a;
@@ -442,6 +852,35 @@ static inline bool report_flexpriority(void)
return flexpriority_enabled;
}
+static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
+{
+ return vmcs12->cpu_based_vm_exec_control & bit;
+}
+
+static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
+{
+ return (vmcs12->cpu_based_vm_exec_control &
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
+ (vmcs12->secondary_vm_exec_control & bit);
+}
+
+static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
+ struct kvm_vcpu *vcpu)
+{
+ return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
+}
+
+static inline bool is_exception(u32 intr_info)
+{
+ return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
+ == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
+}
+
+static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
+static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12,
+ u32 reason, unsigned long qualification);
+
static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
{
int i;
@@ -501,6 +940,13 @@ static void vmcs_clear(struct vmcs *vmcs)
vmcs, phys_addr);
}
+static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
+{
+ vmcs_clear(loaded_vmcs->vmcs);
+ loaded_vmcs->cpu = -1;
+ loaded_vmcs->launched = 0;
+}
+
static void vmcs_load(struct vmcs *vmcs)
{
u64 phys_addr = __pa(vmcs);
@@ -510,29 +956,28 @@ static void vmcs_load(struct vmcs *vmcs)
: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
- printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
+ printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
vmcs, phys_addr);
}
-static void __vcpu_clear(void *arg)
+static void __loaded_vmcs_clear(void *arg)
{
- struct vcpu_vmx *vmx = arg;
+ struct loaded_vmcs *loaded_vmcs = arg;
int cpu = raw_smp_processor_id();
- if (vmx->vcpu.cpu == cpu)
- vmcs_clear(vmx->vmcs);
- if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
+ if (loaded_vmcs->cpu != cpu)
+ return; /* vcpu migration can race with cpu offline */
+ if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
per_cpu(current_vmcs, cpu) = NULL;
- list_del(&vmx->local_vcpus_link);
- vmx->vcpu.cpu = -1;
- vmx->launched = 0;
+ list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
+ loaded_vmcs_init(loaded_vmcs);
}
-static void vcpu_clear(struct vcpu_vmx *vmx)
+static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
{
- if (vmx->vcpu.cpu == -1)
- return;
- smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
+ if (loaded_vmcs->cpu != -1)
+ smp_call_function_single(
+ loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
}
static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
@@ -585,26 +1030,26 @@ static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
}
}
-static unsigned long vmcs_readl(unsigned long field)
+static __always_inline unsigned long vmcs_readl(unsigned long field)
{
- unsigned long value = 0;
+ unsigned long value;
- asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
- : "+a"(value) : "d"(field) : "cc");
+ asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
+ : "=a"(value) : "d"(field) : "cc");
return value;
}
-static u16 vmcs_read16(unsigned long field)
+static __always_inline u16 vmcs_read16(unsigned long field)
{
return vmcs_readl(field);
}
-static u32 vmcs_read32(unsigned long field)
+static __always_inline u32 vmcs_read32(unsigned long field)
{
return vmcs_readl(field);
}
-static u64 vmcs_read64(unsigned long field)
+static __always_inline u64 vmcs_read64(unsigned long field)
{
#ifdef CONFIG_X86_64
return vmcs_readl(field);
@@ -731,6 +1176,15 @@ static void update_exception_bitmap(struct kvm_vcpu *vcpu)
eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
if (vcpu->fpu_active)
eb &= ~(1u << NM_VECTOR);
+
+ /* When we are running a nested L2 guest and L1 specified for it a
+ * certain exception bitmap, we must trap the same exceptions and pass
+ * them to L1. When running L2, we will only handle the exceptions
+ * specified above if L1 did not want them.
+ */
+ if (is_guest_mode(vcpu))
+ eb |= get_vmcs12(vcpu)->exception_bitmap;
+
vmcs_write32(EXCEPTION_BITMAP, eb);
}
@@ -971,22 +1425,22 @@ static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
if (!vmm_exclusive)
kvm_cpu_vmxon(phys_addr);
- else if (vcpu->cpu != cpu)
- vcpu_clear(vmx);
+ else if (vmx->loaded_vmcs->cpu != cpu)
+ loaded_vmcs_clear(vmx->loaded_vmcs);
- if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
- per_cpu(current_vmcs, cpu) = vmx->vmcs;
- vmcs_load(vmx->vmcs);
+ if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
+ per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
+ vmcs_load(vmx->loaded_vmcs->vmcs);
}
- if (vcpu->cpu != cpu) {
+ if (vmx->loaded_vmcs->cpu != cpu) {
struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
unsigned long sysenter_esp;
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
local_irq_disable();
- list_add(&vmx->local_vcpus_link,
- &per_cpu(vcpus_on_cpu, cpu));
+ list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
+ &per_cpu(loaded_vmcss_on_cpu, cpu));
local_irq_enable();
/*
@@ -998,6 +1452,7 @@ static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
+ vmx->loaded_vmcs->cpu = cpu;
}
}
@@ -1005,7 +1460,8 @@ static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
{
__vmx_load_host_state(to_vmx(vcpu));
if (!vmm_exclusive) {
- __vcpu_clear(to_vmx(vcpu));
+ __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
+ vcpu->cpu = -1;
kvm_cpu_vmxoff();
}
}
@@ -1023,19 +1479,55 @@ static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
vmcs_writel(GUEST_CR0, cr0);
update_exception_bitmap(vcpu);
vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+ if (is_guest_mode(vcpu))
+ vcpu->arch.cr0_guest_owned_bits &=
+ ~get_vmcs12(vcpu)->cr0_guest_host_mask;
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
}
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
+/*
+ * Return the cr0 value that a nested guest would read. This is a combination
+ * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
+ * its hypervisor (cr0_read_shadow).
+ */
+static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
+{
+ return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
+ (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
+}
+static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
+{
+ return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
+ (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
+}
+
static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
{
+ /* Note that there is no vcpu->fpu_active = 0 here. The caller must
+ * set this *before* calling this function.
+ */
vmx_decache_cr0_guest_bits(vcpu);
vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
update_exception_bitmap(vcpu);
vcpu->arch.cr0_guest_owned_bits = 0;
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
- vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
+ if (is_guest_mode(vcpu)) {
+ /*
+ * L1's specified read shadow might not contain the TS bit,
+ * so now that we turned on shadowing of this bit, we need to
+ * set this bit of the shadow. Like in nested_vmx_run we need
+ * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
+ * up-to-date here because we just decached cr0.TS (and we'll
+ * only update vmcs12->guest_cr0 on nested exit).
+ */
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
+ (vcpu->arch.cr0 & X86_CR0_TS);
+ vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
+ } else
+ vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
}
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
@@ -1119,6 +1611,25 @@ static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
}
+/*
+ * KVM wants to inject page-faults which it got to the guest. This function
+ * checks whether in a nested guest, we need to inject them to L1 or L2.
+ * This function assumes it is called with the exit reason in vmcs02 being
+ * a #PF exception (this is the only case in which KVM injects a #PF when L2
+ * is running).
+ */
+static int nested_pf_handled(struct kvm_vcpu *vcpu)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
+ if (!(vmcs12->exception_bitmap & PF_VECTOR))
+ return 0;
+
+ nested_vmx_vmexit(vcpu);
+ return 1;
+}
+
static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
bool has_error_code, u32 error_code,
bool reinject)
@@ -1126,6 +1637,10 @@ static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 intr_info = nr | INTR_INFO_VALID_MASK;
+ if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
+ nested_pf_handled(vcpu))
+ return;
+
if (has_error_code) {
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
@@ -1248,12 +1763,24 @@ static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
{
vmcs_write64(TSC_OFFSET, offset);
+ if (is_guest_mode(vcpu))
+ /*
+ * We're here if L1 chose not to trap the TSC MSR. Since
+ * prepare_vmcs12() does not copy tsc_offset, we need to also
+ * set the vmcs12 field here.
+ */
+ get_vmcs12(vcpu)->tsc_offset = offset -
+ to_vmx(vcpu)->nested.vmcs01_tsc_offset;
}
static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
{
u64 offset = vmcs_read64(TSC_OFFSET);
vmcs_write64(TSC_OFFSET, offset + adjustment);
+ if (is_guest_mode(vcpu)) {
+ /* Even when running L2, the adjustment needs to apply to L1 */
+ to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
+ }
}
static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
@@ -1261,6 +1788,236 @@ static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
return target_tsc - native_read_tsc();
}
+static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
+ return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
+}
+
+/*
+ * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
+ * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
+ * all guests if the "nested" module option is off, and can also be disabled
+ * for a single guest by disabling its VMX cpuid bit.
+ */
+static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
+{
+ return nested && guest_cpuid_has_vmx(vcpu);
+}
+
+/*
+ * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
+ * returned for the various VMX controls MSRs when nested VMX is enabled.
+ * The same values should also be used to verify that vmcs12 control fields are
+ * valid during nested entry from L1 to L2.
+ * Each of these control msrs has a low and high 32-bit half: A low bit is on
+ * if the corresponding bit in the (32-bit) control field *must* be on, and a
+ * bit in the high half is on if the corresponding bit in the control field
+ * may be on. See also vmx_control_verify().
+ * TODO: allow these variables to be modified (downgraded) by module options
+ * or other means.
+ */
+static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
+static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
+static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
+static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
+static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
+static __init void nested_vmx_setup_ctls_msrs(void)
+{
+ /*
+ * Note that as a general rule, the high half of the MSRs (bits in
+ * the control fields which may be 1) should be initialized by the
+ * intersection of the underlying hardware's MSR (i.e., features which
+ * can be supported) and the list of features we want to expose -
+ * because they are known to be properly supported in our code.
+ * Also, usually, the low half of the MSRs (bits which must be 1) can
+ * be set to 0, meaning that L1 may turn off any of these bits. The
+ * reason is that if one of these bits is necessary, it will appear
+ * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
+ * fields of vmcs01 and vmcs02, will turn these bits off - and
+ * nested_vmx_exit_handled() will not pass related exits to L1.
+ * These rules have exceptions below.
+ */
+
+ /* pin-based controls */
+ /*
+ * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
+ * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
+ */
+ nested_vmx_pinbased_ctls_low = 0x16 ;
+ nested_vmx_pinbased_ctls_high = 0x16 |
+ PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
+ PIN_BASED_VIRTUAL_NMIS;
+
+ /* exit controls */
+ nested_vmx_exit_ctls_low = 0;
+ /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
+#ifdef CONFIG_X86_64
+ nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
+#else
+ nested_vmx_exit_ctls_high = 0;
+#endif
+
+ /* entry controls */
+ rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
+ nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
+ nested_vmx_entry_ctls_low = 0;
+ nested_vmx_entry_ctls_high &=
+ VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
+
+ /* cpu-based controls */
+ rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
+ nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
+ nested_vmx_procbased_ctls_low = 0;
+ nested_vmx_procbased_ctls_high &=
+ CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
+ CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
+ CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING |
+#ifdef CONFIG_X86_64
+ CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
+#endif
+ CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
+ CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+ /*
+ * We can allow some features even when not supported by the
+ * hardware. For example, L1 can specify an MSR bitmap - and we
+ * can use it to avoid exits to L1 - even when L0 runs L2
+ * without MSR bitmaps.
+ */
+ nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
+
+ /* secondary cpu-based controls */
+ rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
+ nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
+ nested_vmx_secondary_ctls_low = 0;
+ nested_vmx_secondary_ctls_high &=
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+}
+
+static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
+{
+ /*
+ * Bits 0 in high must be 0, and bits 1 in low must be 1.
+ */
+ return ((control & high) | low) == control;
+}
+
+static inline u64 vmx_control_msr(u32 low, u32 high)
+{
+ return low | ((u64)high << 32);
+}
+
+/*
+ * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
+ * also let it use VMX-specific MSRs.
+ * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
+ * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
+ * like all other MSRs).
+ */
+static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
+{
+ if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
+ msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
+ /*
+ * According to the spec, processors which do not support VMX
+ * should throw a #GP(0) when VMX capability MSRs are read.
