summaryrefslogtreecommitdiff
path: root/drivers/md/dm-cache-policy-mq.c
diff options
context:
space:
mode:
authorJoe Thornber <ejt@redhat.com>2013-03-01 22:45:51 +0000
committerAlasdair G Kergon <agk@redhat.com>2013-03-01 22:45:51 +0000
commitf283635281132af7bc7b90af3c105b8c0f73b9c7 (patch)
tree5ea66de48bc1f93a34b301986fa5455e53ac5a4c /drivers/md/dm-cache-policy-mq.c
parentc6b4fcbad044e6fffcc75bba160e720eb8d67d17 (diff)
dm cache: add mq policy
A cache policy that uses a multiqueue ordered by recent hit count to select which blocks should be promoted and demoted. This is meant to be a general purpose policy. It prioritises reads over writes. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Diffstat (limited to 'drivers/md/dm-cache-policy-mq.c')
-rw-r--r--drivers/md/dm-cache-policy-mq.c1195
1 files changed, 1195 insertions, 0 deletions
diff --git a/drivers/md/dm-cache-policy-mq.c b/drivers/md/dm-cache-policy-mq.c
new file mode 100644
index 000000000000..964153255076
--- /dev/null
+++ b/drivers/md/dm-cache-policy-mq.c
@@ -0,0 +1,1195 @@
+/*
+ * Copyright (C) 2012 Red Hat. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-cache-policy.h"
+#include "dm.h"
+
+#include <linux/hash.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+
+#define DM_MSG_PREFIX "cache-policy-mq"
+#define MQ_VERSION "1.0.0"
+
+static struct kmem_cache *mq_entry_cache;
+
+/*----------------------------------------------------------------*/
+
+static unsigned next_power(unsigned n, unsigned min)
+{
+ return roundup_pow_of_two(max(n, min));
+}
+
+/*----------------------------------------------------------------*/
+
+static unsigned long *alloc_bitset(unsigned nr_entries)
+{
+ size_t s = sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
+ return vzalloc(s);
+}
+
+static void free_bitset(unsigned long *bits)
+{
+ vfree(bits);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Large, sequential ios are probably better left on the origin device since
+ * spindles tend to have good bandwidth.
+ *
+ * The io_tracker tries to spot when the io is in one of these sequential
+ * modes.
+ *
+ * Two thresholds to switch between random and sequential io mode are defaulting
+ * as follows and can be adjusted via the constructor and message interfaces.
+ */
+#define RANDOM_THRESHOLD_DEFAULT 4
+#define SEQUENTIAL_THRESHOLD_DEFAULT 512
+
+enum io_pattern {
+ PATTERN_SEQUENTIAL,
+ PATTERN_RANDOM
+};
+
+struct io_tracker {
+ enum io_pattern pattern;
+
+ unsigned nr_seq_samples;
+ unsigned nr_rand_samples;
+ unsigned thresholds[2];
+
+ dm_oblock_t last_end_oblock;
+};
+
+static void iot_init(struct io_tracker *t,
+ int sequential_threshold, int random_threshold)
+{
+ t->pattern = PATTERN_RANDOM;
+ t->nr_seq_samples = 0;
+ t->nr_rand_samples = 0;
+ t->last_end_oblock = 0;
+ t->thresholds[PATTERN_RANDOM] = random_threshold;
+ t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold;
+}
+
+static enum io_pattern iot_pattern(struct io_tracker *t)
+{
+ return t->pattern;
+}
+
+static void iot_update_stats(struct io_tracker *t, struct bio *bio)
+{
+ if (bio->bi_sector == from_oblock(t->last_end_oblock) + 1)
+ t->nr_seq_samples++;
+ else {
+ /*
+ * Just one non-sequential IO is enough to reset the
+ * counters.
+ */
+ if (t->nr_seq_samples) {
+ t->nr_seq_samples = 0;
+ t->nr_rand_samples = 0;
+ }
+
+ t->nr_rand_samples++;
+ }
+
+ t->last_end_oblock = to_oblock(bio->bi_sector + bio_sectors(bio) - 1);
+}
+
+static void iot_check_for_pattern_switch(struct io_tracker *t)
+{
+ switch (t->pattern) {
+ case PATTERN_SEQUENTIAL:
+ if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) {
+ t->pattern = PATTERN_RANDOM;
+ t->nr_seq_samples = t->nr_rand_samples = 0;
+ }
+ break;
+
+ case PATTERN_RANDOM:
+ if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) {
+ t->pattern = PATTERN_SEQUENTIAL;
+ t->nr_seq_samples = t->nr_rand_samples = 0;
+ }
+ break;
+ }
+}
+
+static void iot_examine_bio(struct io_tracker *t, struct bio *bio)
+{
+ iot_update_stats(t, bio);
+ iot_check_for_pattern_switch(t);
+}
+
+/*----------------------------------------------------------------*/
+
+
+/*
+ * This queue is divided up into different levels. Allowing us to push
+ * entries to the back of any of the levels. Think of it as a partially
+ * sorted queue.
