diff options
author | Auke Kok <auke\\\-jan.h.kok@intel.com> | 2006-08-28 14:56:16 -0700 |
---|---|---|
committer | Auke Kok <juke-jan.h.kok@intel.com> | 2006-08-28 14:56:16 -0700 |
commit | 8fc897b00a7d81ffaa24e18881c2d6b10698ab0b (patch) | |
tree | 3dac8c72398e8a23228b2a5edd5c926c2a58675d /drivers/net/e1000/e1000_hw.c | |
parent | 699a71238856b19091503c671bac8abb1e3f9a3a (diff) |
e1000: Whitespace cleanup, cosmetic changes
Signed-off-by: Auke Kok <auke-jan.h.kok@intel.com>
Diffstat (limited to 'drivers/net/e1000/e1000_hw.c')
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 1024 |
1 files changed, 513 insertions, 511 deletions
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c index f62d17848332..57749eb438e4 100644 --- a/drivers/net/e1000/e1000_hw.c +++ b/drivers/net/e1000/e1000_hw.c @@ -31,6 +31,7 @@ * Shared functions for accessing and configuring the MAC */ + #include "e1000_hw.h" static int32_t e1000_set_phy_type(struct e1000_hw *hw); @@ -166,10 +167,10 @@ e1000_set_phy_type(struct e1000_hw *hw) { DEBUGFUNC("e1000_set_phy_type"); - if(hw->mac_type == e1000_undefined) + if (hw->mac_type == e1000_undefined) return -E1000_ERR_PHY_TYPE; - switch(hw->phy_id) { + switch (hw->phy_id) { case M88E1000_E_PHY_ID: case M88E1000_I_PHY_ID: case M88E1011_I_PHY_ID: @@ -177,10 +178,10 @@ e1000_set_phy_type(struct e1000_hw *hw) hw->phy_type = e1000_phy_m88; break; case IGP01E1000_I_PHY_ID: - if(hw->mac_type == e1000_82541 || - hw->mac_type == e1000_82541_rev_2 || - hw->mac_type == e1000_82547 || - hw->mac_type == e1000_82547_rev_2) { + if (hw->mac_type == e1000_82541 || + hw->mac_type == e1000_82541_rev_2 || + hw->mac_type == e1000_82547 || + hw->mac_type == e1000_82547_rev_2) { hw->phy_type = e1000_phy_igp; break; } @@ -207,6 +208,7 @@ e1000_set_phy_type(struct e1000_hw *hw) return E1000_SUCCESS; } + /****************************************************************************** * IGP phy init script - initializes the GbE PHY * @@ -220,7 +222,7 @@ e1000_phy_init_script(struct e1000_hw *hw) DEBUGFUNC("e1000_phy_init_script"); - if(hw->phy_init_script) { + if (hw->phy_init_script) { msec_delay(20); /* Save off the current value of register 0x2F5B to be restored at @@ -236,7 +238,7 @@ e1000_phy_init_script(struct e1000_hw *hw) msec_delay(5); - switch(hw->mac_type) { + switch (hw->mac_type) { case e1000_82541: case e1000_82547: e1000_write_phy_reg(hw, 0x1F95, 0x0001); @@ -273,22 +275,22 @@ e1000_phy_init_script(struct e1000_hw *hw) /* Now enable the transmitter */ e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); - if(hw->mac_type == e1000_82547) { + if (hw->mac_type == e1000_82547) { uint16_t fused, fine, coarse; /* Move to analog registers page */ e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); - if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { + if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; - if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { + if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; fine -= IGP01E1000_ANALOG_FUSE_FINE_1; - } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) + } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) fine -= IGP01E1000_ANALOG_FUSE_FINE_10; fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | @@ -418,7 +420,7 @@ e1000_set_mac_type(struct e1000_hw *hw) return -E1000_ERR_MAC_TYPE; } - switch(hw->mac_type) { + switch (hw->mac_type) { case e1000_ich8lan: hw->swfwhw_semaphore_present = TRUE; hw->asf_firmware_present = TRUE; @@ -456,7 +458,7 @@ e1000_set_media_type(struct e1000_hw *hw) DEBUGFUNC("e1000_set_media_type"); - if(hw->mac_type != e1000_82543) { + if (hw->mac_type != e1000_82543) { /* tbi_compatibility is only valid on 82543 */ hw->tbi_compatibility_en = FALSE; } @@ -516,16 +518,16 @@ e1000_reset_hw(struct e1000_hw *hw) DEBUGFUNC("e1000_reset_hw"); /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ - if(hw->mac_type == e1000_82542_rev2_0) { + if (hw->mac_type == e1000_82542_rev2_0) { DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); e1000_pci_clear_mwi(hw); } - if(hw->bus_type == e1000_bus_type_pci_express) { + if (hw->bus_type == e1000_bus_type_pci_express) { /* Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ - if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) { + if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) { DEBUGOUT("PCI-E Master disable polling has failed.\n"); } } @@ -553,14 +555,14 @@ e1000_reset_hw(struct e1000_hw *hw) ctrl = E1000_READ_REG(hw, CTRL); /* Must reset the PHY before resetting the MAC */ - if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); msec_delay(5); } /* Must acquire the MDIO ownership before MAC reset. * Ownership defaults to firmware after a reset. */ - if(hw->mac_type == e1000_82573) { + if (hw->mac_type == e1000_82573) { timeout = 10; extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); @@ -570,14 +572,14 @@ e1000_reset_hw(struct e1000_hw *hw) E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); - if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) + if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) break; else extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; msec_delay(2); timeout--; - } while(timeout); + } while (timeout); } /* Workaround for ICH8 bit corruption issue in FIFO memory */ @@ -595,7 +597,7 @@ e1000_reset_hw(struct e1000_hw *hw) */ DEBUGOUT("Issuing a global reset to MAC\n"); - switch(hw->mac_type) { + switch (hw->mac_type) { case e1000_82544: case e1000_82540: case e1000_82545: @@ -634,7 +636,7 @@ e1000_reset_hw(struct e1000_hw *hw) * device. Later controllers reload the EEPROM automatically, so just wait * for reload to complete. */ - switch(hw->mac_type) { + switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: @@ -669,7 +671,7 @@ e1000_reset_hw(struct e1000_hw *hw) case e1000_ich8lan: case e1000_80003es2lan: ret_val = e1000_get_auto_rd_done(hw); - if(ret_val) + if (ret_val) /* We don't want to continue accessing MAC registers. */ return ret_val; break; @@ -680,13 +682,13 @@ e1000_reset_hw(struct e1000_hw *hw) } /* Disable HW ARPs on ASF enabled adapters */ - if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { + if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { manc = E1000_READ_REG(hw, MANC); manc &= ~(E1000_MANC_ARP_EN); E1000_WRITE_REG(hw, MANC, manc); } - if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { e1000_phy_init_script(hw); /* Configure activity LED after PHY reset */ @@ -704,8 +706,8 @@ e1000_reset_hw(struct e1000_hw *hw) icr = E1000_READ_REG(hw, ICR); /* If MWI was previously enabled, reenable it. */ - if(hw->mac_type == e1000_82542_rev2_0) { - if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + if (hw->mac_type == e1000_82542_rev2_0) { + if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) e1000_pci_set_mwi(hw); } @@ -758,7 +760,7 @@ e1000_init_hw(struct e1000_hw *hw) /* Initialize Identification LED */ ret_val = e1000_id_led_init(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Initializing Identification LED\n"); return ret_val; } @@ -776,7 +778,7 @@ e1000_init_hw(struct e1000_hw *hw) } /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ - if(hw->mac_type == e1000_82542_rev2_0) { + if (hw->mac_type == e1000_82542_rev2_0) { DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); e1000_pci_clear_mwi(hw); E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); @@ -790,11 +792,11 @@ e1000_init_hw(struct e1000_hw *hw) e1000_init_rx_addrs(hw); /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ - if(hw->mac_type == e1000_82542_rev2_0) { + if (hw->mac_type == e1000_82542_rev2_0) { E1000_WRITE_REG(hw, RCTL, 0); E1000_WRITE_FLUSH(hw); msec_delay(1); - if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) e1000_pci_set_mwi(hw); } @@ -803,7 +805,7 @@ e1000_init_hw(struct e1000_hw *hw) mta_size = E1000_MC_TBL_SIZE; if (hw->mac_type == e1000_ich8lan) mta_size = E1000_MC_TBL_SIZE_ICH8LAN; - for(i = 0; i < mta_size; i++) { + for (i = 0; i < mta_size; i++) { E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); /* use write flush to prevent Memory Write Block (MWB) from * occuring when accessing our register space */ @@ -815,18 +817,18 @@ e1000_init_hw(struct e1000_hw *hw) * gives equal priority to transmits and receives. Valid only on * 82542 and 82543 silicon. */ - if(hw->dma_fairness && hw->mac_type <= e1000_82543) { + if (hw->dma_fairness && hw->mac_type <= e1000_82543) { ctrl = E1000_READ_REG(hw, CTRL); E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); } - switch(hw->mac_type) { + switch (hw->mac_type) { case e1000_82545_rev_3: case e1000_82546_rev_3: break; default: /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ - if(hw->bus_type == e1000_bus_type_pcix) { + if (hw->bus_type == e1000_bus_type_pcix) { e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); @@ -834,9 +836,9 @@ e1000_init_hw(struct e1000_hw *hw) PCIX_COMMAND_MMRBC_SHIFT; stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> PCIX_STATUS_HI_MMRBC_SHIFT; - if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) + if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; - if(cmd_mmrbc > stat_mmrbc) { + if (cmd_mmrbc > stat_mmrbc) { pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, @@ -854,7 +856,7 @@ e1000_init_hw(struct e1000_hw *hw) ret_val = e1000_setup_link(hw); /* Set the transmit descriptor write-back policy */ - if(hw->mac_type > e1000_82544) { + if (hw->mac_type > e1000_82544) { ctrl = E1000_READ_REG(hw, TXDCTL); ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; switch (hw->mac_type) { @@ -905,14 +907,13 @@ e1000_init_hw(struct e1000_hw *hw) case e1000_ich8lan: ctrl = E1000_READ_REG(hw, TXDCTL1); ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; - if(hw->mac_type >= e1000_82571) + if (hw->mac_type >= e1000_82571) ctrl |= E1000_TXDCTL_COUNT_DESC; E1000_WRITE_REG(hw, TXDCTL1, ctrl); break; } - if (hw->mac_type == e1000_82573) { uint32_t gcr = E1000_READ_REG(hw, GCR); gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; @@ -956,10 +957,10 @@ e1000_adjust_serdes_amplitude(struct e1000_hw *hw) DEBUGFUNC("e1000_adjust_serdes_amplitude"); - if(hw->media_type != e1000_media_type_internal_serdes) + if (hw->media_type != e1000_media_type_internal_serdes) return E1000_SUCCESS; - switch(hw->mac_type) { + switch (hw->mac_type) { case e1000_82545_rev_3: case e1000_82546_rev_3: break; @@ -972,11 +973,11 @@ e1000_adjust_serdes_amplitude(struct e1000_hw *hw) return ret_val; } - if(eeprom_data != EEPROM_RESERVED_WORD) { + if (eeprom_data != EEPROM_RESERVED_WORD) { /* Adjust SERDES output amplitude only. */ eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); - if(ret_val) + if (ret_val) return ret_val; } @@ -1044,10 +1045,10 @@ e1000_setup_link(struct e1000_hw *hw) * in case we get disconnected and then reconnected into a different * hub or switch with different Flow Control capabilities. */ - if(hw->mac_type == e1000_82542_rev2_0) + if (hw->mac_type == e1000_82542_rev2_0) hw->fc &= (~e1000_fc_tx_pause); - if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) + if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) hw->fc &= (~e1000_fc_rx_pause); hw->original_fc = hw->fc; @@ -1062,12 +1063,12 @@ e1000_setup_link(struct e1000_hw *hw) * or e1000_phy_setup() is called. */ if (hw->mac_type == e1000_82543) { - ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, - 1, &eeprom_data); - if (ret_val) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } + ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, + 1, &eeprom_data); + if (ret_val) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << SWDPIO__EXT_SHIFT); E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); @@ -1100,14 +1101,14 @@ e1000_setup_link(struct e1000_hw *hw) * ability to transmit pause frames in not enabled, then these * registers will be set to 0. */ - if(!(hw->fc & e1000_fc_tx_pause)) { + if (!