+ */
+ kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
+ return 1;
+ }
+
+ switch (msr_index) {
+ case MSR_IA32_FEATURE_CONTROL:
+ *pdata = 0;
+ break;
+ case MSR_IA32_VMX_BASIC:
+ /*
+ * This MSR reports some information about VMX support. We
+ * should return information about the VMX we emulate for the
+ * guest, and the VMCS structure we give it - not about the
+ * VMX support of the underlying hardware.
+ */
+ *pdata = VMCS12_REVISION |
+ ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
+ (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
+ break;
+ case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+ case MSR_IA32_VMX_PINBASED_CTLS:
+ *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
+ nested_vmx_pinbased_ctls_high);
+ break;
+ case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+ case MSR_IA32_VMX_PROCBASED_CTLS:
+ *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
+ nested_vmx_procbased_ctls_high);
+ break;
+ case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+ case MSR_IA32_VMX_EXIT_CTLS:
+ *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
+ nested_vmx_exit_ctls_high);
+ break;
+ case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+ case MSR_IA32_VMX_ENTRY_CTLS:
+ *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
+ nested_vmx_entry_ctls_high);
+ break;
+ case MSR_IA32_VMX_MISC:
+ *pdata = 0;
+ break;
+ /*
+ * These MSRs specify bits which the guest must keep fixed (on or off)
+ * while L1 is in VMXON mode (in L1's root mode, or running an L2).
+ * We picked the standard core2 setting.
+ */
+#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
+#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
+ case MSR_IA32_VMX_CR0_FIXED0:
+ *pdata = VMXON_CR0_ALWAYSON;
+ break;
+ case MSR_IA32_VMX_CR0_FIXED1:
+ *pdata = -1ULL;
+ break;
+ case MSR_IA32_VMX_CR4_FIXED0:
+ *pdata = VMXON_CR4_ALWAYSON;
+ break;
+ case MSR_IA32_VMX_CR4_FIXED1:
+ *pdata = -1ULL;
+ break;
+ case MSR_IA32_VMX_VMCS_ENUM:
+ *pdata = 0x1f;
+ break;
+ case MSR_IA32_VMX_PROCBASED_CTLS2:
+ *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
+ nested_vmx_secondary_ctls_high);
+ break;
+ case MSR_IA32_VMX_EPT_VPID_CAP:
+ /* Currently, no nested ept or nested vpid */
+ *pdata = 0;
+ break;
+ default:
+ return 0;
+ }
+
+ return 1;
+}
+
+static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
+{
+ if (!nested_vmx_allowed(vcpu))
+ return 0;
+
+ if (msr_index == MSR_IA32_FEATURE_CONTROL)
+ /* TODO: the right thing. */
+ return 1;
+ /*
+ * No need to treat VMX capability MSRs specially: If we don't handle
+ * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
+ */
+ return 0;
+}
+
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
@@ -1309,6 +2066,8 @@ static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
/* Otherwise falls through */
default:
vmx_load_host_state(to_vmx(vcpu));
+ if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
+ return 0;
msr = find_msr_entry(to_vmx(vcpu), msr_index);
if (msr) {
vmx_load_host_state(to_vmx(vcpu));
@@ -1380,6 +2139,8 @@ static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
return 1;
/* Otherwise falls through */
default:
+ if (vmx_set_vmx_msr(vcpu, msr_index, data))
+ break;
msr = find_msr_entry(vmx, msr_index);
if (msr) {
vmx_load_host_state(vmx);
@@ -1469,7 +2230,7 @@ static int hardware_enable(void *garbage)
if (read_cr4() & X86_CR4_VMXE)
return -EBUSY;
- INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
+ INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
test_bits = FEATURE_CONTROL_LOCKED;
@@ -1493,14 +2254,14 @@ static int hardware_enable(void *garbage)
return 0;
}
-static void vmclear_local_vcpus(void)
+static void vmclear_local_loaded_vmcss(void)
{
int cpu = raw_smp_processor_id();
- struct vcpu_vmx *vmx, *n;
+ struct loaded_vmcs *v, *n;
- list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
- local_vcpus_link)
- __vcpu_clear(vmx);
+ list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
+ loaded_vmcss_on_cpu_link)
+ __loaded_vmcs_clear(v);
}
@@ -1515,7 +2276,7 @@ static void kvm_cpu_vmxoff(void)
static void hardware_disable(void *garbage)
{
if (vmm_exclusive) {
- vmclear_local_vcpus();
+ vmclear_local_loaded_vmcss();
kvm_cpu_vmxoff();
}
write_cr4(read_cr4() & ~X86_CR4_VMXE);
@@ -1696,6 +2457,18 @@ static void free_vmcs(struct vmcs *vmcs)
free_pages((unsigned long)vmcs, vmcs_config.order);
}
+/*
+ * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
+ */
+static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
+{
+ if (!loaded_vmcs->vmcs)
+ return;
+ loaded_vmcs_clear(loaded_vmcs);
+ free_vmcs(loaded_vmcs->vmcs);
+ loaded_vmcs->vmcs = NULL;
+}
+
static void free_kvm_area(void)
{
int cpu;
@@ -1756,6 +2529,9 @@ static __init int hardware_setup(void)
if (!cpu_has_vmx_ple())
ple_gap = 0;
+ if (nested)
+ nested_vmx_setup_ctls_msrs();
+
return alloc_kvm_area();
}
@@ -2041,7 +2817,7 @@ static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
(unsigned long *)&vcpu->arch.regs_dirty);
}
-static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
+static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
unsigned long cr0,
@@ -2139,11 +2915,23 @@ static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
vmcs_writel(GUEST_CR3, guest_cr3);
}
-static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
+ if (cr4 & X86_CR4_VMXE) {
+ /*
+ * To use VMXON (and later other VMX instructions), a guest
+ * must first be able to turn on cr4.VMXE (see handle_vmon()).
+ * So basically the check on whether to allow nested VMX
+ * is here.
+ */
+ if (!nested_vmx_allowed(vcpu))
+ return 1;
+ } else if (to_vmx(vcpu)->nested.vmxon)
+ return 1;
+
vcpu->arch.cr4 = cr4;
if (enable_ept) {
if (!is_paging(vcpu)) {
@@ -2156,6 +2944,7 @@ static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
vmcs_writel(CR4_READ_SHADOW, cr4);
vmcs_writel(GUEST_CR4, hw_cr4);
+ return 0;
}
static void vmx_get_segment(struct kvm_vcpu *vcpu,
@@ -2721,18 +3510,110 @@ static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
}
/*
+ * Set up the vmcs's constant host-state fields, i.e., host-state fields that
+ * will not change in the lifetime of the guest.
+ * Note that host-state that does change is set elsewhere. E.g., host-state
+ * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
+ */
+static void vmx_set_constant_host_state(void)
+{
+ u32 low32, high32;
+ unsigned long tmpl;
+ struct desc_ptr dt;
+
+ vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
+ vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
+ vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
+
+ vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
+ vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
+ vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
+ vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
+ vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
+
+ native_store_idt(&dt);
+ vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
+
+ asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
+ vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
+
+ rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
+ vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
+ rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
+ vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
+
+ if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
+ rdmsr(MSR_IA32_CR_PAT, low32, high32);
+ vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
+ }
+}
+
+static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
+{
+ vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
+ if (enable_ept)
+ vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
+ if (is_guest_mode(&vmx->vcpu))
+ vmx->vcpu.arch.cr4_guest_owned_bits &=
+ ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
+ vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
+}
+
+static u32 vmx_exec_control(struct vcpu_vmx *vmx)
+{
+ u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
+ if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
+ exec_control &= ~CPU_BASED_TPR_SHADOW;
+#ifdef CONFIG_X86_64
+ exec_control |= CPU_BASED_CR8_STORE_EXITING |
+ CPU_BASED_CR8_LOAD_EXITING;
+#endif
+ }
+ if (!enable_ept)
+ exec_control |= CPU_BASED_CR3_STORE_EXITING |
+ CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_INVLPG_EXITING;
+ return exec_control;
+}
+
+static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
+{
+ u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
+ if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
+ exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+ if (vmx->vpid == 0)
+ exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
+ if (!enable_ept) {
+ exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
+ enable_unrestricted_guest = 0;
+ }
+ if (!enable_unrestricted_guest)
+ exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
+ if (!ple_gap)
+ exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+ return exec_control;
+}
+
+static void ept_set_mmio_spte_mask(void)
+{
+ /*
+ * EPT Misconfigurations can be generated if the value of bits 2:0
+ * of an EPT paging-structure entry is 110b (write/execute).
+ * Also, magic bits (0xffull << 49) is set to quickly identify mmio
+ * spte.
+ */
+ kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
+}
+
+/*
* Sets up the vmcs for emulated real mode.
*/
static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
{
- u32 host_sysenter_cs, msr_low, msr_high;
- u32 junk;
- u64 host_pat;
+#ifdef CONFIG_X86_64
unsigned long a;
- struct desc_ptr dt;
+#endif
int i;
- unsigned long kvm_vmx_return;
- u32 exec_control;
/* I/O */
vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
@@ -2747,36 +3628,11 @@ static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
vmcs_config.pin_based_exec_ctrl);
- exec_control = vmcs_config.cpu_based_exec_ctrl;
- if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
- exec_control &= ~CPU_BASED_TPR_SHADOW;
-#ifdef CONFIG_X86_64
- exec_control |= CPU_BASED_CR8_STORE_EXITING |
- CPU_BASED_CR8_LOAD_EXITING;
-#endif
- }
- if (!enable_ept)
- exec_control |= CPU_BASED_CR3_STORE_EXITING |
- CPU_BASED_CR3_LOAD_EXITING |
- CPU_BASED_INVLPG_EXITING;
- vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
if (cpu_has_secondary_exec_ctrls()) {
- exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
- if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
- exec_control &=
- ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
- if (vmx->vpid == 0)
- exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
- if (!enable_ept) {
- exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
- enable_unrestricted_guest = 0;
- }
- if (!enable_unrestricted_guest)
- exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
- if (!ple_gap)
- exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
- vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+ vmx_secondary_exec_control(vmx));
}
if (ple_gap) {
@@ -2784,20 +3640,13 @@ static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
vmcs_write32(PLE_WINDOW, ple_window);
}
- vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
- vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
- vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
- vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
- vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
-
- vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
- vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
- vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
- vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
+ vmx_set_constant_host_state();
#ifdef CONFIG_X86_64
rdmsrl(MSR_FS_BASE, a);
vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
@@ -2808,32 +3657,15 @@ static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
#endif
- vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
-
- native_store_idt(&dt);
- vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
-
- asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
- vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
- rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
- vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
- rdmsrl(MSR_IA32_SYSENTER_ESP, a);
- vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
- rdmsrl(MSR_IA32_SYSENTER_EIP, a);
- vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
-
- if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
- rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
- host_pat = msr_low | ((u64) msr_high << 32);
- vmcs_write64(HOST_IA32_PAT, host_pat);
- }
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+ u32 msr_low, msr_high;
+ u64 host_pat;
rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
host_pat = msr_low | ((u64) msr_high << 32);
/* Write the default value follow host pat */
@@ -2863,10 +3695,7 @@ static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
- vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
- if (enable_ept)
- vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
- vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
+ set_cr4_guest_host_mask(vmx);
kvm_write_tsc(&vmx->vcpu, 0);
@@ -2990,9 +3819,25 @@ out:
return ret;
}
+/*
+ * In nested virtualization, check if L1 asked to exit on external interrupts.
+ * For most existing hypervisors, this will always return true.
+ */
+static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
+{
+ return get_vmcs12(vcpu)->pin_based_vm_exec_control &
+ PIN_BASED_EXT_INTR_MASK;
+}
+
static void enable_irq_window(struct kvm_vcpu *vcpu)
{
u32 cpu_based_vm_exec_control;
+ if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
+ /* We can get here when nested_run_pending caused
+ * vmx_interrupt_allowed() to return false. In this case, do
+ * nothing - the interrupt will be injected later.