+ */
+#define NR_QUEUE_LEVELS 16u
+
+struct queue {
+ struct list_head qs[NR_QUEUE_LEVELS];
+};
+
+static void queue_init(struct queue *q)
+{
+ unsigned i;
+
+ for (i = 0; i < NR_QUEUE_LEVELS; i++)
+ INIT_LIST_HEAD(q->qs + i);
+}
+
+/*
+ * Insert an entry to the back of the given level.
+ */
+static void queue_push(struct queue *q, unsigned level, struct list_head *elt)
+{
+ list_add_tail(elt, q->qs + level);
+}
+
+static void queue_remove(struct list_head *elt)
+{
+ list_del(elt);
+}
+
+/*
+ * Shifts all regions down one level. This has no effect on the order of
+ * the queue.
+ */
+static void queue_shift_down(struct queue *q)
+{
+ unsigned level;
+
+ for (level = 1; level < NR_QUEUE_LEVELS; level++)
+ list_splice_init(q->qs + level, q->qs + level - 1);
+}
+
+/*
+ * Gives us the oldest entry of the lowest popoulated level. If the first
+ * level is emptied then we shift down one level.
+ */
+static struct list_head *queue_pop(struct queue *q)
+{
+ unsigned level;
+ struct list_head *r;
+
+ for (level = 0; level < NR_QUEUE_LEVELS; level++)
+ if (!list_empty(q->qs + level)) {
+ r = q->qs[level].next;
+ list_del(r);
+
+ /* have we just emptied the bottom level? */
+ if (level == 0 && list_empty(q->qs))
+ queue_shift_down(q);
+
+ return r;
+ }
+
+ return NULL;
+}
+
+static struct list_head *list_pop(struct list_head *lh)
+{
+ struct list_head *r = lh->next;
+
+ BUG_ON(!r);
+ list_del_init(r);
+
+ return r;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Describes a cache entry. Used in both the cache and the pre_cache.
+ */
+struct entry {
+ struct hlist_node hlist;
+ struct list_head list;
+ dm_oblock_t oblock;
+ dm_cblock_t cblock; /* valid iff in_cache */
+
+ /*
+ * FIXME: pack these better
+ */
+ bool in_cache:1;
+ unsigned hit_count;
+ unsigned generation;
+ unsigned tick;
+};
+
+struct mq_policy {
+ struct dm_cache_policy policy;
+
+ /* protects everything */
+ struct mutex lock;
+ dm_cblock_t cache_size;
+ struct io_tracker tracker;
+
+ /*
+ * We maintain two queues of entries. The cache proper contains
+ * the currently active mappings. Whereas the pre_cache tracks
+ * blocks that are being hit frequently and potential candidates
+ * for promotion to the cache.
+ */
+ struct queue pre_cache;
+ struct queue cache;
+
+ /*
+ * Keeps track of time, incremented by the core. We use this to
+ * avoid attributing multiple hits within the same tick.
+ *
+ * Access to tick_protected should be done with the spin lock held.
+ * It's copied to tick at the start of the map function (within the
+ * mutex).
+ */
+ spinlock_t tick_lock;
+ unsigned tick_protected;
+ unsigned tick;
+
+ /*
+ * A count of the number of times the map function has been called
+ * and found an entry in the pre_cache or cache. Currently used to
+ * calculate the generation.
+ */
+ unsigned hit_count;
+
+ /*
+ * A generation is a longish period that is used to trigger some
+ * book keeping effects. eg, decrementing hit counts on entries.
+ * This is needed to allow the cache to evolve as io patterns
+ * change.
+ */
+ unsigned generation;
+ unsigned generation_period; /* in lookups (will probably change) */
+
+ /*
+ * Entries in the pre_cache whose hit count passes the promotion
+ * threshold move to the cache proper. Working out the correct
+ * value for the promotion_threshold is crucial to this policy.