(hw->fc & e1000_fc_tx_pause)) { E1000_WRITE_REG(hw, FCRTL, 0); E1000_WRITE_REG(hw, FCRTH, 0); } else { /* We need to set up the Receive Threshold high and low water marks * as well as (optionally) enabling the transmission of XON frames. */ - if(hw->fc_send_xon) { + if (hw->fc_send_xon) { E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); } else { @@ -1154,11 +1155,11 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw) * the EEPROM. */ ctrl = E1000_READ_REG(hw, CTRL); - if(hw->media_type == e1000_media_type_fiber) + if (hw->media_type == e1000_media_type_fiber) signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; ret_val = e1000_adjust_serdes_amplitude(hw); - if(ret_val) + if (ret_val) return ret_val; /* Take the link out of reset */ @@ -1166,7 +1167,7 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw) /* Adjust VCO speed to improve BER performance */ ret_val = e1000_set_vco_speed(hw); - if(ret_val) + if (ret_val) return ret_val; e1000_config_collision_dist(hw); @@ -1237,15 +1238,15 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw) * less than 500 milliseconds even if the other end is doing it in SW). * For internal serdes, we just assume a signal is present, then poll. */ - if(hw->media_type == e1000_media_type_internal_serdes || + if (hw->media_type == e1000_media_type_internal_serdes || (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { DEBUGOUT("Looking for Link\n"); - for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { + for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { msec_delay(10); status = E1000_READ_REG(hw, STATUS); - if(status & E1000_STATUS_LU) break; + if (status & E1000_STATUS_LU) break; } - if(i == (LINK_UP_TIMEOUT / 10)) { + if (i == (LINK_UP_TIMEOUT / 10)) { DEBUGOUT("Never got a valid link from auto-neg!!!\n"); hw->autoneg_failed = 1; /* AutoNeg failed to achieve a link, so we'll call @@ -1254,7 +1255,7 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw) * non-autonegotiating link partners. */ ret_val = e1000_check_for_link(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error while checking for link\n"); return ret_val; } @@ -1288,7 +1289,7 @@ e1000_copper_link_preconfig(struct e1000_hw *hw) * the PHY speed and duplex configuration is. In addition, we need to * perform a hardware reset on the PHY to take it out of reset. */ - if(hw->mac_type > e1000_82543) { + if (hw->mac_type > e1000_82543) { ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, CTRL, ctrl); @@ -1296,13 +1297,13 @@ e1000_copper_link_preconfig(struct e1000_hw *hw) ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); E1000_WRITE_REG(hw, CTRL, ctrl); ret_val = e1000_phy_hw_reset(hw); - if(ret_val) + if (ret_val) return ret_val; } /* Make sure we have a valid PHY */ ret_val = e1000_detect_gig_phy(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error, did not detect valid phy.\n"); return ret_val; } @@ -1310,19 +1311,19 @@ e1000_copper_link_preconfig(struct e1000_hw *hw) /* Set PHY to class A mode (if necessary) */ ret_val = e1000_set_phy_mode(hw); - if(ret_val) + if (ret_val) return ret_val; - if((hw->mac_type == e1000_82545_rev_3) || + if ((hw->mac_type == e1000_82545_rev_3) || (hw->mac_type == e1000_82546_rev_3)) { ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); phy_data |= 0x00000008; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); } - if(hw->mac_type <= e1000_82543 || - hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || - hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) + if (hw->mac_type <= e1000_82543 || + hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || + hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) hw->phy_reset_disable = FALSE; return E1000_SUCCESS; @@ -1352,7 +1353,7 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw) return ret_val; } - /* Wait 10ms for MAC to configure PHY from eeprom settings */ + /* Wait 15ms for MAC to configure PHY from eeprom settings */ msec_delay(15); if (hw->mac_type != e1000_ich8lan) { /* Configure activity LED after PHY reset */ @@ -1407,45 +1408,45 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw) } } ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; /* set auto-master slave resolution settings */ - if(hw->autoneg) { + if (hw->autoneg) { e1000_ms_type phy_ms_setting = hw->master_slave; - if(hw->ffe_config_state == e1000_ffe_config_active) + if (hw->ffe_config_state == e1000_ffe_config_active) hw->ffe_config_state = e1000_ffe_config_enabled; - if(hw->dsp_config_state == e1000_dsp_config_activated) + if (hw->dsp_config_state == e1000_dsp_config_activated) hw->dsp_config_state = e1000_dsp_config_enabled; /* when autonegotiation advertisment is only 1000Mbps then we * should disable SmartSpeed and enable Auto MasterSlave * resolution as hardware default. */ - if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { + if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { /* Disable SmartSpeed */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if(ret_val) + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1000_write_phy_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if(ret_val) + ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) return ret_val; /* Set auto Master/Slave resolution process */ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~CR_1000T_MS_ENABLE; ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; } ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; /* load defaults for future use */ @@ -1469,7 +1470,7 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw) break; } ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; } @@ -1490,12 +1491,12 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw) DEBUGFUNC("e1000_copper_link_ggp_setup"); - if(!hw->phy_reset_disable) { + if (!hw->phy_reset_disable) { /* Enable CRS on TX for half-duplex operation. */ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; @@ -1504,7 +1505,7 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw) ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; /* Options: @@ -1515,7 +1516,7 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw) * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) */ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; @@ -1540,11 +1541,11 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw) * 1 - Enabled */ phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - if(hw->disable_polarity_correction == 1) + if (hw->disable_polarity_correction == 1) phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; /* SW Reset the PHY so all changes take effect */ @@ -1600,9 +1601,9 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw) return ret_val; phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, phy_data); + if (ret_val) return ret_val; } @@ -1637,12 +1638,12 @@ e1000_copper_link_mgp_setup(struct e1000_hw *hw) DEBUGFUNC("e1000_copper_link_mgp_setup"); - if(hw->phy_reset_disable) + if (hw->phy_reset_disable) return E1000_SUCCESS; /* Enable CRS on TX. This must be set for half-duplex operation. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; @@ -1679,7 +1680,7 @@ e1000_copper_link_mgp_setup(struct e1000_hw *hw) * 1 - Enabled */ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if(hw->disable_polarity_correction == 1) + if (hw->disable_polarity_correction == 1) phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) @@ -1719,7 +1720,7 @@ e1000_copper_link_mgp_setup(struct e1000_hw *hw) /* SW Reset the PHY so all changes take effect */ ret_val = e1000_phy_reset(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Resetting the PHY\n"); return ret_val; } @@ -1749,7 +1750,7 @@ e1000_copper_link_autoneg(struct e1000_hw *hw) /* If autoneg_advertised is zero, we assume it was not defaulted * by the calling code so we set to advertise full capability. */ - if(hw->autoneg_advertised == 0) + if (hw->autoneg_advertised == 0) hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; /* IFE phy only supports 10/100 */ @@ -1758,7 +1759,7 @@ e1000_copper_link_autoneg(struct e1000_hw *hw) DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); ret_val = e1000_phy_setup_autoneg(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Setting up Auto-Negotiation\n"); return ret_val; } @@ -1768,20 +1769,20 @@ e1000_copper_link_autoneg(struct e1000_hw *hw) * the Auto Neg Restart bit in the PHY control register. */ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; /* Does the user want to wait for Auto-Neg to complete here, or * check at a later time (for example, callback routine). */ - if(hw->wait_autoneg_complete) { + if (hw->wait_autoneg_complete) { ret_val = e1000_wait_autoneg(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error while waiting for autoneg to complete\n"); return ret_val; } @@ -1792,7 +1793,6 @@ e1000_copper_link_autoneg(struct e1000_hw *hw) return E1000_SUCCESS; } - /****************************************************************************** * Config the MAC and the PHY after link is up. * 1) Set up the MAC to the current PHY speed/duplex @@ -1811,25 +1811,25 @@ e1000_copper_link_postconfig(struct e1000_hw *hw) int32_t ret_val; DEBUGFUNC("e1000_copper_link_postconfig"); - if(hw->mac_type >= e1000_82544) { + if (hw->mac_type >= e1000_82544) { e1000_config_collision_dist(hw); } else { ret_val = e1000_config_mac_to_phy(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error configuring MAC to PHY settings\n"); return ret_val; } } ret_val = e1000_config_fc_after_link_up(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Configuring Flow Control\n"); return ret_val; } /* Config DSP to improve Giga link quality */ - if(hw->phy_type == e1000_phy_igp) { + if (hw->phy_type == e1000_phy_igp) { ret_val = e1000_config_dsp_after_link_change(hw, TRUE); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Configuring DSP after link up\n"); return ret_val; } @@ -1875,7 +1875,7 @@ e1000_setup_copper_link(struct e1000_hw *hw) /* Check if it is a valid PHY and set PHY mode if necessary. */ ret_val = e1000_copper_link_preconfig(hw); - if(ret_val) + if (ret_val) return ret_val; switch (hw->mac_type) { @@ -1896,30 +1896,30 @@ e1000_setup_copper_link(struct e1000_hw *hw) hw->phy_type == e1000_phy_igp_3 || hw->phy_type == e1000_phy_igp_2) { ret_val = e1000_copper_link_igp_setup(hw); - if(ret_val) + if (ret_val) return ret_val; } else if (hw->phy_type == e1000_phy_m88) { ret_val = e1000_copper_link_mgp_setup(hw); - if(ret_val) + if (ret_val) return ret_val; } else if (hw->phy_type == e1000_phy_gg82563) { ret_val = e1000_copper_link_ggp_setup(hw); - if(ret_val) + if (ret_val) return ret_val; } - if(hw->autoneg) { + if (hw->autoneg) { /* Setup autoneg and flow control advertisement * and perform autonegotiation */ ret_val = e1000_copper_link_autoneg(hw); - if(ret_val) + if (ret_val) return ret_val; } else { /* PHY will be set to 10H, 10F, 100H,or 100F * depending on value from forced_speed_duplex. */ DEBUGOUT("Forcing speed and duplex\n"); ret_val = e1000_phy_force_speed_duplex(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Forcing Speed and Duplex\n"); return ret_val; } @@ -1928,18 +1928,18 @@ e1000_setup_copper_link(struct e1000_hw *hw) /* Check link status. Wait up to 100 microseconds for link to become * valid. */ - for(i = 0; i < 10; i++) { + for (i = 0; i < 10; i++) { ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if(phy_data & MII_SR_LINK_STATUS) { + if (phy_data & MII_SR_LINK_STATUS) { /* Config the MAC and PHY after link is up */ ret_val = e1000_copper_link_postconfig(hw); - if(ret_val) + if (ret_val) return ret_val; DEBUGOUT("Valid link established!!!\n"); @@ -2041,7 +2041,7 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) /* Read the MII Auto-Neg Advertisement Register (Address 4). */ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if(ret_val) + if (ret_val) return ret_val; if (hw->phy_type != e1000_phy_ife) { @@ -2069,36 +2069,36 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); /* Do we want to advertise 10 Mb Half Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_10_HALF) { + if (hw->autoneg_advertised & ADVERTISE_10_HALF) { DEBUGOUT("Advertise 10mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; } /* Do we want to advertise 10 Mb Full Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_10_FULL) { + if (hw->autoneg_advertised & ADVERTISE_10_FULL) { DEBUGOUT("Advertise 10mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; } /* Do we want to advertise 100 Mb Half Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_100_HALF) { + if (hw->autoneg_advertised & ADVERTISE_100_HALF) { DEBUGOUT("Advertise 100mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; } /* Do we want to advertise 100 Mb Full Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_100_FULL) { + if (hw->autoneg_advertised & ADVERTISE_100_FULL) { DEBUGOUT("Advertise 100mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; } /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if(hw->autoneg_advertised & ADVERTISE_1000_HALF) { + if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); } /* Do we want to advertise 1000 Mb Full Duplex? */ - if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { + if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { DEBUGOUT("Advertise 1000mb Full duplex\n"); mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; if (hw->phy_type == e1000_phy_ife) { @@ -2160,7 +2160,7 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) } ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if(ret_val) + if (ret_val) return ret_val; DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); @@ -2208,7 +2208,7 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw) /* Read the MII Control Register. */ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); - if(ret_val) + if (ret_val) return ret_val; /* We need to disable autoneg in order to force link and duplex. */ @@ -2216,8 +2216,8 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw) mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; /* Are we forcing Full or Half Duplex? */ - if(hw->forced_speed_duplex == e1000_100_full || - hw->forced_speed_duplex == e1000_10_full) { + if (hw->forced_speed_duplex == e1000_100_full || + hw->forced_speed_duplex == e1000_10_full) { /* We want to force full duplex so we SET the full duplex bits in the * Device and MII Control Registers. */ @@ -2234,7 +2234,7 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw) } /* Are we forcing 100Mbps??? */ - if(hw->forced_speed_duplex == e1000_100_full || + if (hw->forced_speed_duplex == e1000_100_full || hw->forced_speed_duplex == e1000_100_half) { /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ ctrl |= E1000_CTRL_SPD_100; @@ -2257,7 +2257,7 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw) if ((hw->phy_type == e1000_phy_m88) || (hw->phy_type == e1000_phy_gg82563)) { ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI @@ -2265,7 +2265,7 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw) */ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); @@ -2289,20 +2289,20 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw) * forced whenever speed or duplex are forced. */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; } /* Write back the modified PHY MII control register. */ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); - if(ret_val) + if (ret_val) return ret_val; udelay(1); @@ -2314,50 +2314,50 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw) * only if the user has set wait_autoneg_complete to 1, which is * the default. */ - if(hw->wait_autoneg_complete) { + if (hw->wait_autoneg_complete) { /* We will wait for autoneg to complete. */ DEBUGOUT("Waiting for forced speed/duplex link.\n"); mii_status_reg = 0; /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for(i = PHY_FORCE_TIME; i > 0; i--) { + for (i = PHY_FORCE_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Auto-Neg Complete bit * to be set. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; - if(mii_status_reg & MII_SR_LINK_STATUS) break; + if (mii_status_reg & MII_SR_LINK_STATUS) break; msec_delay(100); } - if((i == 0) && + if ((i == 0) && ((hw->phy_type == e1000_phy_m88) || (hw->phy_type == e1000_phy_gg82563))) { /* We didn't get link. Reset the DSP and wait again for link. */ ret_val = e1000_phy_reset_dsp(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error Resetting PHY DSP\n"); return ret_val; } } /* This loop will early-out if the link condition has been met. */ - for(i = PHY_FORCE_TIME; i > 0; i--) { - if(mii_status_reg & MII_SR_LINK_STATUS) break; + for (i = PHY_FORCE_TIME; i > 0; i--) { + if (mii_status_reg & MII_SR_LINK_STATUS) break; msec_delay(100); /* Read the MII Status Register and wait for Auto-Neg Complete bit * to be set. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; } } @@ -2368,32 +2368,31 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw) * defaults back to a 2.5MHz clock when the PHY is reset. */ ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= M88E1000_EPSCR_TX_CLK_25; ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; /* In addition, because of the s/w reset above, we need to enable CRS on * TX. This must be set for both full and half duplex operation. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; - if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && - (!hw->autoneg) && - (hw->forced_speed_duplex == e1000_10_full || - hw->forced_speed_duplex == e1000_10_half)) { + if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && + (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full || + hw->forced_speed_duplex == e1000_10_half)) { ret_val = e1000_polarity_reversal_workaround(hw); - if(ret_val) + if (ret_val) return ret_val; } } else if (hw->phy_type == e1000_phy_gg82563) { @@ -2484,10 +2483,10 @@ e1000_config_mac_to_phy(struct e1000_hw *hw) * registers depending on negotiated values. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if(phy_data & M88E1000_PSSR_DPLX) + if (phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; else ctrl &= ~E1000_CTRL_FD; @@ -2497,9 +2496,9 @@ e1000_config_mac_to_phy(struct e1000_hw *hw) /* Set up speed in the Device Control register depending on * negotiated values. */ - if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) ctrl |= E1000_CTRL_SPD_1000; - else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) + else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) ctrl |= E1000_CTRL_SPD_100; /* Write the configured values back to the Device Control Reg. */ @@ -2567,7 +2566,7 @@ e1000_force_mac_fc(struct e1000_hw *hw) } /* Disable TX Flow Control for 82542 (rev 2.0) */ - if(hw->mac_type == e1000_82542_rev2_0) + if (hw->mac_type == e1000_82542_rev2_0) ctrl &= (~E1000_CTRL_TFCE); E1000_WRITE_REG(hw, CTRL, ctrl); @@ -2601,11 +2600,12 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw) * so we had to force link. In this case, we need to force the * configuration of the MAC to match the "fc" parameter. */ - if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || - ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) || - ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { + if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || + ((hw->media_type == e1000_media_type_internal_serdes) && + (hw->autoneg_failed)) || + ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { ret_val = e1000_force_mac_fc(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error forcing flow control settings\n"); return ret_val; } @@ -2616,19 +2616,19 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw) * has completed, and if so, how the PHY and link partner has * flow control configured. */ - if((hw->media_type == e1000_media_type_copper) && hw->autoneg) { + if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { /* Read the MII Status Register and check to see if AutoNeg * has completed. We read this twice because this reg has * some "sticky" (latched) bits. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; - if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) { + if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement Register * (Address 4) and the Auto_Negotiation Base Page Ability @@ -2637,11 +2637,11 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw) */ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); - if(ret_val) + if (ret_val) return ret_val; /* Two bits in the Auto Negotiation Advertisement Register @@ -2678,15 +2678,15 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw) * 1 | DC | 1 | DC | e1000_fc_full * */ - if((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { /* Now we need to check if the user selected RX ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise RX * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ - if(hw->original_fc == e1000_fc_full) { + if (hw->original_fc == e1000_fc_full) { hw->fc = e1000_fc_full; DEBUGOUT("Flow Control = FULL.\n"); } else { @@ -2702,10 +2702,10 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw) * 0 | 1 | 1 | 1 | e1000_fc_tx_pause * */ - else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc = e1000_fc_tx_pause; DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); } @@ -2717,10 +2717,10 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw) * 1 | 1 | 0 | 1 | e1000_fc_rx_pause * */ - else if((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc = e1000_fc_rx_pause; DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); } @@ -2744,9 +2744,9 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw) * be asked to delay transmission of packets than asking * our link partner to pause transmission of frames. */ - else if((hw->original_fc == e1000_fc_none || - hw->original_fc == e1000_fc_tx_pause) || - hw->fc_strict_ieee) { + else if ((hw->original_fc == e1000_fc_none || + hw->original_fc == e1000_fc_tx_pause) || + hw->fc_strict_ieee) { hw->fc = e1000_fc_none; DEBUGOUT("Flow Control = NONE.\n"); } else { @@ -2759,19 +2759,19 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw) * enabled per IEEE 802.3 spec. */ ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error getting link speed and duplex\n"); return ret_val; } - if(duplex == HALF_DUPLEX) + if (duplex == HALF_DUPLEX) hw->fc = e1000_fc_none; /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ ret_val = e1000_force_mac_fc(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error forcing flow control settings\n"); return ret_val; } @@ -2810,13 +2810,13 @@ e1000_check_for_link(struct e1000_hw *hw) * set when the optics detect a signal. On older adapters, it will be * cleared when there is a signal. This applies to fiber media only. */ - if((hw->media_type == e1000_media_type_fiber) || - (hw->media_type == e1000_media_type_internal_serdes)) { + if ((hw->media_type == e1000_media_type_fiber) || + (hw->media_type == e1000_media_type_internal_serdes)) { rxcw = E1000_READ_REG(hw, RXCW); - if(hw->media_type == e1000_media_type_fiber) { + if (hw->media_type == e1000_media_type_fiber) { signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; - if(status & E1000_STATUS_LU) + if (status & E1000_STATUS_LU) hw->get_link_status = FALSE; } } @@ -2827,20 +2827,20 @@ e1000_check_for_link(struct e1000_hw *hw) * receive a Link Status Change interrupt or we have Rx Sequence * Errors. */ - if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { + if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. * Read the register twice since the link bit is sticky. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if(phy_data & MII_SR_LINK_STATUS) { + if (phy_data & MII_SR_LINK_STATUS) { hw->get_link_status = FALSE; /* Check if there was DownShift, must be checked immediately after * link-up */ @@ -2854,10 +2854,10 @@ e1000_check_for_link(struct e1000_hw *hw) * happen due to the execution of this workaround. */ - if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && - (!hw->autoneg) && - (hw->forced_speed_duplex == e1000_10_full || - hw->forced_speed_duplex == e1000_10_half)) { + if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && + (!hw->autoneg) && + (hw->forced_speed_duplex == e1000_10_full || + hw->forced_speed_duplex == e1000_10_half)) { E1000_WRITE_REG(hw, IMC, 0xffffffff); ret_val = e1000_polarity_reversal_workaround(hw); icr = E1000_READ_REG(hw, ICR); @@ -2874,7 +2874,7 @@ e1000_check_for_link(struct e1000_hw *hw) /* If we are forcing speed/duplex, then we simply return since * we have already determined whether we have link or not. */ - if(!hw->autoneg) return -E1000_ERR_CONFIG; + if (!hw->autoneg) return -E1000_ERR_CONFIG; /* optimize the dsp settings for the igp phy */ e1000_config_dsp_after_link_change(hw, TRUE); @@ -2887,11 +2887,11 @@ e1000_check_for_link(struct e1000_hw *hw) * speed/duplex on the MAC to the current PHY speed/duplex * settings. */ - if(hw->mac_type >= e1000_82544) + if (hw->mac_type >= e1000_82544) e1000_config_collision_dist(hw); else { ret_val = e1000_config_mac_to_phy(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error configuring MAC to PHY settings\n"); return ret_val; } @@ -2902,7 +2902,7 @@ e1000_check_for_link(struct e1000_hw *hw) * have had to re-autoneg with a different link partner. */ ret_val = e1000_config_fc_after_link_up(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error