+ */
+ return;
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
@@ -3049,6 +3894,9 @@ static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
+ if (is_guest_mode(vcpu))
+ return;
+
if (!cpu_has_virtual_nmis()) {
/*
* Tracking the NMI-blocked state in software is built upon
@@ -3115,6 +3963,17 @@ static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
{
+ if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
+ struct vmcs12 *vmcs12;
+ if (to_vmx(vcpu)->nested.nested_run_pending)
+ return 0;
+ nested_vmx_vmexit(vcpu);
+ vmcs12 = get_vmcs12(vcpu);
+ vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
+ vmcs12->vm_exit_intr_info = 0;
+ /* fall through to normal code, but now in L1, not L2 */
+ }
+
return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
@@ -3356,6 +4215,58 @@ vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
hypercall[2] = 0xc1;
}
+/* called to set cr0 as approriate for a mov-to-cr0 exit. */
+static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ if (to_vmx(vcpu)->nested.vmxon &&
+ ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
+ return 1;
+
+ if (is_guest_mode(vcpu)) {
+ /*
+ * We get here when L2 changed cr0 in a way that did not change
+ * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
+ * but did change L0 shadowed bits. This can currently happen
+ * with the TS bit: L0 may want to leave TS on (for lazy fpu
+ * loading) while pretending to allow the guest to change it.
+ */
+ if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
+ (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
+ return 1;
+ vmcs_writel(CR0_READ_SHADOW, val);
+ return 0;
+ } else
+ return kvm_set_cr0(vcpu, val);
+}
+
+static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ if (is_guest_mode(vcpu)) {
+ if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
+ (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
+ return 1;
+ vmcs_writel(CR4_READ_SHADOW, val);
+ return 0;
+ } else
+ return kvm_set_cr4(vcpu, val);
+}
+
+/* called to set cr0 as approriate for clts instruction exit. */
+static void handle_clts(struct kvm_vcpu *vcpu)
+{
+ if (is_guest_mode(vcpu)) {
+ /*
+ * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
+ * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
+ * just pretend it's off (also in arch.cr0 for fpu_activate).
+ */
+ vmcs_writel(CR0_READ_SHADOW,
+ vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
+ vcpu->arch.cr0 &= ~X86_CR0_TS;
+ } else
+ vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
+}
+
static int handle_cr(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification, val;
@@ -3372,7 +4283,7 @@ static int handle_cr(struct kvm_vcpu *vcpu)
trace_kvm_cr_write(cr, val);
switch (cr) {
case 0:
- err = kvm_set_cr0(vcpu, val);
+ err = handle_set_cr0(vcpu, val);
kvm_complete_insn_gp(vcpu, err);
return 1;
case 3:
@@ -3380,7 +4291,7 @@ static int handle_cr(struct kvm_vcpu *vcpu)
kvm_complete_insn_gp(vcpu, err);
return 1;
case 4:
- err = kvm_set_cr4(vcpu, val);
+ err = handle_set_cr4(vcpu, val);
kvm_complete_insn_gp(vcpu, err);
return 1;
case 8: {
@@ -3398,7 +4309,7 @@ static int handle_cr(struct kvm_vcpu *vcpu)
};
break;
case 2: /* clts */
- vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
+ handle_clts(vcpu);
trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
skip_emulated_instruction(vcpu);
vmx_fpu_activate(vcpu);
@@ -3574,12 +4485,6 @@ static int handle_vmcall(struct kvm_vcpu *vcpu)
return 1;
}
-static int handle_vmx_insn(struct kvm_vcpu *vcpu)
-{
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
-}
-
static int handle_invd(struct kvm_vcpu *vcpu)
{
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
@@ -3777,11 +4682,19 @@ static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
{
u64 sptes[4];
- int nr_sptes, i;
+ int nr_sptes, i, ret;
gpa_t gpa;
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+ ret = handle_mmio_page_fault_common(vcpu, gpa, true);
+ if (likely(ret == 1))
+ return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
+ EMULATE_DONE;
+ if (unlikely(!ret))
+ return 1;
+
+ /* It is the real ept misconfig */
printk(KERN_ERR "EPT: Misconfiguration.\n");
printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
@@ -3866,6 +4779,639 @@ static int handle_invalid_op(struct kvm_vcpu *vcpu)
}
/*
+ * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
+ * We could reuse a single VMCS for all the L2 guests, but we also want the
+ * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
+ * allows keeping them loaded on the processor, and in the future will allow
+ * optimizations where prepare_vmcs02 doesn't need to set all the fields on
+ * every entry if they never change.
+ * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
+ * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
+ *
+ * The following functions allocate and free a vmcs02 in this pool.
+ */
+
+/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
+static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
+{
+ struct vmcs02_list *item;
+ list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
+ if (item->vmptr == vmx->nested.current_vmptr) {
+ list_move(&item->list, &vmx->nested.vmcs02_pool);
+ return &item->vmcs02;
+ }
+
+ if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
+ /* Recycle the least recently used VMCS. */
+ item = list_entry(vmx->nested.vmcs02_pool.prev,
+ struct vmcs02_list, list);
+ item->vmptr = vmx->nested.current_vmptr;
+ list_move(&item->list, &vmx->nested.vmcs02_pool);
+ return &item->vmcs02;
+ }
+
+ /* Create a new VMCS */
+ item = (struct vmcs02_list *)
+ kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
+ if (!item)
+ return NULL;
+ item->vmcs02.vmcs = alloc_vmcs();
+ if (!item->vmcs02.vmcs) {
+ kfree(item);
+ return NULL;
+ }
+ loaded_vmcs_init(&item->vmcs02);
+ item->vmptr = vmx->nested.current_vmptr;
+ list_add(&(item->list), &(vmx->nested.vmcs02_pool));
+ vmx->nested.vmcs02_num++;
+ return &item->vmcs02;
+}
+
+/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
+static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
+{
+ struct vmcs02_list *item;
+ list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
+ if (item->vmptr == vmptr) {
+ free_loaded_vmcs(&item->vmcs02);
+ list_del(&item->list);
+ kfree(item);
+ vmx->nested.vmcs02_num--;
+ return;
+ }
+}
+
+/*
+ * Free all VMCSs saved for this vcpu, except the one pointed by
+ * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
+ * currently used, if running L2), and vmcs01 when running L2.
+ */
+static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
+{
+ struct vmcs02_list *item, *n;
+ list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
+ if (vmx->loaded_vmcs != &item->vmcs02)
+ free_loaded_vmcs(&item->vmcs02);
+ list_del(&item->list);
+ kfree(item);
+ }
+ vmx->nested.vmcs02_num = 0;
+
+ if (vmx->loaded_vmcs != &vmx->vmcs01)
+ free_loaded_vmcs(&vmx->vmcs01);
+}
+
+/*
+ * Emulate the VMXON instruction.
+ * Currently, we just remember that VMX is active, and do not save or even
+ * inspect the argument to VMXON (the so-called "VMXON pointer") because we
+ * do not currently need to store anything in that guest-allocated memory
+ * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
+ * argument is different from the VMXON pointer (which the spec says they do).
+ */
+static int handle_vmon(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment cs;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /* The Intel VMX Instruction Reference lists a bunch of bits that
+ * are prerequisite to running VMXON, most notably cr4.VMXE must be
+ * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
+ * Otherwise, we should fail with #UD. We test these now:
+ */
+ if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
+ !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
+ (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ if (is_long_mode(vcpu) && !cs.l) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ if (vmx_get_cpl(vcpu)) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
+ vmx->nested.vmcs02_num = 0;
+
+ vmx->nested.vmxon = true;
+
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+/*
+ * Intel's VMX Instruction Reference specifies a common set of prerequisites
+ * for running VMX instructions (except VMXON, whose prerequisites are
+ * slightly different). It also specifies what exception to inject otherwise.
+ */
+static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment cs;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!vmx->nested.vmxon) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 0;
+ }
+
+ vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
+ (is_long_mode(vcpu) && !cs.l)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 0;
+ }
+
+ if (vmx_get_cpl(vcpu)) {
+ kvm_inject_gp(vcpu, 0);
+ return 0;
+ }
+
+ return 1;
+}
+
+/*
+ * Free whatever needs to be freed from vmx->nested when L1 goes down, or
+ * just stops using VMX.
+ */
+static void free_nested(struct vcpu_vmx *vmx)
+{
+ if (!vmx->nested.vmxon)
+ return;
+ vmx->nested.vmxon = false;
+ if (vmx->nested.current_vmptr != -1ull) {
+ kunmap(vmx->nested.current_vmcs12_page);
+ nested_release_page(vmx->nested.current_vmcs12_page);
+ vmx->nested.current_vmptr = -1ull;
+ vmx->nested.current_vmcs12 = NULL;
+ }
+ /* Unpin physical memory we referred to in current vmcs02 */
+ if (vmx->nested.apic_access_page) {
+ nested_release_page(vmx->nested.apic_access_page);
+ vmx->nested.apic_access_page = 0;
+ }
+
+ nested_free_all_saved_vmcss(vmx);
+}
+
+/* Emulate the VMXOFF instruction */
+static int handle_vmoff(struct kvm_vcpu *vcpu)
+{
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+ free_nested(to_vmx(vcpu));
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+/*
+ * Decode the memory-address operand of a vmx instruction, as recorded on an
+ * exit caused by such an instruction (run by a guest hypervisor).
+ * On success, returns 0. When the operand is invalid, returns 1 and throws
+ * #UD or #GP.
+ */
+static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
+ unsigned long exit_qualification,
+ u32 vmx_instruction_info, gva_t *ret)
+{
+ /*
+ * According to Vol. 3B, "Information for VM Exits Due to Instruction
+ * Execution", on an exit, vmx_instruction_info holds most of the
+ * addressing components of the operand. Only the displacement part
+ * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
+ * For how an actual address is calculated from all these components,
+ * refer to Vol. 1, "Operand Addressing".
+ */
+ int scaling = vmx_instruction_info & 3;
+ int addr_size = (vmx_instruction_info >> 7) & 7;
+ bool is_reg = vmx_instruction_info & (1u << 10);
+ int seg_reg = (vmx_instruction_info >> 15) & 7;
+ int index_reg = (vmx_instruction_info >> 18) & 0xf;
+ bool index_is_valid = !(vmx_instruction_info & (1u << 22));
+ int base_reg = (vmx_instruction_info >> 23) & 0xf;
+ bool base_is_valid = !(vmx_instruction_info & (1u << 27));
+
+ if (is_reg) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ /* Addr = segment_base + offset */
+ /* offset = base + [index * scale] + displacement */
+ *ret = vmx_get_segment_base(vcpu, seg_reg);
+ if (base_is_valid)
+ *ret += kvm_register_read(vcpu, base_reg);
+ if (index_is_valid)
+ *ret += kvm_register_read(vcpu, index_reg)<<scaling;
+ *ret += exit_qualification; /* holds the displacement */
+
+ if (addr_size == 1) /* 32 bit */
+ *ret &= 0xffffffff;
+
+ /*
+ * TODO: throw #GP (and return 1) in various cases that the VM*
+ * instructions require it - e.g., offset beyond segment limit,
+ * unusable or unreadable/unwritable segment, non-canonical 64-bit
+ * address, and so on. Currently these are not checked.
+ */
+ return 0;
+}
+
+/*
+ * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
+ * set the success or error code of an emulated VMX instruction, as specified
+ * by Vol 2B, VMX Instruction Reference, "Conventions".
+ */
+static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
+{
+ vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+ X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
+}
+
+static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
+{
+ vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
+ X86_EFLAGS_SF | X86_EFLAGS_OF))
+ | X86_EFLAGS_CF);
+}
+
+static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
+ u32 vm_instruction_error)
+{
+ if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
+ /*
+ * failValid writes the error number to the current VMCS, which
+ * can't be done there isn't a current VMCS.