+ */
+ unsigned promote_threshold;
+
+ /*
+ * We need cache_size entries for the cache, and choose to have
+ * cache_size entries for the pre_cache too. One motivation for
+ * using the same size is to make the hit counts directly
+ * comparable between pre_cache and cache.
+ */
+ unsigned nr_entries;
+ unsigned nr_entries_allocated;
+ struct list_head free;
+
+ /*
+ * Cache blocks may be unallocated. We store this info in a
+ * bitset.
+ */
+ unsigned long *allocation_bitset;
+ unsigned nr_cblocks_allocated;
+ unsigned find_free_nr_words;
+ unsigned find_free_last_word;
+
+ /*
+ * The hash table allows us to quickly find an entry by origin
+ * block. Both pre_cache and cache entries are in here.
+ */
+ unsigned nr_buckets;
+ dm_block_t hash_bits;
+ struct hlist_head *table;
+};
+
+/*----------------------------------------------------------------*/
+/* Free/alloc mq cache entry structures. */
+static void takeout_queue(struct list_head *lh, struct queue *q)
+{
+ unsigned level;
+
+ for (level = 0; level < NR_QUEUE_LEVELS; level++)
+ list_splice(q->qs + level, lh);
+}
+
+static void free_entries(struct mq_policy *mq)
+{
+ struct entry *e, *tmp;
+
+ takeout_queue(&mq->free, &mq->pre_cache);
+ takeout_queue(&mq->free, &mq->cache);
+
+ list_for_each_entry_safe(e, tmp, &mq->free, list)
+ kmem_cache_free(mq_entry_cache, e);
+}
+
+static int alloc_entries(struct mq_policy *mq, unsigned elts)
+{
+ unsigned u = mq->nr_entries;
+
+ INIT_LIST_HEAD(&mq->free);
+ mq->nr_entries_allocated = 0;
+
+ while (u--) {
+ struct entry *e = kmem_cache_zalloc(mq_entry_cache, GFP_KERNEL);
+
+ if (!e) {
+ free_entries(mq);
+ return -ENOMEM;
+ }
+
+
+ list_add(&e->list, &mq->free);
+ }
+
+ return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Simple hash table implementation. Should replace with the standard hash
+ * table that's making its way upstream.
+ */
+static void hash_insert(struct mq_policy *mq, struct entry *e)
+{
+ unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits);
+
+ hlist_add_head(&e->hlist, mq->table + h);
+}
+
+static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock)
+{
+ unsigned h = hash_64(from_oblock(oblock), mq->hash_bits);
+ struct hlist_head *bucket = mq->table + h;
+ struct entry *e;
+
+ hlist_for_each_entry(e, bucket, hlist)
+ if (e->oblock == oblock) {
+ hlist_del(&e->hlist);
+ hlist_add_head(&e->hlist, bucket);
+ return e;
+ }
+
+ return NULL;
+}
+
+static void hash_remove(struct entry *e)
+{
+ hlist_del(&e->hlist);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Allocates a new entry structure. The memory is allocated in one lump,
+ * so we just handing it out here. Returns NULL if all entries have
+ * already been allocated. Cannot fail otherwise.
+ */
+static struct entry *alloc_entry(struct mq_policy *mq)
+{
+ struct entry *e;
+
+ if (mq->nr_entries_allocated >= mq->nr_entries) {
+ BUG_ON(!list_empty(&mq->free));
+ return NULL;
+ }
+
+ e = list_entry(list_pop(&mq->free), struct entry, list);
+ INIT_LIST_HEAD(&e->list);
+ INIT_HLIST_NODE(&e->hlist);
+
+ mq->nr_entries_allocated++;
+ return e;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Mark cache blocks allocated or not in the bitset.
+ */
+static void alloc_cblock(struct mq_policy *mq, dm_cblock_t cblock)
+{
+ BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size));
+ BUG_ON(test_bit(from_cblock(cblock), mq->allocation_bitset));
+
+ set_bit(from_cblock(cblock), mq->allocation_bitset);
+ mq->nr_cblocks_allocated++;
+}
+
+static void free_cblock(struct mq_policy *mq, dm_cblock_t cblock)
+{
+ BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size));
+ BUG_ON(!test_bit(from_cblock(cblock), mq->allocation_bitset));
+
+ clear_bit(from_cblock(cblock), mq->allocation_bitset);
+ mq->nr_cblocks_allocated--;
+}
+
+static bool any_free_cblocks(struct mq_policy *mq)
+{
+ return mq->nr_cblocks_allocated < from_cblock(mq->cache_size);
+}
+
+/*
+ * Fills result out with a cache block that isn't in use, or return
+ * -ENOSPC. This does _not_ mark the cblock as allocated, the caller is
+ * reponsible for that.
