diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/char/ftape/lowlevel/ftape-calibr.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/char/ftape/lowlevel/ftape-calibr.c')
-rw-r--r-- | drivers/char/ftape/lowlevel/ftape-calibr.c | 276 |
1 files changed, 276 insertions, 0 deletions
diff --git a/drivers/char/ftape/lowlevel/ftape-calibr.c b/drivers/char/ftape/lowlevel/ftape-calibr.c new file mode 100644 index 000000000000..956b2586e138 --- /dev/null +++ b/drivers/char/ftape/lowlevel/ftape-calibr.c @@ -0,0 +1,276 @@ +/* + * Copyright (C) 1993-1996 Bas Laarhoven. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2, or (at your option) + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; see the file COPYING. If not, write to + the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. + + * + * $Source: /homes/cvs/ftape-stacked/ftape/lowlevel/ftape-calibr.c,v $ + * $Revision: 1.2 $ + * $Date: 1997/10/05 19:18:08 $ + * + * GP calibration routine for processor speed dependent + * functions. + */ + +#include <linux/config.h> +#include <linux/errno.h> +#include <linux/jiffies.h> +#include <asm/system.h> +#include <asm/io.h> +#if defined(__alpha__) +# include <asm/hwrpb.h> +#elif defined(__x86_64__) +# include <asm/msr.h> +# include <asm/timex.h> +#elif defined(__i386__) +# include <linux/timex.h> +#endif +#include <linux/ftape.h> +#include "../lowlevel/ftape-tracing.h" +#include "../lowlevel/ftape-calibr.h" +#include "../lowlevel/fdc-io.h" + +#undef DEBUG + +#if !defined(__alpha__) && !defined(__i386__) && !defined(__x86_64__) +# error Ftape is not implemented for this architecture! +#endif + +#if defined(__alpha__) || defined(__x86_64__) +static unsigned long ps_per_cycle = 0; +#endif + +static spinlock_t calibr_lock; + +/* + * Note: On Intel PCs, the clock ticks at 100 Hz (HZ==100) which is + * too slow for certain timeouts (and that clock doesn't even tick + * when interrupts are disabled). For that reason, the 8254 timer is + * used directly to implement fine-grained timeouts. However, on + * Alpha PCs, the 8254 is *not* used to implement the clock tick + * (which is 1024 Hz, normally) and the 8254 timer runs at some + * "random" frequency (it seems to run at 18Hz, but it's not safe to + * rely on this value). Instead, we use the Alpha's "rpcc" + * instruction to read cycle counts. As this is a 32 bit counter, + * it will overflow only once per 30 seconds (on a 200MHz machine), + * which is plenty. + */ + +unsigned int ftape_timestamp(void) +{ +#if defined(__alpha__) + unsigned long r; + + asm volatile ("rpcc %0" : "=r" (r)); + return r; +#elif defined(__x86_64__) + unsigned long r; + rdtscl(r); + return r; +#elif defined(__i386__) + +/* + * Note that there is some time between counter underflowing and jiffies + * increasing, so the code below won't always give correct output. + * -Vojtech + */ + + unsigned long flags; + __u16 lo; + __u16 hi; + + spin_lock_irqsave(&calibr_lock, flags); + outb_p(0x00, 0x43); /* latch the count ASAP */ + lo = inb_p(0x40); /* read the latched count */ + lo |= inb(0x40) << 8; + hi = jiffies; + spin_unlock_irqrestore(&calibr_lock, flags); + return ((hi + 1) * (unsigned int) LATCH) - lo; /* downcounter ! */ +#endif +} + +static unsigned int short_ftape_timestamp(void) +{ +#if defined(__alpha__) || defined(__x86_64__) + return ftape_timestamp(); +#elif defined(__i386__) + unsigned int count; + unsigned long flags; + + spin_lock_irqsave(&calibr_lock, flags); + outb_p(0x00, 0x43); /* latch the count ASAP */ + count = inb_p(0x40); /* read the latched count */ + count |= inb(0x40) << 8; + spin_unlock_irqrestore(&calibr_lock, flags); + return (LATCH - count); /* normal: downcounter */ +#endif +} + +static unsigned int diff(unsigned int t0, unsigned int t1) +{ +#if defined(__alpha__) || defined(__x86_64__) + return (t1 - t0); +#elif defined(__i386__) + /* + * This is tricky: to work for both short and full ftape_timestamps + * we'll have to discriminate between these. + * If it _looks_ like short stamps with wrapping around we'll + * asume it are. This will generate a small error if it really + * was a (very large) delta from full ftape_timestamps. + */ + return (t1 <= t0 && t0 <= LATCH) ? t1 + LATCH - t0 : t1 - t0; +#endif +} + +static unsigned int usecs(unsigned int count) +{ +#if defined(__alpha__) || defined(__x86_64__) + return (ps_per_cycle * count) / 1000000UL; +#elif defined(__i386__) + return (10000 * count) / ((CLOCK_TICK_RATE + 50) / 100); +#endif +} + +unsigned int ftape_timediff(unsigned int t0, unsigned int t1) +{ + /* + * Calculate difference in usec for ftape_timestamp results t0 & t1. + * Note that on the i386 platform with short time-stamps, the + * maximum allowed timespan is 1/HZ or we'll lose ticks! + */ + return usecs(diff(t0, t1)); +} + +/* To get an indication of the I/O performance, + * measure the duration of the inb() function. + */ +static void time_inb(void) +{ + int i; + int t0, t1; + unsigned long flags; + int status; + TRACE_FUN(ft_t_any); + + spin_lock_irqsave(&calibr_lock, flags); + t0 = short_ftape_timestamp(); + for (i = 0; i < 1000; ++i) { + status = inb(fdc.msr); + } + t1 = short_ftape_timestamp(); + spin_unlock_irqrestore(&calibr_lock, flags); + TRACE(ft_t_info, "inb() duration: %d nsec", ftape_timediff(t0, t1)); + TRACE_EXIT; +} + +static void init_clock(void) +{ + TRACE_FUN(ft_t_any); + +#if defined(__x86_64__) + ps_per_cycle = 1000000000UL / cpu_khz; +#elif defined(__alpha__) + extern struct hwrpb_struct *hwrpb; + ps_per_cycle = (1000*1000*1000*1000UL) / hwrpb->cycle_freq; +#endif + TRACE_EXIT; +} + +/* + * Input: function taking int count as parameter. + * pointers to calculated calibration variables. + */ +void ftape_calibrate(char *name, + void (*fun) (unsigned int), + unsigned int *calibr_count, + unsigned int *calibr_time) +{ + static int first_time = 1; + int i; + unsigned int tc = 0; + unsigned int count; + unsigned int time; +#if defined(__i386__) + unsigned int old_tc = 0; + unsigned int old_count = 1; + unsigned int old_time = 1; +#endif + TRACE_FUN(ft_t_flow); + + if (first_time) { /* get idea of I/O performance */ + init_clock(); + time_inb(); + first_time = 0; + } + /* value of timeout must be set so that on very slow systems + * it will give a time less than one jiffy, and on + * very fast systems it'll give reasonable precision. + */ + + count = 40; + for (i = 0; i < 15; ++i) { + unsigned int t0; + unsigned int t1; + unsigned int once; + unsigned int multiple; + unsigned long flags; + + *calibr_count = + *calibr_time = count; /* set TC to 1 */ + spin_lock_irqsave(&calibr_lock, flags); + fun(0); /* dummy, get code into cache */ + t0 = short_ftape_timestamp(); + fun(0); /* overhead + one test */ + t1 = short_ftape_timestamp(); + once = diff(t0, t1); + t0 = short_ftape_timestamp(); + fun(count); /* overhead + count tests */ + t1 = short_ftape_timestamp(); + multiple = diff(t0, t1); + spin_unlock_irqrestore(&calibr_lock, flags); + time = ftape_timediff(0, multiple - once); + tc = (1000 * time) / (count - 1); + TRACE(ft_t_any, "once:%3d us,%6d times:%6d us, TC:%5d ns", + usecs(once), count - 1, usecs(multiple), tc); +#if defined(__alpha__) || defined(__x86_64__) + /* + * Increase the calibration count exponentially until the + * calibration time exceeds 100 ms. + */ + if (time >= 100*1000) { + break; + } +#elif defined(__i386__) + /* + * increase the count until the resulting time nears 2/HZ, + * then the tc will drop sharply because we lose LATCH counts. + */ + if (tc <= old_tc / 2) { + time = old_time; + count = old_count; + break; + } + old_tc = tc; + old_count = count; + old_time = time; +#endif + count *= 2; + } + *calibr_count = count - 1; + *calibr_time = time; + TRACE(ft_t_info, "TC for `%s()' = %d nsec (at %d counts)", + name, (1000 * *calibr_time) / *calibr_count, *calibr_count); + TRACE_EXIT; +} |