+ */
+ nested_vmx_failInvalid(vcpu);
+ return;
+ }
+ vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+ X86_EFLAGS_SF | X86_EFLAGS_OF))
+ | X86_EFLAGS_ZF);
+ get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
+}
+
+/* Emulate the VMCLEAR instruction */
+static int handle_vmclear(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ gva_t gva;
+ gpa_t vmptr;
+ struct vmcs12 *vmcs12;
+ struct page *page;
+ struct x86_exception e;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+ vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
+ return 1;
+
+ if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
+ sizeof(vmptr), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+
+ if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
+ nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ if (vmptr == vmx->nested.current_vmptr) {
+ kunmap(vmx->nested.current_vmcs12_page);
+ nested_release_page(vmx->nested.current_vmcs12_page);
+ vmx->nested.current_vmptr = -1ull;
+ vmx->nested.current_vmcs12 = NULL;
+ }
+
+ page = nested_get_page(vcpu, vmptr);
+ if (page == NULL) {
+ /*
+ * For accurate processor emulation, VMCLEAR beyond available
+ * physical memory should do nothing at all. However, it is
+ * possible that a nested vmx bug, not a guest hypervisor bug,
+ * resulted in this case, so let's shut down before doing any
+ * more damage:
+ */
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ return 1;
+ }
+ vmcs12 = kmap(page);
+ vmcs12->launch_state = 0;
+ kunmap(page);
+ nested_release_page(page);
+
+ nested_free_vmcs02(vmx, vmptr);
+
+ skip_emulated_instruction(vcpu);
+ nested_vmx_succeed(vcpu);
+ return 1;
+}
+
+static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
+
+/* Emulate the VMLAUNCH instruction */
+static int handle_vmlaunch(struct kvm_vcpu *vcpu)
+{
+ return nested_vmx_run(vcpu, true);
+}
+
+/* Emulate the VMRESUME instruction */
+static int handle_vmresume(struct kvm_vcpu *vcpu)
+{
+
+ return nested_vmx_run(vcpu, false);
+}
+
+enum vmcs_field_type {
+ VMCS_FIELD_TYPE_U16 = 0,
+ VMCS_FIELD_TYPE_U64 = 1,
+ VMCS_FIELD_TYPE_U32 = 2,
+ VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
+};
+
+static inline int vmcs_field_type(unsigned long field)
+{
+ if (0x1 & field) /* the *_HIGH fields are all 32 bit */
+ return VMCS_FIELD_TYPE_U32;
+ return (field >> 13) & 0x3 ;
+}
+
+static inline int vmcs_field_readonly(unsigned long field)
+{
+ return (((field >> 10) & 0x3) == 1);
+}
+
+/*
+ * Read a vmcs12 field. Since these can have varying lengths and we return
+ * one type, we chose the biggest type (u64) and zero-extend the return value
+ * to that size. Note that the caller, handle_vmread, might need to use only
+ * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
+ * 64-bit fields are to be returned).
+ */
+static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
+ unsigned long field, u64 *ret)
+{
+ short offset = vmcs_field_to_offset(field);
+ char *p;
+
+ if (offset < 0)
+ return 0;
+
+ p = ((char *)(get_vmcs12(vcpu))) + offset;
+
+ switch (vmcs_field_type(field)) {
+ case VMCS_FIELD_TYPE_NATURAL_WIDTH:
+ *ret = *((natural_width *)p);
+ return 1;
+ case VMCS_FIELD_TYPE_U16:
+ *ret = *((u16 *)p);
+ return 1;
+ case VMCS_FIELD_TYPE_U32:
+ *ret = *((u32 *)p);
+ return 1;
+ case VMCS_FIELD_TYPE_U64:
+ *ret = *((u64 *)p);
+ return 1;
+ default:
+ return 0; /* can never happen. */
+ }
+}
+
+/*
+ * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
+ * used before) all generate the same failure when it is missing.
+ */
+static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ if (vmx->nested.current_vmptr == -1ull) {
+ nested_vmx_failInvalid(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 0;
+ }
+ return 1;
+}
+
+static int handle_vmread(struct kvm_vcpu *vcpu)
+{
+ unsigned long field;
+ u64 field_value;
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ gva_t gva = 0;
+
+ if (!nested_vmx_check_permission(vcpu) ||
+ !nested_vmx_check_vmcs12(vcpu))
+ return 1;
+
+ /* Decode instruction info and find the field to read */
+ field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+ /* Read the field, zero-extended to a u64 field_value */
+ if (!vmcs12_read_any(vcpu, field, &field_value)) {
+ nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ /*
+ * Now copy part of this value to register or memory, as requested.
+ * Note that the number of bits actually copied is 32 or 64 depending
+ * on the guest's mode (32 or 64 bit), not on the given field's length.
+ */
+ if (vmx_instruction_info & (1u << 10)) {
+ kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
+ field_value);
+ } else {
+ if (get_vmx_mem_address(vcpu, exit_qualification,
+ vmx_instruction_info, &gva))
+ return 1;
+ /* _system ok, as nested_vmx_check_permission verified cpl=0 */
+ kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
+ &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
+ }
+
+ nested_vmx_succeed(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+
+static int handle_vmwrite(struct kvm_vcpu *vcpu)
+{
+ unsigned long field;
+ gva_t gva;
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ char *p;
+ short offset;
+ /* The value to write might be 32 or 64 bits, depending on L1's long
+ * mode, and eventually we need to write that into a field of several
+ * possible lengths. The code below first zero-extends the value to 64
+ * bit (field_value), and then copies only the approriate number of
+ * bits into the vmcs12 field.
+ */
+ u64 field_value = 0;
+ struct x86_exception e;
+
+ if (!nested_vmx_check_permission(vcpu) ||
+ !nested_vmx_check_vmcs12(vcpu))
+ return 1;
+
+ if (vmx_instruction_info & (1u << 10))
+ field_value = kvm_register_read(vcpu,
+ (((vmx_instruction_info) >> 3) & 0xf));
+ else {
+ if (get_vmx_mem_address(vcpu, exit_qualification,
+ vmx_instruction_info, &gva))
+ return 1;
+ if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
+ &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+ }
+
+
+ field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+ if (vmcs_field_readonly(field)) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ offset = vmcs_field_to_offset(field);
+ if (offset < 0) {
+ nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ p = ((char *) get_vmcs12(vcpu)) + offset;
+
+ switch (vmcs_field_type(field)) {
+ case VMCS_FIELD_TYPE_U16:
+ *(u16 *)p = field_value;
+ break;
+ case VMCS_FIELD_TYPE_U32:
+ *(u32 *)p = field_value;
+ break;
+ case VMCS_FIELD_TYPE_U64:
+ *(u64 *)p = field_value;
+ break;
+ case VMCS_FIELD_TYPE_NATURAL_WIDTH:
+ *(natural_width *)p = field_value;
+ break;
+ default:
+ nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ nested_vmx_succeed(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+/* Emulate the VMPTRLD instruction */
+static int handle_vmptrld(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ gva_t gva;
+ gpa_t vmptr;
+ struct x86_exception e;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+ vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
+ return 1;
+
+ if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
+ sizeof(vmptr), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+
+ if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
+ nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ if (vmx->nested.current_vmptr != vmptr) {
+ struct vmcs12 *new_vmcs12;
+ struct page *page;
+ page = nested_get_page(vcpu, vmptr);
+ if (page == NULL) {
+ nested_vmx_failInvalid(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ new_vmcs12 = kmap(page);
+ if (new_vmcs12->revision_id != VMCS12_REVISION) {
+ kunmap(page);
+ nested_release_page_clean(page);
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ if (vmx->nested.current_vmptr != -1ull) {
+ kunmap(vmx->nested.current_vmcs12_page);
+ nested_release_page(vmx->nested.current_vmcs12_page);
+ }
+
+ vmx->nested.current_vmptr = vmptr;
+ vmx->nested.current_vmcs12 = new_vmcs12;
+ vmx->nested.current_vmcs12_page = page;
+ }
+
+ nested_vmx_succeed(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+/* Emulate the VMPTRST instruction */
+static int handle_vmptrst(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ gva_t vmcs_gva;
+ struct x86_exception e;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (get_vmx_mem_address(vcpu, exit_qualification,
+ vmx_instruction_info, &vmcs_gva))
+ return 1;
+ /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
+ if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
+ (void *)&to_vmx(vcpu)->nested.current_vmptr,
+ sizeof(u64), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+ nested_vmx_succeed(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+/*
* The exit handlers return 1 if the exit was handled fully and guest execution
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
* to be done to userspace and return 0.
@@ -3886,15 +5432,15 @@ static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
[EXIT_REASON_INVD] = handle_invd,
[EXIT_REASON_INVLPG] = handle_invlpg,
[EXIT_REASON_VMCALL] = handle_vmcall,
- [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
- [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
- [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
- [EXIT_REASON_VMPTRST] = handle_vmx_insn,
- [EXIT_REASON_VMREAD] = handle_vmx_insn,
- [EXIT_REASON_VMRESUME] = handle_vmx_insn,
- [EXIT_REASON_VMWRITE] = handle_vmx_insn,
- [EXIT_REASON_VMOFF] = handle_vmx_insn,
- [EXIT_REASON_VMON] = handle_vmx_insn,
+ [EXIT_REASON_VMCLEAR] = handle_vmclear,
+ [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
+ [EXIT_REASON_VMPTRLD] = handle_vmptrld,
+ [EXIT_REASON_VMPTRST] = handle_vmptrst,
+ [EXIT_REASON_VMREAD] = handle_vmread,
+ [EXIT_REASON_VMRESUME] = handle_vmresume,
+ [EXIT_REASON_VMWRITE] = handle_vmwrite,
+ [EXIT_REASON_VMOFF] = handle_vmoff,
+ [EXIT_REASON_VMON] = handle_vmon,
[EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
[EXIT_REASON_APIC_ACCESS] = handle_apic_access,
[EXIT_REASON_WBINVD] = handle_wbinvd,
@@ -3911,6 +5457,229 @@ static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
static const int kvm_vmx_max_exit_handlers =
ARRAY_SIZE(kvm_vmx_exit_handlers);
+/*
+ * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
+ * rather than handle it ourselves in L0. I.e., check whether L1 expressed
+ * disinterest in the current event (read or write a specific MSR) by using an
+ * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
+ */
+static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12, u32 exit_reason)
+{
+ u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
+ gpa_t bitmap;
+
+ if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
+ return 1;
+
+ /*
+ * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
+ * for the four combinations of read/write and low/high MSR numbers.
+ * First we need to figure out which of the four to use:
+ */
+ bitmap = vmcs12->msr_bitmap;
+ if (exit_reason == EXIT_REASON_MSR_WRITE)
+ bitmap += 2048;
+ if (msr_index >= 0xc0000000) {
+ msr_index -= 0xc0000000;
+ bitmap += 1024;
+ }
+
+ /* Then read the msr_index'th bit from this bitmap: */
+ if (msr_index < 1024*8) {
+ unsigned char b;
+ kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
+ return 1 & (b >> (msr_index & 7));
+ } else
+ return 1; /* let L1 handle the wrong parameter */
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
+ * rather than handle it ourselves in L0. I.e., check if L1 wanted to
+ * intercept (via guest_host_mask etc.) the current event.
+ */
+static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ int cr = exit_qualification & 15;
+ int reg = (exit_qualification >> 8) & 15;
+ unsigned long val = kvm_register_read(vcpu, reg);
+
+ switch ((exit_qualification >> 4) & 3) {
+ case 0: /* mov to cr */
+ switch (cr) {
+ case 0:
+ if (vmcs12->cr0_guest_host_mask &
+ (val ^ vmcs12->cr0_read_shadow))
+ return 1;
+ break;
+ case 3:
+ if ((vmcs12->cr3_target_count >= 1 &&
+ vmcs12->cr3_target_value0 == val) ||
+ (vmcs12->cr3_target_count >= 2 &&
+ vmcs12->cr3_target_value1 == val) ||
+ (vmcs12->cr3_target_count >= 3 &&
+ vmcs12->cr3_target_value2 == val) ||
+ (vmcs12->cr3_target_count >= 4 &&
+ vmcs12->cr3_target_value3 == val))
+ return 0;
+ if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
+ return 1;
+ break;
+ case 4:
+ if (vmcs12->cr4_guest_host_mask &
+ (vmcs12->cr4_read_shadow ^ val))
+ return 1;
+ break;
+ case 8:
+ if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
+ return 1;
+ break;
+ }
+ break;
+ case 2: /* clts */
+ if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
+ (vmcs12->cr0_read_shadow & X86_CR0_TS))
+ return 1;
+ break;
+ case 1: /* mov from cr */
+ switch (cr) {
+ case 3:
+ if (vmcs12->cpu_based_vm_exec_control &
+ CPU_BASED_CR3_STORE_EXITING)
+ return 1;
+ break;
+ case 8:
+ if (vmcs12->cpu_based_vm_exec_control &
+ CPU_BASED_CR8_STORE_EXITING)
+ return 1;
+ break;
+ }
+ break;
+ case 3: /* lmsw */
+ /*
+ * lmsw can change bits 1..3 of cr0, and only set bit 0 of
+ * cr0. Other attempted changes are ignored, with no exit.