+ */
+static int __find_free_cblock(struct mq_policy *mq, unsigned begin, unsigned end,
+ dm_cblock_t *result, unsigned *last_word)
+{
+ int r = -ENOSPC;
+ unsigned w;
+
+ for (w = begin; w < end; w++) {
+ /*
+ * ffz is undefined if no zero exists
+ */
+ if (mq->allocation_bitset[w] != ~0UL) {
+ *last_word = w;
+ *result = to_cblock((w * BITS_PER_LONG) + ffz(mq->allocation_bitset[w]));
+ if (from_cblock(*result) < from_cblock(mq->cache_size))
+ r = 0;
+
+ break;
+ }
+ }
+
+ return r;
+}
+
+static int find_free_cblock(struct mq_policy *mq, dm_cblock_t *result)
+{
+ int r;
+
+ if (!any_free_cblocks(mq))
+ return -ENOSPC;
+
+ r = __find_free_cblock(mq, mq->find_free_last_word, mq->find_free_nr_words, result, &mq->find_free_last_word);
+ if (r == -ENOSPC && mq->find_free_last_word)
+ r = __find_free_cblock(mq, 0, mq->find_free_last_word, result, &mq->find_free_last_word);
+
+ return r;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Now we get to the meat of the policy. This section deals with deciding
+ * when to to add entries to the pre_cache and cache, and move between
+ * them.
+ */
+
+/*
+ * The queue level is based on the log2 of the hit count.
+ */
+static unsigned queue_level(struct entry *e)
+{
+ return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u);
+}
+
+/*
+ * Inserts the entry into the pre_cache or the cache. Ensures the cache
+ * block is marked as allocated if necc. Inserts into the hash table. Sets the
+ * tick which records when the entry was last moved about.
+ */
+static void push(struct mq_policy *mq, struct entry *e)
+{
+ e->tick = mq->tick;
+ hash_insert(mq, e);
+
+ if (e->in_cache) {
+ alloc_cblock(mq, e->cblock);
+ queue_push(&mq->cache, queue_level(e), &e->list);
+ } else
+ queue_push(&mq->pre_cache, queue_level(e), &e->list);
+}
+
+/*
+ * Removes an entry from pre_cache or cache. Removes from the hash table.
+ * Frees off the cache block if necc.
+ */
+static void del(struct mq_policy *mq, struct entry *e)
+{
+ queue_remove(&e->list);
+ hash_remove(e);
+ if (e->in_cache)
+ free_cblock(mq, e->cblock);
+}
+
+/*
+ * Like del, except it removes the first entry in the queue (ie. the least
+ * recently used).
+ */
+static struct entry *pop(struct mq_policy *mq, struct queue *q)
+{
+ struct entry *e = container_of(queue_pop(q), struct entry, list);
+
+ if (e) {
+ hash_remove(e);
+
+ if (e->in_cache)
+ free_cblock(mq, e->cblock);
+ }
+
+ return e;
+}
+
+/*
+ * Has this entry already been updated?
+ */
+static bool updated_this_tick(struct mq_policy *mq, struct entry *e)
+{
+ return mq->tick == e->tick;
+}
+
+/*
+ * The promotion threshold is adjusted every generation. As are the counts
+ * of the entries.
+ *
+ * At the moment the threshold is taken by averaging the hit counts of some
+ * of the entries in the cache (the first 20 entries of the first level).
+ *
+ * We can be much cleverer than this though. For example, each promotion
+ * could bump up the threshold helping to prevent churn. Much more to do
+ * here.
+ */
+
+#define MAX_TO_AVERAGE 20
+
+static void check_generation(struct mq_policy *mq)
+{
+ unsigned total = 0, nr = 0, count = 0, level;
+ struct list_head *head;
+ struct entry *e;
+
+ if ((mq->hit_count >= mq->generation_period) &&
+ (mq->nr_cblocks_allocated == from_cblock(mq->cache_size))) {
+
+ mq->hit_count = 0;
+ mq->generation++;
+
+ for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) {
+ head = mq->cache.qs + level;
+ list_for_each_entry(e, head, list) {
+ nr++;
+ total += e->hit_count;
+
+ if (++count >= MAX_TO_AVERAGE)
+ break;
+ }
+ }
+
+ mq->promote_threshold = nr ? total / nr : 1;
+ if (mq->promote_threshold * nr < total)
+ mq->promote_threshold++;
+ }
+}
+
+/*
+ * Whenever we use an entry we bump up it's hit counter, and push it to the
+ * back to it's current level.
