diff options
author | Mauro Carvalho Chehab <m.chehab@samsung.com> | 2013-12-13 10:35:03 -0300 |
---|---|---|
committer | Ben Hutchings <ben@decadent.org.uk> | 2014-04-02 00:58:39 +0100 |
commit | c54c36c41b6cd911e5df0e7587451ef1218a2a84 (patch) | |
tree | 43338a5ede7a02007b52d7145805766c23d082d6 /drivers/media | |
parent | dc12cd1954a93e996efb15b4d333ab05788d58fa (diff) |
dib8000: make 32 bits read atomic
commit 5ac64ba12aca3bef18e61c866583155a3bbf81c4 upstream.
As the dvb-frontend kthread can be called anytime, it can race
with some get status ioctl. So, it seems better to avoid one to
race with the other while reading a 32 bits register.
I can't see any other reason for having a mutex there at I2C, except
to provide such kind of protection, as the I2C core already has a
mutex to protect I2C transfers.
Note: instead of this approach, it could eventually remove the dib8000
specific mutex for it, and either group the 4 ops into one xfer or
to manually control the I2C mutex. The main advantage of the current
approach is that the changes are smaller and more puntual.
Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
Acked-by: Patrick Boettcher <pboettcher@kernellabs.com>
[bwh: Backported to 3.2: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Diffstat (limited to 'drivers/media')
-rw-r--r-- | drivers/media/dvb/frontends/dib8000.c | 33 |
1 files changed, 25 insertions, 8 deletions
diff --git a/drivers/media/dvb/frontends/dib8000.c b/drivers/media/dvb/frontends/dib8000.c index fe284d5292f5..a542db159c7d 100644 --- a/drivers/media/dvb/frontends/dib8000.c +++ b/drivers/media/dvb/frontends/dib8000.c @@ -114,15 +114,10 @@ static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg) return ret; } -static u16 dib8000_read_word(struct dib8000_state *state, u16 reg) +static u16 __dib8000_read_word(struct dib8000_state *state, u16 reg) { u16 ret; - if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { - dprintk("could not acquire lock"); - return 0; - } - state->i2c_write_buffer[0] = reg >> 8; state->i2c_write_buffer[1] = reg & 0xff; @@ -140,6 +135,21 @@ static u16 dib8000_read_word(struct dib8000_state *state, u16 reg) dprintk("i2c read error on %d", reg); ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; + + return ret; +} + +static u16 dib8000_read_word(struct dib8000_state *state, u16 reg) +{ + u16 ret; + + if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { + dprintk("could not acquire lock"); + return 0; + } + + ret = __dib8000_read_word(state, reg); + mutex_unlock(&state->i2c_buffer_lock); return ret; @@ -149,8 +159,15 @@ static u32 dib8000_read32(struct dib8000_state *state, u16 reg) { u16 rw[2]; - rw[0] = dib8000_read_word(state, reg + 0); - rw[1] = dib8000_read_word(state, reg + 1); + if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { + dprintk("could not acquire lock"); + return 0; + } + + rw[0] = __dib8000_read_word(state, reg + 0); + rw[1] = __dib8000_read_word(state, reg + 1); + + mutex_unlock(&state->i2c_buffer_lock); return ((rw[0] << 16) | (rw[1])); } |