+ */
+ if (vmcs12->cr0_guest_host_mask & 0xe &
+ (val ^ vmcs12->cr0_read_shadow))
+ return 1;
+ if ((vmcs12->cr0_guest_host_mask & 0x1) &&
+ !(vmcs12->cr0_read_shadow & 0x1) &&
+ (val & 0x1))
+ return 1;
+ break;
+ }
+ return 0;
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
+ * should handle it ourselves in L0 (and then continue L2). Only call this
+ * when in is_guest_mode (L2).
+ */
+static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
+{
+ u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
+ u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ if (vmx->nested.nested_run_pending)
+ return 0;
+
+ if (unlikely(vmx->fail)) {
+ printk(KERN_INFO "%s failed vm entry %x\n",
+ __func__, vmcs_read32(VM_INSTRUCTION_ERROR));
+ return 1;
+ }
+
+ switch (exit_reason) {
+ case EXIT_REASON_EXCEPTION_NMI:
+ if (!is_exception(intr_info))
+ return 0;
+ else if (is_page_fault(intr_info))
+ return enable_ept;
+ return vmcs12->exception_bitmap &
+ (1u << (intr_info & INTR_INFO_VECTOR_MASK));
+ case EXIT_REASON_EXTERNAL_INTERRUPT:
+ return 0;
+ case EXIT_REASON_TRIPLE_FAULT:
+ return 1;
+ case EXIT_REASON_PENDING_INTERRUPT:
+ case EXIT_REASON_NMI_WINDOW:
+ /*
+ * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
+ * (aka Interrupt Window Exiting) only when L1 turned it on,
+ * so if we got a PENDING_INTERRUPT exit, this must be for L1.
+ * Same for NMI Window Exiting.
+ */
+ return 1;
+ case EXIT_REASON_TASK_SWITCH:
+ return 1;
+ case EXIT_REASON_CPUID:
+ return 1;
+ case EXIT_REASON_HLT:
+ return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
+ case EXIT_REASON_INVD:
+ return 1;
+ case EXIT_REASON_INVLPG:
+ return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
+ case EXIT_REASON_RDPMC:
+ return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
+ case EXIT_REASON_RDTSC:
+ return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
+ case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
+ case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
+ case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
+ case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
+ case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
+ /*
+ * VMX instructions trap unconditionally. This allows L1 to
+ * emulate them for its L2 guest, i.e., allows 3-level nesting!
+ */
+ return 1;
+ case EXIT_REASON_CR_ACCESS:
+ return nested_vmx_exit_handled_cr(vcpu, vmcs12);
+ case EXIT_REASON_DR_ACCESS:
+ return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
+ case EXIT_REASON_IO_INSTRUCTION:
+ /* TODO: support IO bitmaps */
+ return 1;
+ case EXIT_REASON_MSR_READ:
+ case EXIT_REASON_MSR_WRITE:
+ return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
+ case EXIT_REASON_INVALID_STATE:
+ return 1;
+ case EXIT_REASON_MWAIT_INSTRUCTION:
+ return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
+ case EXIT_REASON_MONITOR_INSTRUCTION:
+ return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
+ case EXIT_REASON_PAUSE_INSTRUCTION:
+ return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
+ nested_cpu_has2(vmcs12,
+ SECONDARY_EXEC_PAUSE_LOOP_EXITING);
+ case EXIT_REASON_MCE_DURING_VMENTRY:
+ return 0;
+ case EXIT_REASON_TPR_BELOW_THRESHOLD:
+ return 1;
+ case EXIT_REASON_APIC_ACCESS:
+ return nested_cpu_has2(vmcs12,
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
+ case EXIT_REASON_EPT_VIOLATION:
+ case EXIT_REASON_EPT_MISCONFIG:
+ return 0;
+ case EXIT_REASON_WBINVD:
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
+ case EXIT_REASON_XSETBV:
+ return 1;
+ default:
+ return 1;
+ }
+}
+
static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
{
*info1 = vmcs_readl(EXIT_QUALIFICATION);
@@ -3933,6 +5702,25 @@ static int vmx_handle_exit(struct kvm_vcpu *vcpu)
if (vmx->emulation_required && emulate_invalid_guest_state)
return handle_invalid_guest_state(vcpu);
+ /*
+ * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
+ * we did not inject a still-pending event to L1 now because of
+ * nested_run_pending, we need to re-enable this bit.
+ */
+ if (vmx->nested.nested_run_pending)
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
+ exit_reason == EXIT_REASON_VMRESUME))
+ vmx->nested.nested_run_pending = 1;
+ else
+ vmx->nested.nested_run_pending = 0;
+
+ if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
+ nested_vmx_vmexit(vcpu);
+ return 1;
+ }
+
if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
vcpu->run->fail_entry.hardware_entry_failure_reason
@@ -3955,7 +5743,9 @@ static int vmx_handle_exit(struct kvm_vcpu *vcpu)
"(0x%x) and exit reason is 0x%x\n",
__func__, vectoring_info, exit_reason);
- if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
+ if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
+ !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
+ get_vmcs12(vcpu), vcpu)))) {
if (vmx_interrupt_allowed(vcpu)) {
vmx->soft_vnmi_blocked = 0;
} else if (vmx->vnmi_blocked_time > 1000000000LL &&
@@ -4118,6 +5908,8 @@ static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
{
+ if (is_guest_mode(&vmx->vcpu))
+ return;
__vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
VM_EXIT_INSTRUCTION_LEN,
IDT_VECTORING_ERROR_CODE);
@@ -4125,6 +5917,8 @@ static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
{
+ if (is_guest_mode(vcpu))
+ return;
__vmx_complete_interrupts(to_vmx(vcpu),
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
VM_ENTRY_INSTRUCTION_LEN,
@@ -4145,6 +5939,21 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
+ if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ if (vmcs12->idt_vectoring_info_field &
+ VECTORING_INFO_VALID_MASK) {
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+ vmcs12->idt_vectoring_info_field);
+ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+ vmcs12->vm_exit_instruction_len);
+ if (vmcs12->idt_vectoring_info_field &
+ VECTORING_INFO_DELIVER_CODE_MASK)
+ vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
+ vmcs12->idt_vectoring_error_code);
+ }
+ }
+
/* Record the guest's net vcpu time for enforced NMI injections. */
if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
vmx->entry_time = ktime_get();
@@ -4167,6 +5976,7 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
vmx_set_interrupt_shadow(vcpu, 0);
+ vmx->__launched = vmx->loaded_vmcs->launched;
asm(
/* Store host registers */
"push %%"R"dx; push %%"R"bp;"
@@ -4237,7 +6047,7 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
"pop %%"R"bp; pop %%"R"dx \n\t"
"setbe %c[fail](%0) \n\t"
: : "c"(vmx), "d"((unsigned long)HOST_RSP),
- [launched]"i"(offsetof(struct vcpu_vmx, launched)),
+ [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
[fail]"i"(offsetof(struct vcpu_vmx, fail)),
[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
@@ -4276,8 +6086,19 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
+ if (is_guest_mode(vcpu)) {
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
+ if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
+ vmcs12->idt_vectoring_error_code =
+ vmcs_read32(IDT_VECTORING_ERROR_CODE);
+ vmcs12->vm_exit_instruction_len =
+ vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ }
+ }
+
asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
- vmx->launched = 1;
+ vmx->loaded_vmcs->launched = 1;
vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
@@ -4289,41 +6110,18 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
#undef R
#undef Q
-static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (vmx->vmcs) {
- vcpu_clear(vmx);
- free_vmcs(vmx->vmcs);
- vmx->vmcs = NULL;
- }
-}
-
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
free_vpid(vmx);
- vmx_free_vmcs(vcpu);
+ free_nested(vmx);
+ free_loaded_vmcs(vmx->loaded_vmcs);
kfree(vmx->guest_msrs);
kvm_vcpu_uninit(vcpu);
kmem_cache_free(kvm_vcpu_cache, vmx);
}
-static inline void vmcs_init(struct vmcs *vmcs)
-{
- u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
-
- if (!vmm_exclusive)
- kvm_cpu_vmxon(phys_addr);
-
- vmcs_clear(vmcs);
-
- if (!vmm_exclusive)
- kvm_cpu_vmxoff();
-}
-
static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
{
int err;
@@ -4345,11 +6143,15 @@ static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
goto uninit_vcpu;
}
- vmx->vmcs = alloc_vmcs();
- if (!vmx->vmcs)
+ vmx->loaded_vmcs = &vmx->vmcs01;
+ vmx->loaded_vmcs->vmcs = alloc_vmcs();
+ if (!vmx->loaded_vmcs->vmcs)
goto free_msrs;
-
- vmcs_init(vmx->vmcs);
+ if (!vmm_exclusive)
+ kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
+ loaded_vmcs_init(vmx->loaded_vmcs);
+ if (!vmm_exclusive)
+ kvm_cpu_vmxoff();
cpu = get_cpu();
vmx_vcpu_load(&vmx->vcpu, cpu);
@@ -4375,10 +6177,13 @@ static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
goto free_vmcs;
}
+ vmx->nested.current_vmptr = -1ull;
+ vmx->nested.current_vmcs12 = NULL;
+
return &vmx->vcpu;
free_vmcs:
- free_vmcs(vmx->vmcs);
+ free_vmcs(vmx->loaded_vmcs->vmcs);
free_msrs:
kfree(vmx->guest_msrs);
uninit_vcpu:
@@ -4512,6 +6317,650 @@ static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
{
+ if (func == 1 && nested)
+ entry->ecx |= bit(X86_FEATURE_VMX);
+}
+
+/*
+ * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
+ * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
+ * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
+ * guest in a way that will both be appropriate to L1's requests, and our
+ * needs. In addition to modifying the active vmcs (which is vmcs02), this
+ * function also has additional necessary side-effects, like setting various
+ * vcpu->arch fields.
+ */
+static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 exec_control;
+
+ vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
+ vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
+ vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
+ vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
+ vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
+ vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
+ vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
+ vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
+ vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
+ vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
+ vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
+ vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
+ vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
+ vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
+ vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
+ vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
+ vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
+ vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
+ vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
+ vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
+ vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
+ vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
+ vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
+ vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
+ vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
+ vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
+ vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
+ vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
+ vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
+ vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
+ vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
+ vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
+ vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
+ vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
+ vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
+ vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
+
+ vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+ vmcs12->vm_entry_intr_info_field);
+ vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
+ vmcs12->vm_entry_exception_error_code);
+ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+ vmcs12->vm_entry_instruction_len);
+ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
+ vmcs12->guest_interruptibility_info);
+ vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
+ vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
+ vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
+ vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
+ vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
+ vmcs12->guest_pending_dbg_exceptions);
+ vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
+ vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
+
+ vmcs_write64(VMCS_LINK_POINTER, -1ull);
+
+ vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
+ (vmcs_config.pin_based_exec_ctrl |
+ vmcs12->pin_based_vm_exec_control));
+
+ /*
+ * Whether page-faults are trapped is determined by a combination of
+ * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
+ * If enable_ept, L0 doesn't care about page faults and we should
+ * set all of these to L1's desires. However, if !enable_ept, L0 does
+ * care about (at least some) page faults, and because it is not easy
+ * (if at all possible?) to merge L0 and L1's desires, we simply ask
+ * to exit on each and every L2 page fault. This is done by setting
+ * MASK=MATCH=0 and (see below) EB.PF=1.