+ */
+static void requeue_and_update_tick(struct mq_policy *mq, struct entry *e)
+{
+ if (updated_this_tick(mq, e))
+ return;
+
+ e->hit_count++;
+ mq->hit_count++;
+ check_generation(mq);
+
+ /* generation adjustment, to stop the counts increasing forever. */
+ /* FIXME: divide? */
+ /* e->hit_count -= min(e->hit_count - 1, mq->generation - e->generation); */
+ e->generation = mq->generation;
+
+ del(mq, e);
+ push(mq, e);
+}
+
+/*
+ * Demote the least recently used entry from the cache to the pre_cache.
+ * Returns the new cache entry to use, and the old origin block it was
+ * mapped to.
+ *
+ * We drop the hit count on the demoted entry back to 1 to stop it bouncing
+ * straight back into the cache if it's subsequently hit. There are
+ * various options here, and more experimentation would be good:
+ *
+ * - just forget about the demoted entry completely (ie. don't insert it
+ into the pre_cache).
+ * - divide the hit count rather that setting to some hard coded value.
+ * - set the hit count to a hard coded value other than 1, eg, is it better
+ * if it goes in at level 2?
+ */
+static dm_cblock_t demote_cblock(struct mq_policy *mq, dm_oblock_t *oblock)
+{
+ dm_cblock_t result;
+ struct entry *demoted = pop(mq, &mq->cache);
+
+ BUG_ON(!demoted);
+ result = demoted->cblock;
+ *oblock = demoted->oblock;
+ demoted->in_cache = false;
+ demoted->hit_count = 1;
+ push(mq, demoted);
+
+ return result;
+}
+
+/*
+ * We modify the basic promotion_threshold depending on the specific io.
+ *
+ * If the origin block has been discarded then there's no cost to copy it
+ * to the cache.
+ *
+ * We bias towards reads, since they can be demoted at no cost if they
+ * haven't been dirtied.
+ */
+#define DISCARDED_PROMOTE_THRESHOLD 1
+#define READ_PROMOTE_THRESHOLD 4
+#define WRITE_PROMOTE_THRESHOLD 8
+
+static unsigned adjusted_promote_threshold(struct mq_policy *mq,
+ bool discarded_oblock, int data_dir)
+{
+ if (discarded_oblock && any_free_cblocks(mq) && data_dir == WRITE)
+ /*
+ * We don't need to do any copying at all, so give this a
+ * very low threshold. In practice this only triggers
+ * during initial population after a format.
+ */
+ return DISCARDED_PROMOTE_THRESHOLD;
+
+ return data_dir == READ ?
+ (mq->promote_threshold + READ_PROMOTE_THRESHOLD) :
+ (mq->promote_threshold + WRITE_PROMOTE_THRESHOLD);
+}
+
+static bool should_promote(struct mq_policy *mq, struct entry *e,
+ bool discarded_oblock, int data_dir)
+{
+ return e->hit_count >=
+ adjusted_promote_threshold(mq, discarded_oblock, data_dir);
+}
+
+static int cache_entry_found(struct mq_policy *mq,
+ struct entry *e,
+ struct policy_result *result)
+{
+ requeue_and_update_tick(mq, e);
+
+ if (e->in_cache) {
+ result->op = POLICY_HIT;
+ result->cblock = e->cblock;
+ }
+
+ return 0;
+}
+
+/*
+ * Moves and entry from the pre_cache to the cache. The main work is
+ * finding which cache block to use.
+ */
+static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e,
+ struct policy_result *result)
+{
+ dm_cblock_t cblock;
+
+ if (find_free_cblock(mq, &cblock) == -ENOSPC) {
+ result->op = POLICY_REPLACE;
+ cblock = demote_cblock(mq, &result->old_oblock);
+ } else
+ result->op = POLICY_NEW;
+
+ result->cblock = e->cblock = cblock;
+
+ del(mq, e);
+ e->in_cache = true;
+ push(mq, e);
+
+ return 0;
+}
+
+static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e,
+ bool can_migrate, bool discarded_oblock,
+ int data_dir, struct policy_result *result)
+{
+ int r = 0;
+ bool updated = updated_this_tick(mq, e);
+
+ requeue_and_update_tick(mq, e);
+
+ if ((!discarded_oblock && updated) ||
+ !should_promote(mq, e, discarded_oblock, data_dir))
+ result->op = POLICY_MISS;
+ else if (!can_migrate)
+ r = -EWOULDBLOCK;
+ else
+ r = pre_cache_to_cache(mq, e, result);
+
+ return r;
+}
+
+static void insert_in_pre_cache(struct mq_policy *mq,
+ dm_oblock_t oblock)
+{
+ struct entry *e = alloc_entry(mq);
+
+ if (!e)
+ /*
+ * There's no spare entry structure, so we grab the least
+ * used one from the pre_cache.
