summaryrefslogtreecommitdiff
path: root/drivers/acpi/acpica/tbfadt.c
diff options
context:
space:
mode:
authorBob Moore <robert.moore@intel.com>2009-03-19 10:12:13 +0800
committerLen Brown <len.brown@intel.com>2009-03-27 12:11:05 -0400
commit31fbc073a35a017e34840deb9e865a701e986002 (patch)
tree03bbda99bc136f9f7ff98c67aa83621f6181c7ad /drivers/acpi/acpica/tbfadt.c
parentf28ad2c3daf0691081d91488df4d9d101e1a2b5d (diff)
ACPICA: FADT: Favor 32-bit register addresses for compatibility
Use the 32-bit register addresses whenever they are non-zero. This means that the 32-bit addresses are favored over the 64-bit (GAS) addresses. The 64-bit addresses are only used if the 32-bit addresses are zero. This change provides compatibility with all versions of Windows. The worst case that this solves is when both the 32-bit and 64-bit addresses are non-zero, but only the 32-bit addresses are actually valid. This appears to happen in some BIOSes because in this case, Windows uses the 32-bit addresses. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
Diffstat (limited to 'drivers/acpi/acpica/tbfadt.c')
-rw-r--r--drivers/acpi/acpica/tbfadt.c86
1 files changed, 51 insertions, 35 deletions
diff --git a/drivers/acpi/acpica/tbfadt.c b/drivers/acpi/acpica/tbfadt.c
index ff89cfee0e7e..f87bfb259ef6 100644
--- a/drivers/acpi/acpica/tbfadt.c
+++ b/drivers/acpi/acpica/tbfadt.c
@@ -320,29 +320,35 @@ void acpi_tb_create_local_fadt(struct acpi_table_header *table, u32 length)
* RETURN: None
*
* DESCRIPTION: Converts all versions of the FADT to a common internal format.
- * Expand all 32-bit addresses to 64-bit.
+ * Expand 32-bit addresses to 64-bit as necessary.
*
* NOTE: acpi_gbl_FADT must be of size (struct acpi_table_fadt),
* and must contain a copy of the actual FADT.
*
- * ACPICA will use the "X" fields of the FADT for all addresses.
+ * Notes on 64-bit register addresses:
*
- * "X" fields are optional extensions to the original V1.0 fields. Even if
- * they are present in the structure, they can be optionally not used by
- * setting them to zero. Therefore, we must selectively expand V1.0 fields
- * if the corresponding X field is zero.
+ * After this FADT conversion, later ACPICA code will only use the 64-bit "X"
+ * fields of the FADT for all ACPI register addresses.
*
- * For ACPI 1.0 FADTs, all address fields are expanded to the corresponding
- * "X" fields.
+ * The 64-bit "X" fields are optional extensions to the original 32-bit FADT
+ * V1.0 fields. Even if they are present in the FADT, they are optional and
+ * are unused if the BIOS sets them to zero. Therefore, we must copy/expand
+ * 32-bit V1.0 fields if the corresponding X field is zero.
*
- * For ACPI 2.0 FADTs, any "X" fields that are NULL are filled in by
- * expanding the corresponding ACPI 1.0 field.
+ * For ACPI 1.0 FADTs, all 32-bit address fields are expanded to the
+ * corresponding "X" fields in the internal FADT.
+ *
+ * For ACPI 2.0+ FADTs, all valid (non-zero) 32-bit address fields are expanded
+ * to the corresponding 64-bit X fields. For compatibility with other ACPI
+ * implementations, we ignore the 64-bit field if the 32-bit field is valid,
+ * regardless of whether the host OS is 32-bit or 64-bit.
*
******************************************************************************/
static void acpi_tb_convert_fadt(void)
{
- struct acpi_generic_address *target64;
+ struct acpi_generic_address *address64;
+ u32 address32;
u32 i;
/* Update the local FADT table header length */
@@ -391,29 +397,51 @@ static void acpi_tb_convert_fadt(void)
* Expand the ACPI 1.0 32-bit addresses to the ACPI 2.0 64-bit "X"
* generic address structures as necessary. Later code will always use
* the 64-bit address structures.
+ *
+ * March 2009:
+ * We now always use the 32-bit address if it is valid (non-null). This
+ * is not in accordance with the ACPI specification which states that
+ * the 64-bit address supersedes the 32-bit version, but we do this for
+ * compatibility with other ACPI implementations. Most notably, in the
+ * case where both the 32 and 64 versions are non-null, we use the 32-bit
+ * version. This is the only address that is guaranteed to have been
+ * tested by the BIOS manufacturer.
*/
for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) {
- target64 =
- ACPI_ADD_PTR(struct acpi_generic_address, &acpi_gbl_FADT,
- fadt_info_table[i].address64);
+ address32 = *ACPI_ADD_PTR(u32,
+ &acpi_gbl_FADT,
+ fadt_info_table[i].address32);
- /* Expand only if the 64-bit X target is null */
+ address64 = ACPI_ADD_PTR(struct acpi_generic_address,
+ &acpi_gbl_FADT,
+ fadt_info_table[i].address64);
- if (!target64->address) {
+ /*
+ * If both 32- and 64-bit addresses are valid (non-zero),
+ * they must match.
+ */
+ if (address64->address && address32 &&
+ (address64->address != (u64) address32)) {
+ ACPI_ERROR((AE_INFO,
+ "32/64X address mismatch in %s: %8.8X/%8.8X%8.8X, using 32",
+ fadt_info_table[i].name, address32,
+ ACPI_FORMAT_UINT64(address64->address)));
+ }
- /* The space_id is always I/O for the 32-bit legacy address fields */
+ /* Always use 32-bit address if it is valid (non-null) */
- acpi_tb_init_generic_address(target64,
+ if (address32) {
+ /*
+ * Copy the 32-bit address to the 64-bit GAS structure. The
+ * Space ID is always I/O for 32-bit legacy address fields
+ */
+ acpi_tb_init_generic_address(address64,
ACPI_ADR_SPACE_SYSTEM_IO,
*ACPI_ADD_PTR(u8,
&acpi_gbl_FADT,
fadt_info_table
[i].length),
- (u64) * ACPI_ADD_PTR(u32,
- &acpi_gbl_FADT,
- fadt_info_table
- [i].
- address32));
+ address32);
}
}
}
@@ -530,18 +558,6 @@ static void acpi_tb_validate_fadt(void)
length));
}
}
-
- /*
- * If both 32- and 64-bit addresses are valid (non-zero),
- * they must match
- */
- if (address64->address && *address32 &&
- (address64->address != (u64) * address32)) {
- ACPI_ERROR((AE_INFO,
- "32/64X address mismatch in %s: %8.8X/%8.8X%8.8X, using 64X",
- name, *address32,
- ACPI_FORMAT_UINT64(address64->address)));
- }
}
}