+ * Note that below we don't need special code to set EB.PF beyond the
+ * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
+ * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
+ * !enable_ept, EB.PF is 1, so the "or" will always be 1.
+ *
+ * A problem with this approach (when !enable_ept) is that L1 may be
+ * injected with more page faults than it asked for. This could have
+ * caused problems, but in practice existing hypervisors don't care.
+ * To fix this, we will need to emulate the PFEC checking (on the L1
+ * page tables), using walk_addr(), when injecting PFs to L1.
+ */
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
+ enable_ept ? vmcs12->page_fault_error_code_mask : 0);
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
+ enable_ept ? vmcs12->page_fault_error_code_match : 0);
+
+ if (cpu_has_secondary_exec_ctrls()) {
+ u32 exec_control = vmx_secondary_exec_control(vmx);
+ if (!vmx->rdtscp_enabled)
+ exec_control &= ~SECONDARY_EXEC_RDTSCP;
+ /* Take the following fields only from vmcs12 */
+ exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+ if (nested_cpu_has(vmcs12,
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
+ exec_control |= vmcs12->secondary_vm_exec_control;
+
+ if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
+ /*
+ * Translate L1 physical address to host physical
+ * address for vmcs02. Keep the page pinned, so this
+ * physical address remains valid. We keep a reference
+ * to it so we can release it later.
+ */
+ if (vmx->nested.apic_access_page) /* shouldn't happen */
+ nested_release_page(vmx->nested.apic_access_page);
+ vmx->nested.apic_access_page =
+ nested_get_page(vcpu, vmcs12->apic_access_addr);
+ /*
+ * If translation failed, no matter: This feature asks
+ * to exit when accessing the given address, and if it
+ * can never be accessed, this feature won't do
+ * anything anyway.
+ */
+ if (!vmx->nested.apic_access_page)
+ exec_control &=
+ ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+ else
+ vmcs_write64(APIC_ACCESS_ADDR,
+ page_to_phys(vmx->nested.apic_access_page));
+ }
+
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+ }
+
+
+ /*
+ * Set host-state according to L0's settings (vmcs12 is irrelevant here)
+ * Some constant fields are set here by vmx_set_constant_host_state().
+ * Other fields are different per CPU, and will be set later when
+ * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
+ */
+ vmx_set_constant_host_state();
+
+ /*
+ * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
+ * entry, but only if the current (host) sp changed from the value
+ * we wrote last (vmx->host_rsp). This cache is no longer relevant
+ * if we switch vmcs, and rather than hold a separate cache per vmcs,
+ * here we just force the write to happen on entry.
+ */
+ vmx->host_rsp = 0;
+
+ exec_control = vmx_exec_control(vmx); /* L0's desires */
+ exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
+ exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
+ exec_control &= ~CPU_BASED_TPR_SHADOW;
+ exec_control |= vmcs12->cpu_based_vm_exec_control;
+ /*
+ * Merging of IO and MSR bitmaps not currently supported.
+ * Rather, exit every time.
+ */
+ exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
+ exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
+ exec_control |= CPU_BASED_UNCOND_IO_EXITING;
+
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
+
+ /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
+ * bitwise-or of what L1 wants to trap for L2, and what we want to
+ * trap. Note that CR0.TS also needs updating - we do this later.
+ */
+ update_exception_bitmap(vcpu);
+ vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
+ vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+
+ /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
+ vmcs_write32(VM_EXIT_CONTROLS,
+ vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
+ vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
+ (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
+
+ if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
+ vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
+ else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
+ vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+
+
+ set_cr4_guest_host_mask(vmx);
+
+ vmcs_write64(TSC_OFFSET,
+ vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
+
+ if (enable_vpid) {
+ /*
+ * Trivially support vpid by letting L2s share their parent
+ * L1's vpid. TODO: move to a more elaborate solution, giving
+ * each L2 its own vpid and exposing the vpid feature to L1.
+ */
+ vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+ vmx_flush_tlb(vcpu);
+ }
+
+ if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
+ vcpu->arch.efer = vmcs12->guest_ia32_efer;
+ if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
+ vcpu->arch.efer |= (EFER_LMA | EFER_LME);
+ else
+ vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
+ /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
+ vmx_set_efer(vcpu, vcpu->arch.efer);
+
+ /*
+ * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
+ * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
+ * The CR0_READ_SHADOW is what L2 should have expected to read given
+ * the specifications by L1; It's not enough to take
+ * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
+ * have more bits than L1 expected.
+ */
+ vmx_set_cr0(vcpu, vmcs12->guest_cr0);
+ vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
+
+ vmx_set_cr4(vcpu, vmcs12->guest_cr4);
+ vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
+
+ /* shadow page tables on either EPT or shadow page tables */
+ kvm_set_cr3(vcpu, vmcs12->guest_cr3);
+ kvm_mmu_reset_context(vcpu);
+
+ kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
+ kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
+}
+
+/*
+ * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
+ * for running an L2 nested guest.
+ */
+static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
+{
+ struct vmcs12 *vmcs12;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int cpu;
+ struct loaded_vmcs *vmcs02;
+
+ if (!nested_vmx_check_permission(vcpu) ||
+ !nested_vmx_check_vmcs12(vcpu))
+ return 1;
+
+ skip_emulated_instruction(vcpu);
+ vmcs12 = get_vmcs12(vcpu);
+
+ /*
+ * The nested entry process starts with enforcing various prerequisites
+ * on vmcs12 as required by the Intel SDM, and act appropriately when
+ * they fail: As the SDM explains, some conditions should cause the
+ * instruction to fail, while others will cause the instruction to seem
+ * to succeed, but return an EXIT_REASON_INVALID_STATE.
+ * To speed up the normal (success) code path, we should avoid checking
+ * for misconfigurations which will anyway be caught by the processor
+ * when using the merged vmcs02.
+ */
+ if (vmcs12->launch_state == launch) {
+ nested_vmx_failValid(vcpu,
+ launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
+ : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
+ return 1;
+ }
+
+ if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
+ !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
+ /*TODO: Also verify bits beyond physical address width are 0*/
+ nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ return 1;
+ }
+
+ if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
+ !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
+ /*TODO: Also verify bits beyond physical address width are 0*/
+ nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ return 1;
+ }
+
+ if (vmcs12->vm_entry_msr_load_count > 0 ||
+ vmcs12->vm_exit_msr_load_count > 0 ||
+ vmcs12->vm_exit_msr_store_count > 0) {
+ if (printk_ratelimit())
+ printk(KERN_WARNING
+ "%s: VMCS MSR_{LOAD,STORE} unsupported\n", __func__);
+ nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ return 1;
+ }
+
+ if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
+ nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
+ !vmx_control_verify(vmcs12->secondary_vm_exec_control,
+ nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
+ !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
+ nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
+ !vmx_control_verify(vmcs12->vm_exit_controls,
+ nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
+ !vmx_control_verify(vmcs12->vm_entry_controls,
+ nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
+ {
+ nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ return 1;
+ }
+
+ if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
+ ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
+ return 1;
+ }
+
+ if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
+ ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
+ nested_vmx_entry_failure(vcpu, vmcs12,
+ EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
+ return 1;
+ }
+ if (vmcs12->vmcs_link_pointer != -1ull) {
+ nested_vmx_entry_failure(vcpu, vmcs12,
+ EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
+ return 1;
+ }
+
+ /*
+ * We're finally done with prerequisite checking, and can start with
+ * the nested entry.
+ */
+
+ vmcs02 = nested_get_current_vmcs02(vmx);
+ if (!vmcs02)
+ return -ENOMEM;
+
+ enter_guest_mode(vcpu);
+
+ vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
+
+ cpu = get_cpu();
+ vmx->loaded_vmcs = vmcs02;
+ vmx_vcpu_put(vcpu);
+ vmx_vcpu_load(vcpu, cpu);
+ vcpu->cpu = cpu;
+ put_cpu();
+
+ vmcs12->launch_state = 1;
+
+ prepare_vmcs02(vcpu, vmcs12);
+
+ /*
+ * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
+ * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
+ * returned as far as L1 is concerned. It will only return (and set
+ * the success flag) when L2 exits (see nested_vmx_vmexit()).
+ */
+ return 1;
+}
+
+/*
+ * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
+ * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
+ * This function returns the new value we should put in vmcs12.guest_cr0.
+ * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
+ * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
+ * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
+ * didn't trap the bit, because if L1 did, so would L0).
+ * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
+ * been modified by L2, and L1 knows it. So just leave the old value of
+ * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
+ * isn't relevant, because if L0 traps this bit it can set it to anything.
+ * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
+ * changed these bits, and therefore they need to be updated, but L0
+ * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
+ * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
+ */
+static inline unsigned long
+vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ return
+ /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
+ /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
+ /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
+ vcpu->arch.cr0_guest_owned_bits));
+}
+
+static inline unsigned long
+vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ return
+ /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
+ /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
+ /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
+ vcpu->arch.cr4_guest_owned_bits));
+}
+
+/*
+ * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
+ * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
+ * and this function updates it to reflect the changes to the guest state while
+ * L2 was running (and perhaps made some exits which were handled directly by L0
+ * without going back to L1), and to reflect the exit reason.
+ * Note that we do not have to copy here all VMCS fields, just those that
+ * could have changed by the L2 guest or the exit - i.e., the guest-state and
+ * exit-information fields only. Other fields are modified by L1 with VMWRITE,
+ * which already writes to vmcs12 directly.
+ */
+void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ /* update guest state fields: */
+ vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
+ vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
+
+ kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
+ vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
+ vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
+ vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
+
+ vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
+ vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
+ vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
+ vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
+ vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
+ vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
+ vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
+ vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
+ vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
+ vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
+ vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
+ vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
+ vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
+ vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
+ vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
+ vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
+ vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
+ vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
+ vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
+ vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
+ vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
+ vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
+ vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
+ vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
+ vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
+ vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
+ vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
+ vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
+ vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
+ vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
+ vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
+ vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
+ vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
+ vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
+ vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
+ vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
+
+ vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
+ vmcs12->guest_interruptibility_info =
+ vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+ vmcs12->guest_pending_dbg_exceptions =
+ vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
+
+ /* TODO: These cannot have changed unless we have MSR bitmaps and
+ * the relevant bit asks not to trap the change */
+ vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+ if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
+ vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
+ vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
+ vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
+ vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
+
+ /* update exit information fields: */
+
+ vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
+ vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+ vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+ vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+ vmcs12->idt_vectoring_info_field =
+ vmcs_read32(IDT_VECTORING_INFO_FIELD);
+ vmcs12->idt_vectoring_error_code =
+ vmcs_read32(IDT_VECTORING_ERROR_CODE);
+ vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+
+ /* clear vm-entry fields which are to be cleared on exit */
+ if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
+ vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
+}
+
+/*
+ * A part of what we need to when the nested L2 guest exits and we want to
+ * run its L1 parent, is to reset L1's guest state to the host state specified
+ * in vmcs12.
+ * This function is to be called not only on normal nested exit, but also on
+ * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
+ * Failures During or After Loading Guest State").
+ * This function should be called when the active VMCS is L1's (vmcs01).
+ */
+void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
+ vcpu->arch.efer = vmcs12->host_ia32_efer;
+ if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+ vcpu->arch.efer |= (EFER_LMA | EFER_LME);
+ else
+ vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
+ vmx_set_efer(vcpu, vcpu->arch.efer);
+
+ kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
+ kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
+ /*
+ * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
+ * actually changed, because it depends on the current state of
+ * fpu_active (which may have changed).
+ * Note that vmx_set_cr0 refers to efer set above.
+ */
+ kvm_set_cr0(vcpu, vmcs12->host_cr0);
+ /*
+ * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
+ * to apply the same changes to L1's vmcs. We just set cr0 correctly,
+ * but we also need to update cr0_guest_host_mask and exception_bitmap.