+ */
+ e = pop(mq, &mq->pre_cache);
+
+ if (unlikely(!e)) {
+ DMWARN("couldn't pop from pre cache");
+ return;
+ }
+
+ e->in_cache = false;
+ e->oblock = oblock;
+ e->hit_count = 1;
+ e->generation = mq->generation;
+ push(mq, e);
+}
+
+static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock,
+ struct policy_result *result)
+{
+ struct entry *e;
+ dm_cblock_t cblock;
+
+ if (find_free_cblock(mq, &cblock) == -ENOSPC) {
+ result->op = POLICY_MISS;
+ insert_in_pre_cache(mq, oblock);
+ return;
+ }
+
+ e = alloc_entry(mq);
+ if (unlikely(!e)) {
+ result->op = POLICY_MISS;
+ return;
+ }
+
+ e->oblock = oblock;
+ e->cblock = cblock;
+ e->in_cache = true;
+ e->hit_count = 1;
+ e->generation = mq->generation;
+ push(mq, e);
+
+ result->op = POLICY_NEW;
+ result->cblock = e->cblock;
+}
+
+static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock,
+ bool can_migrate, bool discarded_oblock,
+ int data_dir, struct policy_result *result)
+{
+ if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) == 1) {
+ if (can_migrate)
+ insert_in_cache(mq, oblock, result);
+ else
+ return -EWOULDBLOCK;
+ } else {
+ insert_in_pre_cache(mq, oblock);
+ result->op = POLICY_MISS;
+ }
+
+ return 0;
+}
+
+/*
+ * Looks the oblock up in the hash table, then decides whether to put in
+ * pre_cache, or cache etc.
+ */
+static int map(struct mq_policy *mq, dm_oblock_t oblock,
+ bool can_migrate, bool discarded_oblock,
+ int data_dir, struct policy_result *result)
+{
+ int r = 0;
+ struct entry *e = hash_lookup(mq, oblock);
+
+ if (e && e->in_cache)
+ r = cache_entry_found(mq, e, result);
+ else if (iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL)
+ result->op = POLICY_MISS;
+ else if (e)
+ r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock,
+ data_dir, result);
+ else
+ r = no_entry_found(mq, oblock, can_migrate, discarded_oblock,
+ data_dir, result);
+
+ if (r == -EWOULDBLOCK)
+ result->op = POLICY_MISS;
+
+ return r;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Public interface, via the policy struct. See dm-cache-policy.h for a
+ * description of these.
+ */
+
+static struct mq_policy *to_mq_policy(struct dm_cache_policy *p)
+{
+ return container_of(p, struct mq_policy, policy);
+}
+
+static void mq_destroy(struct dm_cache_policy *p)
+{
+ struct mq_policy *mq = to_mq_policy(p);
+
+ free_bitset(mq->allocation_bitset);
+ kfree(mq->table);
+ free_entries(mq);
+ kfree(mq);
+}
+
+static void copy_tick(struct mq_policy *mq)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&mq->tick_lock, flags);
+ mq->tick = mq->tick_protected;
+ spin_unlock_irqrestore(&mq->tick_lock, flags);
+}
+
+static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
+ bool can_block, bool can_migrate, bool discarded_oblock,
+ struct bio *bio, struct policy_result *result)
+{
+ int r;
+ struct mq_policy *mq = to_mq_policy(p);
+
+ result->op = POLICY_MISS;
+
+ if (can_block)
+ mutex_lock(&mq->lock);
+ else if (!mutex_trylock(&mq->lock))
+ return -EWOULDBLOCK;
+
+ copy_tick(mq);
+
+ iot_examine_bio(&mq->tracker, bio);
+ r = map(mq, oblock, can_migrate, discarded_oblock,
+ bio_data_dir(bio), result);
+
+ mutex_unlock(&mq->lock);
+
+ return r;
+}
+
+static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
+{
+ int r;
+ struct mq_policy *mq = to_mq_policy(p);
+ struct entry *e;
+