+ */
+ update_exception_bitmap(vcpu);
+ vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
+ vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+
+ /*
+ * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
+ * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
+ */
+ vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+ kvm_set_cr4(vcpu, vmcs12->host_cr4);
+
+ /* shadow page tables on either EPT or shadow page tables */
+ kvm_set_cr3(vcpu, vmcs12->host_cr3);
+ kvm_mmu_reset_context(vcpu);
+
+ if (enable_vpid) {
+ /*
+ * Trivially support vpid by letting L2s share their parent
+ * L1's vpid. TODO: move to a more elaborate solution, giving
+ * each L2 its own vpid and exposing the vpid feature to L1.
+ */
+ vmx_flush_tlb(vcpu);
+ }
+
+
+ vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
+ vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
+ vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
+ vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
+ vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
+ vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
+ vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
+ vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
+ vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
+ vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
+ vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
+ vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
+ vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
+ vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
+ vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
+
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
+ vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+ vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
+ vmcs12->host_ia32_perf_global_ctrl);
+}
+
+/*
+ * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
+ * and modify vmcs12 to make it see what it would expect to see there if
+ * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
+ */
+static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int cpu;
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ leave_guest_mode(vcpu);
+ prepare_vmcs12(vcpu, vmcs12);
+
+ cpu = get_cpu();
+ vmx->loaded_vmcs = &vmx->vmcs01;
+ vmx_vcpu_put(vcpu);
+ vmx_vcpu_load(vcpu, cpu);
+ vcpu->cpu = cpu;
+ put_cpu();
+
+ /* if no vmcs02 cache requested, remove the one we used */
+ if (VMCS02_POOL_SIZE == 0)
+ nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
+
+ load_vmcs12_host_state(vcpu, vmcs12);
+
+ /* Update TSC_OFFSET if vmx_adjust_tsc_offset() was used while L2 ran */
+ vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
+
+ /* This is needed for same reason as it was needed in prepare_vmcs02 */
+ vmx->host_rsp = 0;
+
+ /* Unpin physical memory we referred to in vmcs02 */
+ if (vmx->nested.apic_access_page) {
+ nested_release_page(vmx->nested.apic_access_page);
+ vmx->nested.apic_access_page = 0;
+ }
+
+ /*
+ * Exiting from L2 to L1, we're now back to L1 which thinks it just
+ * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
+ * success or failure flag accordingly.
+ */
+ if (unlikely(vmx->fail)) {
+ vmx->fail = 0;
+ nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
+ } else
+ nested_vmx_succeed(vcpu);
+}
+
+/*
+ * L1's failure to enter L2 is a subset of a normal exit, as explained in
+ * 23.7 "VM-entry failures during or after loading guest state" (this also
+ * lists the acceptable exit-reason and exit-qualification parameters).
+ * It should only be called before L2 actually succeeded to run, and when
+ * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
+ */
+static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12,
+ u32 reason, unsigned long qualification)
+{
+ load_vmcs12_host_state(vcpu, vmcs12);
+ vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
+ vmcs12->exit_qualification = qualification;
+ nested_vmx_succeed(vcpu);
}
static int vmx_check_intercept(struct kvm_vcpu *vcpu,
@@ -4670,16 +7119,13 @@ static int __init vmx_init(void)
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
if (enable_ept) {
- bypass_guest_pf = 0;
kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
VMX_EPT_EXECUTABLE_MASK);
+ ept_set_mmio_spte_mask();
kvm_enable_tdp();
} else
kvm_disable_tdp();
- if (bypass_guest_pf)
- kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
-
return 0;
out3:
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
index 77c9d8673dc4..84a28ea45fa4 100644
--- a/arch/x86/kvm/x86.c
+++ b/arch/x86/kvm/x86.c
@@ -347,6 +347,7 @@ void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
vcpu->arch.cr2 = fault->address;
kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
}
+EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
{
@@ -579,6 +580,22 @@ static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
return best && (best->ecx & bit(X86_FEATURE_XSAVE));
}
+static bool guest_cpuid_has_smep(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 7, 0);
+ return best && (best->ebx & bit(X86_FEATURE_SMEP));
+}
+
+static bool guest_cpuid_has_fsgsbase(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 7, 0);
+ return best && (best->ebx & bit(X86_FEATURE_FSGSBASE));
+}
+
static void update_cpuid(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
@@ -598,14 +615,20 @@ static void update_cpuid(struct kvm_vcpu *vcpu)
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long old_cr4 = kvm_read_cr4(vcpu);
- unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
-
+ unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
+ X86_CR4_PAE | X86_CR4_SMEP;
if (cr4 & CR4_RESERVED_BITS)
return 1;
if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
return 1;
+ if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
+ return 1;
+
+ if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
+ return 1;
+
if (is_long_mode(vcpu)) {
if (!(cr4 & X86_CR4_PAE))
return 1;
@@ -615,11 +638,9 @@ int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
kvm_read_cr3(vcpu)))
return 1;
- if (cr4 & X86_CR4_VMXE)
+ if (kvm_x86_ops->set_cr4(vcpu, cr4))
return 1;
- kvm_x86_ops->set_cr4(vcpu, cr4);
-
if ((cr4 ^ old_cr4) & pdptr_bits)
kvm_mmu_reset_context(vcpu);
@@ -787,12 +808,12 @@ EXPORT_SYMBOL_GPL(kvm_get_dr);
* kvm-specific. Those are put in the beginning of the list.
*/
-#define KVM_SAVE_MSRS_BEGIN 8
+#define KVM_SAVE_MSRS_BEGIN 9
static u32 msrs_to_save[] = {
MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
- HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
+ HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
MSR_STAR,
#ifdef CONFIG_X86_64
@@ -1388,7 +1409,7 @@ static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
return 1;
kvm_x86_ops->patch_hypercall(vcpu, instructions);
((unsigned char *)instructions)[3] = 0xc3; /* ret */
- if (copy_to_user((void __user *)addr, instructions, 4))
+ if (__copy_to_user((void __user *)addr, instructions, 4))
return 1;
kvm->arch.hv_hypercall = data;
break;
@@ -1415,7 +1436,7 @@ static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
if (kvm_is_error_hva(addr))
return 1;
- if (clear_user((void __user *)addr, PAGE_SIZE))
+ if (__clear_user((void __user *)addr, PAGE_SIZE))
return 1;
vcpu->arch.hv_vapic = data;
break;
@@ -1467,6 +1488,35 @@ static void kvmclock_reset(struct kvm_vcpu *vcpu)
}
}
+static void accumulate_steal_time(struct kvm_vcpu *vcpu)
+{
+ u64 delta;
+
+ if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
+ return;
+
+ delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
+ vcpu->arch.st.last_steal = current->sched_info.run_delay;
+ vcpu->arch.st.accum_steal = delta;
+}
+
+static void record_steal_time(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
+ return;
+
+ if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
+ &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
+ return;
+
+ vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
+ vcpu->arch.st.steal.version += 2;
+ vcpu->arch.st.accum_steal = 0;
+
+ kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
+ &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
+}
+
int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
switch (msr) {
@@ -1549,6 +1599,33 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
if (kvm_pv_enable_async_pf(vcpu, data))
return 1;
break;
+ case MSR_KVM_STEAL_TIME:
+
+ if (unlikely(!sched_info_on()))
+ return 1;
+
+ if (data & KVM_STEAL_RESERVED_MASK)
+ return 1;
+
+ if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
+ data & KVM_STEAL_VALID_BITS))
+ return 1;
+
+ vcpu->arch.st.msr_val = data;
+
+ if (!(data & KVM_MSR_ENABLED))
+ break;
+
+ vcpu->arch.st.last_steal = current->sched_info.run_delay;
+
+ preempt_disable();
+ accumulate_steal_time(vcpu);
+ preempt_enable();
+
+ kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
+
+ break;
+
case MSR_IA32_MCG_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
@@ -1834,6 +1911,9 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
case MSR_KVM_ASYNC_PF_EN:
data = vcpu->arch.apf.msr_val;
break;
+ case MSR_KVM_STEAL_TIME:
+ data = vcpu->arch.st.msr_val;
+ break;
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
case MSR_IA32_MCG_CAP:
@@ -2145,6 +2225,9 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
kvm_migrate_timers(vcpu);
vcpu->cpu = cpu;
}
+
+ accumulate_steal_time(vcpu);
+ kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
@@ -2283,6 +2366,13 @@ static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
entry->flags = 0;
}
+static bool supported_xcr0_bit(unsigned bit)
+{
+ u64 mask = ((u64)1 << bit);
+
+ return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
+}
+
#define F(x) bit(X86_FEATURE_##x)
static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
@@ -2328,7 +2418,7 @@ static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
0 /* Reserved, DCA */ | F(XMM4_1) |
F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
- F(F16C);
+ F(F16C) | F(RDRAND);
/* cpuid 0x80000001.ecx */
const u32 kvm_supported_word6_x86_features =
F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
@@ -2342,6 +2432,10 @@ static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
F(PMM) | F(PMM_EN);
+ /* cpuid 7.0.ebx */
+ const u32 kvm_supported_word9_x86_features =
+ F(SMEP) | F(FSGSBASE) | F(ERMS);
+
/* all calls to cpuid_count() should be made on the same cpu */
get_cpu();
do_cpuid_1_ent(entry, function, index);
@@ -2376,7 +2470,7 @@ static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
}
break;
}
- /* function 4 and 0xb have additional index. */
+ /* function 4 has additional index. */
case 4: {
int i, cache_type;
@@ -2393,6 +2487,22 @@ static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
}
break;
}
+ case 7: {
+ entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+ /* Mask ebx against host capbability word 9 */
+ if (index == 0) {
+ entry->ebx &= kvm_supported_word9_x86_features;
+ cpuid_mask(&entry->ebx, 9);
+ } else
+ entry->ebx = 0;
+ entry->eax = 0;
+ entry->ecx = 0;
+ entry->edx = 0;
+ break;
+ }
+ case 9:
+ break;
+ /* function 0xb has additional index. */
case 0xb: {
int i, level_type;
@@ -2410,16 +2520,17 @@ static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
break;
}
case 0xd: {
- int i;
+ int idx, i;
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
- for (i = 1; *nent < maxnent && i < 64; ++i) {
- if (entry[i].eax == 0)
+ for (idx = 1, i = 1; *nent < maxnent && idx < 64; ++idx) {
+ do_cpuid_1_ent(&entry[i], function, idx);
+ if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
continue;
- do_cpuid_1_ent(&entry[i], function, i);
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
+ ++i;
}
break;
}
@@ -2438,6 +2549,10 @@ static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
(1 << KVM_FEATURE_CLOCKSOURCE2) |
(1 << KVM_FEATURE_ASYNC_PF) |
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
+
+ if (sched_info_on())
+ entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
+
entry->ebx = 0;
entry->ecx = 0;
entry->edx = 0;
@@ -2451,6 +2566,24 @@ static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
entry->ecx &= kvm_supported_word6_x86_features;
cpuid_mask(&entry->ecx, 6);
break;
+ case 0x80000008: {
+ unsigned g_phys_as = (entry->eax >> 16) & 0xff;
+ unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
+ unsigned phys_as = entry->eax & 0xff;
+
+ if (!g_phys_as)
+ g_phys_as = phys_as;
+ entry->eax = g_phys_as | (virt_as << 8);
+ entry->ebx = entry->edx = 0;
+ break;
+ }
+ case 0x80000019:
+ entry->ecx = entry->edx = 0;
+ break;
+ case 0x8000001a:
+ break;
+ case 0x8000001d:
+ break;
/*Add support for Centaur's CPUID instruction*/
case 0xC0000000:
/*Just support up to 0xC0000004 now*/
@@ -2460,10 +2593,16 @@ static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
entry->edx &= kvm_supported_word5_x86_features;
cpuid_mask(&entry->edx, 5);
break;
+ case 3: /* Processor serial number */
+ case 5: /* MONITOR/MWAIT */
+ case 6: /* Thermal management */
+ case 0xA: /* Architectural Performance Monitoring */
+ case 0x80000007: /* Advanced power management */
case 0xC0000002:
case 0xC0000003:
case 0xC0000004:
- /*Now nothing to do, reserved for the future*/
+ default:
+ entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
}