+ if (!mutex_trylock(&mq->lock))
+ return -EWOULDBLOCK;
+
+ e = hash_lookup(mq, oblock);
+ if (e && e->in_cache) {
+ *cblock = e->cblock;
+ r = 0;
+ } else
+ r = -ENOENT;
+
+ mutex_unlock(&mq->lock);
+
+ return r;
+}
+
+static int mq_load_mapping(struct dm_cache_policy *p,
+ dm_oblock_t oblock, dm_cblock_t cblock,
+ uint32_t hint, bool hint_valid)
+{
+ struct mq_policy *mq = to_mq_policy(p);
+ struct entry *e;
+
+ e = alloc_entry(mq);
+ if (!e)
+ return -ENOMEM;
+
+ e->cblock = cblock;
+ e->oblock = oblock;
+ e->in_cache = true;
+ e->hit_count = hint_valid ? hint : 1;
+ e->generation = mq->generation;
+ push(mq, e);
+
+ return 0;
+}
+
+static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
+ void *context)
+{
+ struct mq_policy *mq = to_mq_policy(p);
+ int r = 0;
+ struct entry *e;
+ unsigned level;
+
+ mutex_lock(&mq->lock);
+
+ for (level = 0; level < NR_QUEUE_LEVELS; level++)
+ list_for_each_entry(e, &mq->cache.qs[level], list) {
+ r = fn(context, e->cblock, e->oblock, e->hit_count);
+ if (r)
+ goto out;
+ }
+
+out:
+ mutex_unlock(&mq->lock);
+
+ return r;
+}
+
+static void remove_mapping(struct mq_policy *mq, dm_oblock_t oblock)
+{
+ struct entry *e = hash_lookup(mq, oblock);
+
+ BUG_ON(!e || !e->in_cache);
+
+ del(mq, e);
+ e->in_cache = false;
+ push(mq, e);
+}
+
+static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
+{
+ struct mq_policy *mq = to_mq_policy(p);
+
+ mutex_lock(&mq->lock);
+ remove_mapping(mq, oblock);
+ mutex_unlock(&mq->lock);
+}
+
+static void force_mapping(struct mq_policy *mq,
+ dm_oblock_t current_oblock, dm_oblock_t new_oblock)
+{
+ struct entry *e = hash_lookup(mq, current_oblock);
+
+ BUG_ON(!e || !e->in_cache);
+
+ del(mq, e);
+ e->oblock = new_oblock;
+ push(mq, e);
+}
+
+static void mq_force_mapping(struct dm_cache_policy *p,
+ dm_oblock_t current_oblock, dm_oblock_t new_oblock)
+{
+ struct mq_policy *mq = to_mq_policy(p);
+
+ mutex_lock(&mq->lock);
+ force_mapping(mq, current_oblock, new_oblock);
+ mutex_unlock(&mq->lock);
+}
+
+static dm_cblock_t mq_residency(struct dm_cache_policy *p)
+{
+ struct mq_policy *mq = to_mq_policy(p);
+
+ /* FIXME: lock mutex, not sure we can block here */
+ return to_cblock(mq->nr_cblocks_allocated);
+}
+
+static void mq_tick(struct dm_cache_policy *p)
+{
+ struct mq_policy *mq = to_mq_policy(p);
+ unsigned long flags;
+
+ spin_lock_irqsave(&mq->tick_lock, flags);
+ mq->tick_protected++;
+ spin_unlock_irqrestore(&mq->tick_lock, flags);
+}
+
+static int mq_set_config_value(struct dm_cache_policy *p,
+ const char *key, const char *value)
+{
+ struct mq_policy *mq = to_mq_policy(p);
+ enum io_pattern pattern;
+ unsigned long tmp;
+
+ if (!strcasecmp(key, "random_threshold"))
+ pattern = PATTERN_RANDOM;
+ else if (!strcasecmp(key, "sequential_threshold"))
+ pattern = PATTERN_SEQUENTIAL;
+ else
+ return -EINVAL;
+
+ if (kstrtoul(value, 10, &tmp))
+ return -EINVAL;
+
+ mq->tracker.thresholds[pattern] = tmp;
+
+ return 0;
+}
+
+static int mq_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen)
+{
+ ssize_t sz = 0;
+ struct mq_policy *mq = to_mq_policy(p);
+
+ DMEMIT("4 random_threshold %u sequential_threshold %u",
+ mq->tracker.thresholds[PATTERN_RANDOM],
+ mq->tracker.thresholds[PATTERN_SEQUENTIAL]);
+
+ return 0;
+}
+
+/* Init the policy plugin interface function pointers. */