@@ -3817,7 +3956,7 @@ static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
exception);
}
-static int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
+int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
gva_t addr, void *val, unsigned int bytes,
struct x86_exception *exception)
{
@@ -3827,6 +3966,7 @@ static int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
exception);
}
+EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
gva_t addr, void *val, unsigned int bytes,
@@ -3836,7 +3976,7 @@ static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
}
-static int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
+int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
gva_t addr, void *val,
unsigned int bytes,
struct x86_exception *exception)
@@ -3868,6 +4008,42 @@ static int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
out:
return r;
}
+EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
+
+static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
+ gpa_t *gpa, struct x86_exception *exception,
+ bool write)
+{
+ u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+
+ if (vcpu_match_mmio_gva(vcpu, gva) &&
+ check_write_user_access(vcpu, write, access,
+ vcpu->arch.access)) {
+ *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
+ (gva & (PAGE_SIZE - 1));
+ trace_vcpu_match_mmio(gva, *gpa, write, false);
+ return 1;
+ }
+
+ if (write)
+ access |= PFERR_WRITE_MASK;
+
+ *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
+
+ if (*gpa == UNMAPPED_GVA)
+ return -1;
+
+ /* For APIC access vmexit */
+ if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
+ return 1;
+
+ if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
+ trace_vcpu_match_mmio(gva, *gpa, write, true);
+ return 1;
+ }
+
+ return 0;
+}
static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
unsigned long addr,
@@ -3876,8 +4052,8 @@ static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
struct x86_exception *exception)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
- gpa_t gpa;
- int handled;
+ gpa_t gpa;
+ int handled, ret;
if (vcpu->mmio_read_completed) {
memcpy(val, vcpu->mmio_data, bytes);
@@ -3887,13 +4063,12 @@ static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
return X86EMUL_CONTINUE;
}
- gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
+ ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, false);
- if (gpa == UNMAPPED_GVA)
+ if (ret < 0)
return X86EMUL_PROPAGATE_FAULT;
- /* For APIC access vmexit */
- if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
+ if (ret)
goto mmio;
if (kvm_read_guest_virt(ctxt, addr, val, bytes, exception)
@@ -3944,16 +4119,16 @@ static int emulator_write_emulated_onepage(unsigned long addr,
struct x86_exception *exception,
struct kvm_vcpu *vcpu)
{
- gpa_t gpa;
- int handled;
+ gpa_t gpa;
+ int handled, ret;
- gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
+ ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, true);
- if (gpa == UNMAPPED_GVA)
+ if (ret < 0)
return X86EMUL_PROPAGATE_FAULT;
/* For APIC access vmexit */
- if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
+ if (ret)
goto mmio;
if (emulator_write_phys(vcpu, gpa, val, bytes))
@@ -4473,9 +4648,24 @@ static void inject_emulated_exception(struct kvm_vcpu *vcpu)
kvm_queue_exception(vcpu, ctxt->exception.vector);
}
+static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
+ const unsigned long *regs)
+{
+ memset(&ctxt->twobyte, 0,
+ (void *)&ctxt->regs - (void *)&ctxt->twobyte);
+ memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
+
+ ctxt->fetch.start = 0;
+ ctxt->fetch.end = 0;
+ ctxt->io_read.pos = 0;
+ ctxt->io_read.end = 0;
+ ctxt->mem_read.pos = 0;
+ ctxt->mem_read.end = 0;
+}
+
static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
{
- struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
+ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
int cs_db, cs_l;
/*
@@ -4488,40 +4678,38 @@ static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
- vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
- vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
- vcpu->arch.emulate_ctxt.mode =
- (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
- (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
- ? X86EMUL_MODE_VM86 : cs_l
- ? X86EMUL_MODE_PROT64 : cs_db
- ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
- vcpu->arch.emulate_ctxt.guest_mode = is_guest_mode(vcpu);
- memset(c, 0, sizeof(struct decode_cache));
- memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
+ ctxt->eflags = kvm_get_rflags(vcpu);
+ ctxt->eip = kvm_rip_read(vcpu);
+ ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
+ (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
+ cs_l ? X86EMUL_MODE_PROT64 :
+ cs_db ? X86EMUL_MODE_PROT32 :
+ X86EMUL_MODE_PROT16;
+ ctxt->guest_mode = is_guest_mode(vcpu);
+
+ init_decode_cache(ctxt, vcpu->arch.regs);
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
}
int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
{
- struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
+ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
int ret;
init_emulate_ctxt(vcpu);
- vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
- vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
- vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip +
- inc_eip;
- ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
+ ctxt->op_bytes = 2;
+ ctxt->ad_bytes = 2;
+ ctxt->_eip = ctxt->eip + inc_eip;
+ ret = emulate_int_real(ctxt, irq);
if (ret != X86EMUL_CONTINUE)
return EMULATE_FAIL;
- vcpu->arch.emulate_ctxt.eip = c->eip;
- memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
- kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
- kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
+ ctxt->eip = ctxt->_eip;
+ memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
+ kvm_rip_write(vcpu, ctxt->eip);
+ kvm_set_rflags(vcpu, ctxt->eflags);
if (irq == NMI_VECTOR)
vcpu->arch.nmi_pending = false;
@@ -4582,21 +4770,21 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu,
int insn_len)
{
int r;
- struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
+ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
bool writeback = true;
kvm_clear_exception_queue(vcpu);
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
init_emulate_ctxt(vcpu);
- vcpu->arch.emulate_ctxt.interruptibility = 0;
- vcpu->arch.emulate_ctxt.have_exception = false;
- vcpu->arch.emulate_ctxt.perm_ok = false;
+ ctxt->interruptibility = 0;
+ ctxt->have_exception = false;
+ ctxt->perm_ok = false;
- vcpu->arch.emulate_ctxt.only_vendor_specific_insn
+ ctxt->only_vendor_specific_insn
= emulation_type & EMULTYPE_TRAP_UD;
- r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
+ r = x86_decode_insn(ctxt, insn, insn_len);
trace_kvm_emulate_insn_start(vcpu);
++vcpu->stat.insn_emulation;
@@ -4612,7 +4800,7 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu,
}
if (emulation_type & EMULTYPE_SKIP) {
- kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
+ kvm_rip_write(vcpu, ctxt->_eip);
return EMULATE_DONE;
}
@@ -4620,11 +4808,11 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu,
changes registers values during IO operation */
if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
- memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
+ memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
}
restart:
- r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
+ r = x86_emulate_insn(ctxt);
if (r == EMULATION_INTERCEPTED)
return EMULATE_DONE;
@@ -4636,7 +4824,7 @@ restart:
return handle_emulation_failure(vcpu);
}
- if (vcpu->arch.emulate_ctxt.have_exception) {
+ if (ctxt->have_exception) {
inject_emulated_exception(vcpu);
r = EMULATE_DONE;
} else if (vcpu->arch.pio.count) {
@@ -4655,13 +4843,12 @@ restart:
r = EMULATE_DONE;
if (writeback) {
- toggle_interruptibility(vcpu,
- vcpu->arch.emulate_ctxt.interruptibility);
- kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
+ toggle_interruptibility(vcpu, ctxt->interruptibility);
+ kvm_set_rflags(vcpu, ctxt->eflags);
kvm_make_request(KVM_REQ_EVENT, vcpu);
- memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
+ memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
- kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
+ kvm_rip_write(vcpu, ctxt->eip);
} else
vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
@@ -4878,6 +5065,30 @@ void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
}
EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
+static void kvm_set_mmio_spte_mask(void)
+{
+ u64 mask;
+ int maxphyaddr = boot_cpu_data.x86_phys_bits;
+
+ /*
+ * Set the reserved bits and the present bit of an paging-structure
+ * entry to generate page fault with PFER.RSV = 1.
+ */
+ mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
+ mask |= 1ull;
+
+#ifdef CONFIG_X86_64
+ /*
+ * If reserved bit is not supported, clear the present bit to disable
+ * mmio page fault.
+ */
+ if (maxphyaddr == 52)
+ mask &= ~1ull;
+#endif
+
+ kvm_mmu_set_mmio_spte_mask(mask);
+}
+
int kvm_arch_init(void *opaque)
{
int r;
@@ -4904,10 +5115,10 @@ int kvm_arch_init(void *opaque)
if (r)
goto out;
+ kvm_set_mmio_spte_mask();
kvm_init_msr_list();
kvm_x86_ops = ops;
- kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
PT_DIRTY_MASK, PT64_NX_MASK, 0);
@@ -5082,8 +5293,7 @@ int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
kvm_x86_ops->patch_hypercall(vcpu, instruction);
- return emulator_write_emulated(&vcpu->arch.emulate_ctxt,
- rip, instruction, 3, NULL);
+ return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
}
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
@@ -5384,6 +5594,9 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
r = 1;
goto out;
}
+ if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
+ record_steal_time(vcpu);
+
}
r = kvm_mmu_reload(vcpu);
@@ -5671,8 +5884,8 @@ int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
* that usually, but some bad designed PV devices (vmware
* backdoor interface) need this to work
*/
- struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
- memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
+ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+ memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
}
regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
@@ -5801,21 +6014,20 @@ int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
bool has_error_code, u32 error_code)
{
- struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
+ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
int ret;
init_emulate_ctxt(vcpu);
- ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
- tss_selector, reason, has_error_code,
- error_code);
+ ret = emulator_task_switch(ctxt, tss_selector, reason,
+ has_error_code, error_code);
if (ret)
return EMULATE_FAIL;
- memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
- kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
- kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
+ memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
+ kvm_rip_write(vcpu, ctxt->eip);
+ kvm_set_rflags(vcpu, ctxt->eflags);
kvm_make_request(KVM_REQ_EVENT, vcpu);
return EMULATE_DONE;
}
@@ -6093,12 +6305,7 @@ int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
if (r == 0)
r = kvm_mmu_setup(vcpu);
vcpu_put(vcpu);
- if (r < 0)
- goto free_vcpu;
- return 0;
-free_vcpu:
- kvm_x86_ops->vcpu_free(vcpu);
return r;
}
@@ -6126,6 +6333,7 @@ int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
kvm_make_request(KVM_REQ_EVENT, vcpu);
vcpu->arch.apf.msr_val = 0;
+ vcpu->arch.st.msr_val = 0;
kvmclock_reset(vcpu);
diff --git a/arch/x86/kvm/x86.h b/arch/x86/kvm/x86.h
index e407ed3df817..d36fe237c665 100644
--- a/arch/x86/kvm/x86.h
+++ b/arch/x86/kvm/x86.h
@@ -75,10 +75,54 @@ static inline u32 bit(int bitno)
return 1 << (bitno & 31);
}
+static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
+ gva_t gva, gfn_t gfn, unsigned access)
+{
+ vcpu->arch.mmio_gva = gva & PAGE_MASK;
+ vcpu->arch.access = access;
+ vcpu->arch.mmio_gfn = gfn;
+}
+
+/*
+ * Clear the mmio cache info for the given gva,
+ * specially, if gva is ~0ul, we clear all mmio cache info.
+ */
+static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
+{
+ if (gva != (~0ul) && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
+ return;
+
+ vcpu->arch.mmio_gva = 0;
+}
+
+static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
+{
+ if (vcpu->arch.mmio_gva && vcpu->arch.mmio_gva == (gva & PAGE_MASK))
+ return true;
+
+ return false;
+}
+
+static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
+{
+ if (vcpu->arch.mmio_gfn && vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
+ return true;
+
+ return false;
+}
+
void kvm_before_handle_nmi(struct kvm_vcpu *vcpu);
void kvm_after_handle_nmi(struct kvm_vcpu *vcpu);
int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data);
+int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
+ gva_t addr, void *val, unsigned int bytes,
+ struct x86_exception *exception);
+
+int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
+ gva_t addr, void *val, unsigned int bytes,
+ struct x86_exception *exception);
+
#endif