+static void init_policy_functions(struct mq_policy *mq)
+{
+ mq->policy.destroy = mq_destroy;
+ mq->policy.map = mq_map;
+ mq->policy.lookup = mq_lookup;
+ mq->policy.load_mapping = mq_load_mapping;
+ mq->policy.walk_mappings = mq_walk_mappings;
+ mq->policy.remove_mapping = mq_remove_mapping;
+ mq->policy.writeback_work = NULL;
+ mq->policy.force_mapping = mq_force_mapping;
+ mq->policy.residency = mq_residency;
+ mq->policy.tick = mq_tick;
+ mq->policy.emit_config_values = mq_emit_config_values;
+ mq->policy.set_config_value = mq_set_config_value;
+}
+
+static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
+ sector_t origin_size,
+ sector_t cache_block_size)
+{
+ int r;
+ struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
+
+ if (!mq)
+ return NULL;
+
+ init_policy_functions(mq);
+ iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT);
+
+ mq->cache_size = cache_size;
+ mq->tick_protected = 0;
+ mq->tick = 0;
+ mq->hit_count = 0;
+ mq->generation = 0;
+ mq->promote_threshold = 0;
+ mutex_init(&mq->lock);
+ spin_lock_init(&mq->tick_lock);
+ mq->find_free_nr_words = dm_div_up(from_cblock(mq->cache_size), BITS_PER_LONG);
+ mq->find_free_last_word = 0;
+
+ queue_init(&mq->pre_cache);
+ queue_init(&mq->cache);
+ mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U);
+
+ mq->nr_entries = 2 * from_cblock(cache_size);
+ r = alloc_entries(mq, mq->nr_entries);
+ if (r)
+ goto bad_cache_alloc;
+
+ mq->nr_entries_allocated = 0;
+ mq->nr_cblocks_allocated = 0;
+
+ mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16);
+ mq->hash_bits = ffs(mq->nr_buckets) - 1;
+ mq->table = kzalloc(sizeof(*mq->table) * mq->nr_buckets, GFP_KERNEL);
+ if (!mq->table)
+ goto bad_alloc_table;
+
+ mq->allocation_bitset = alloc_bitset(from_cblock(cache_size));
+ if (!mq->allocation_bitset)
+ goto bad_alloc_bitset;
+
+ return &mq->policy;
+
+bad_alloc_bitset:
+ kfree(mq->table);
+bad_alloc_table:
+ free_entries(mq);
+bad_cache_alloc:
+ kfree(mq);
+
+ return NULL;
+}
+
+/*----------------------------------------------------------------*/
+
+static struct dm_cache_policy_type mq_policy_type = {
+ .name = "mq",
+ .hint_size = 4,
+ .owner = THIS_MODULE,
+ .create = mq_create
+};
+
+static struct dm_cache_policy_type default_policy_type = {
+ .name = "default",
+ .hint_size = 4,
+ .owner = THIS_MODULE,
+ .create = mq_create
+};
+
+static int __init mq_init(void)
+{
+ int r;
+
+ mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry",
+ sizeof(struct entry),
+ __alignof__(struct entry),
+ 0, NULL);
+ if (!mq_entry_cache)
+ goto bad;
+
+ r = dm_cache_policy_register(&mq_policy_type);
+ if (r) {
+ DMERR("register failed %d", r);
+ goto bad_register_mq;
+ }
+
+ r = dm_cache_policy_register(&default_policy_type);
+ if (!r) {
+ DMINFO("version " MQ_VERSION " loaded");
+ return 0;
+ }
+
+ DMERR("register failed (as default) %d", r);
+
+ dm_cache_policy_unregister(&mq_policy_type);
+bad_register_mq:
+ kmem_cache_destroy(mq_entry_cache);
+bad:
+ return -ENOMEM;
+}
+
+static void __exit mq_exit(void)
+{
+ dm_cache_policy_unregister(&mq_policy_type);
+ dm_cache_policy_unregister(&default_policy_type);
+
+ kmem_cache_destroy(mq_entry_cache);
+}
+
+module_init(mq_init);
+module_exit(mq_exit);
+
+MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("mq cache policy");
+
+MODULE_ALIAS("dm-cache-default");