configuring flow control\n"); return ret_val; } @@ -2914,7 +2914,7 @@ e1000_check_for_link(struct e1000_hw *hw) * at gigabit speed, then TBI compatibility is not needed. If we are * at gigabit speed, we turn on TBI compatibility. */ - if(hw->tbi_compatibility_en) { + if (hw->tbi_compatibility_en) { uint16_t speed, duplex; ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); if (ret_val) { @@ -2925,7 +2925,7 @@ e1000_check_for_link(struct e1000_hw *hw) /* If link speed is not set to gigabit speed, we do not need * to enable TBI compatibility. */ - if(hw->tbi_compatibility_on) { + if (hw->tbi_compatibility_on) { /* If we previously were in the mode, turn it off. */ rctl = E1000_READ_REG(hw, RCTL); rctl &= ~E1000_RCTL_SBP; @@ -2938,7 +2938,7 @@ e1000_check_for_link(struct e1000_hw *hw) * packets. Some frames have an additional byte on the end and * will look like CRC errors to to the hardware. */ - if(!hw->tbi_compatibility_on) { + if (!hw->tbi_compatibility_on) { hw->tbi_compatibility_on = TRUE; rctl = E1000_READ_REG(hw, RCTL); rctl |= E1000_RCTL_SBP; @@ -2954,12 +2954,12 @@ e1000_check_for_link(struct e1000_hw *hw) * auto-negotiation time to complete, in case the cable was just plugged * in. The autoneg_failed flag does this. */ - else if((((hw->media_type == e1000_media_type_fiber) && + else if ((((hw->media_type == e1000_media_type_fiber) && ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || - (hw->media_type == e1000_media_type_internal_serdes)) && - (!(status & E1000_STATUS_LU)) && - (!(rxcw & E1000_RXCW_C))) { - if(hw->autoneg_failed == 0) { + (hw->media_type == e1000_media_type_internal_serdes)) && + (!(status & E1000_STATUS_LU)) && + (!(rxcw & E1000_RXCW_C))) { + if (hw->autoneg_failed == 0) { hw->autoneg_failed = 1; return 0; } @@ -2975,7 +2975,7 @@ e1000_check_for_link(struct e1000_hw *hw) /* Configure Flow Control after forcing link up. */ ret_val = e1000_config_fc_after_link_up(hw); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error configuring flow control\n"); return ret_val; } @@ -2985,9 +2985,9 @@ e1000_check_for_link(struct e1000_hw *hw) * Device Control register in an attempt to auto-negotiate with our link * partner. */ - else if(((hw->media_type == e1000_media_type_fiber) || - (hw->media_type == e1000_media_type_internal_serdes)) && - (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + else if (((hw->media_type == e1000_media_type_fiber) || + (hw->media_type == e1000_media_type_internal_serdes)) && + (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); E1000_WRITE_REG(hw, TXCW, hw->txcw); E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); @@ -2997,12 +2997,12 @@ e1000_check_for_link(struct e1000_hw *hw) /* If we force link for non-auto-negotiation switch, check link status * based on MAC synchronization for internal serdes media type. */ - else if((hw->media_type == e1000_media_type_internal_serdes) && - !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { + else if ((hw->media_type == e1000_media_type_internal_serdes) && + !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { /* SYNCH bit and IV bit are sticky. */ udelay(10); - if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { - if(!(rxcw & E1000_RXCW_IV)) { + if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { + if (!(rxcw & E1000_RXCW_IV)) { hw->serdes_link_down = FALSE; DEBUGOUT("SERDES: Link is up.\n"); } @@ -3011,8 +3011,8 @@ e1000_check_for_link(struct e1000_hw *hw) DEBUGOUT("SERDES: Link is down.\n"); } } - if((hw->media_type == e1000_media_type_internal_serdes) && - (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { + if ((hw->media_type == e1000_media_type_internal_serdes) && + (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); } return E1000_SUCCESS; @@ -3036,12 +3036,12 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw, DEBUGFUNC("e1000_get_speed_and_duplex"); - if(hw->mac_type >= e1000_82543) { + if (hw->mac_type >= e1000_82543) { status = E1000_READ_REG(hw, STATUS); - if(status & E1000_STATUS_SPEED_1000) { + if (status & E1000_STATUS_SPEED_1000) { *speed = SPEED_1000; DEBUGOUT("1000 Mbs, "); - } else if(status & E1000_STATUS_SPEED_100) { + } else if (status & E1000_STATUS_SPEED_100) { *speed = SPEED_100; DEBUGOUT("100 Mbs, "); } else { @@ -3049,7 +3049,7 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw, DEBUGOUT("10 Mbs, "); } - if(status & E1000_STATUS_FD) { + if (status & E1000_STATUS_FD) { *duplex = FULL_DUPLEX; DEBUGOUT("Full Duplex\n"); } else { @@ -3066,18 +3066,18 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw, * if it is operating at half duplex. Here we set the duplex settings to * match the duplex in the link partner's capabilities. */ - if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { + if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if(!(phy_data & NWAY_ER_LP_NWAY_CAPS)) + if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) *duplex = HALF_DUPLEX; else { ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || + if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) *duplex = HALF_DUPLEX; } @@ -3118,17 +3118,17 @@ e1000_wait_autoneg(struct e1000_hw *hw) DEBUGOUT("Waiting for Auto-Neg to complete.\n"); /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for(i = PHY_AUTO_NEG_TIME; i > 0; i--) { + for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Auto-Neg * Complete bit to be set. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if(phy_data & MII_SR_AUTONEG_COMPLETE) { + if (phy_data & MII_SR_AUTONEG_COMPLETE) { return E1000_SUCCESS; } msec_delay(100); @@ -3201,14 +3201,16 @@ e1000_shift_out_mdi_bits(struct e1000_hw *hw, /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); - while(mask) { + while (mask) { /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and * then raising and lowering the Management Data Clock. A "0" is * shifted out to the PHY by setting the MDIO bit to "0" and then * raising and lowering the clock. */ - if(data & mask) ctrl |= E1000_CTRL_MDIO; - else ctrl &= ~E1000_CTRL_MDIO; + if (data & mask) + ctrl |= E1000_CTRL_MDIO; + else + ctrl &= ~E1000_CTRL_MDIO; E1000_WRITE_REG(hw, CTRL, ctrl); E1000_WRITE_FLUSH(hw); @@ -3259,12 +3261,13 @@ e1000_shift_in_mdi_bits(struct e1000_hw *hw) e1000_raise_mdi_clk(hw, &ctrl); e1000_lower_mdi_clk(hw, &ctrl); - for(data = 0, i = 0; i < 16; i++) { + for (data = 0, i = 0; i < 16; i++) { data = data << 1; e1000_raise_mdi_clk(hw, &ctrl); ctrl = E1000_READ_REG(hw, CTRL); /* Check to see if we shifted in a "1". */ - if(ctrl & E1000_CTRL_MDIO) data |= 1; + if (ctrl & E1000_CTRL_MDIO) + data |= 1; e1000_lower_mdi_clk(hw, &ctrl); } @@ -3290,7 +3293,7 @@ e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) if (!hw->swfw_sync_present) return e1000_get_hw_eeprom_semaphore(hw); - while(timeout) { + while (timeout) { if (e1000_get_hw_eeprom_semaphore(hw)) return -E1000_ERR_SWFW_SYNC; @@ -3379,7 +3382,7 @@ e1000_read_phy_reg(struct e1000_hw *hw, (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, (uint16_t)reg_addr); - if(ret_val) { + if (ret_val) { e1000_swfw_sync_release(hw, swfw); return ret_val; } @@ -3424,12 +3427,12 @@ e1000_read_phy_reg_ex(struct e1000_hw *hw, DEBUGFUNC("e1000_read_phy_reg_ex"); - if(reg_addr > MAX_PHY_REG_ADDRESS) { + if (reg_addr > MAX_PHY_REG_ADDRESS) { DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); return -E1000_ERR_PARAM; } - if(hw->mac_type > e1000_82543) { + if (hw->mac_type > e1000_82543) { /* Set up Op-code, Phy Address, and register address in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. @@ -3441,16 +3444,16 @@ e1000_read_phy_reg_ex(struct e1000_hw *hw, E1000_WRITE_REG(hw, MDIC, mdic); /* Poll the ready bit to see if the MDI read completed */ - for(i = 0; i < 64; i++) { + for (i = 0; i < 64; i++) { udelay(50); mdic = E1000_READ_REG(hw, MDIC); - if(mdic & E1000_MDIC_READY) break; + if (mdic & E1000_MDIC_READY) break; } - if(!(mdic & E1000_MDIC_READY)) { + if (!(mdic & E1000_MDIC_READY)) { DEBUGOUT("MDI Read did not complete\n"); return -E1000_ERR_PHY; } - if(mdic & E1000_MDIC_ERROR) { + if (mdic & E1000_MDIC_ERROR) { DEBUGOUT("MDI Error\n"); return -E1000_ERR_PHY; } @@ -3519,7 +3522,7 @@ e1000_write_phy_reg(struct e1000_hw *hw, (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, (uint16_t)reg_addr); - if(ret_val) { + if (ret_val) { e1000_swfw_sync_release(hw, swfw); return ret_val; } @@ -3564,12 +3567,12 @@ e1000_write_phy_reg_ex(struct e1000_hw *hw, DEBUGFUNC("e1000_write_phy_reg_ex"); - if(reg_addr > MAX_PHY_REG_ADDRESS) { + if (reg_addr > MAX_PHY_REG_ADDRESS) { DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); return -E1000_ERR_PARAM; } - if(hw->mac_type > e1000_82543) { + if (hw->mac_type > e1000_82543) { /* Set up Op-code, Phy Address, register address, and data intended * for the PHY register in the MDI Control register. The MAC will take * care of interfacing with the PHY to send the desired data. @@ -3582,12 +3585,12 @@ e1000_write_phy_reg_ex(struct e1000_hw *hw, E1000_WRITE_REG(hw, MDIC, mdic); /* Poll the ready bit to see if the MDI read completed */ - for(i = 0; i < 640; i++) { + for (i = 0; i < 641; i++) { udelay(5); mdic = E1000_READ_REG(hw, MDIC); - if(mdic & E1000_MDIC_READY) break; + if (mdic & E1000_MDIC_READY) break; } - if(!(mdic & E1000_MDIC_READY)) { + if (!(mdic & E1000_MDIC_READY)) { DEBUGOUT("MDI Write did not complete\n"); return -E1000_ERR_PHY; } @@ -3699,7 +3702,7 @@ e1000_phy_hw_reset(struct e1000_hw *hw) DEBUGOUT("Resetting Phy...\n"); - if(hw->mac_type > e1000_82543) { + if (hw->mac_type > e1000_82543) { if ((hw->mac_type == e1000_80003es2lan) && (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { swfw = E1000_SWFW_PHY1_SM; @@ -3747,7 +3750,7 @@ e1000_phy_hw_reset(struct e1000_hw *hw) } udelay(150); - if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { /* Configure activity LED after PHY reset */ led_ctrl = E1000_READ_REG(hw, LEDCTL); led_ctrl &= IGP_ACTIVITY_LED_MASK; @@ -3757,14 +3760,13 @@ e1000_phy_hw_reset(struct e1000_hw *hw) /* Wait for FW to finish PHY configuration. */ ret_val = e1000_get_phy_cfg_done(hw); + if (ret_val != E1000_SUCCESS) + return ret_val; e1000_release_software_semaphore(hw); - if ((hw->mac_type == e1000_ich8lan) && - (hw->phy_type == e1000_phy_igp_3)) { - ret_val = e1000_init_lcd_from_nvm(hw); - if (ret_val) - return ret_val; - } + if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3)) + ret_val = e1000_init_lcd_from_nvm(hw); + return ret_val; } @@ -3795,25 +3797,25 @@ e1000_phy_reset(struct e1000_hw *hw) case e1000_82572: case e1000_ich8lan: ret_val = e1000_phy_hw_reset(hw); - if(ret_val) + if (ret_val) return ret_val; break; default: ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= MII_CR_RESET; ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); - if(ret_val) + if (ret_val) return ret_val; udelay(1); break; } - if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) + if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) e1000_phy_init_script(hw); return E1000_SUCCESS; @@ -3891,8 +3893,8 @@ e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw) if (hw->kmrn_lock_loss_workaround_disabled) return E1000_SUCCESS; - /* Make sure link is up before proceeding. If not just return. - * Attempting this while link is negotiating fouls up link + /* Make sure link is up before proceeding. If not just return. + * Attempting this while link is negotiating fouled up link * stability */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); @@ -3969,34 +3971,34 @@ e1000_detect_gig_phy(struct e1000_hw *hw) hw->phy_id = (uint32_t) (phy_id_high << 16); udelay(20); ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); - if(ret_val) + if (ret_val) return ret_val; hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; - switch(hw->mac_type) { + switch (hw->mac_type) { case e1000_82543: - if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; + if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; break; case e1000_82544: - if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; + if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; break; case e1000_82540: case e1000_82545: case e1000_82545_rev_3: case e1000_82546: case e1000_82546_rev_3: - if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; + if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; break; case e1000_82541: case e1000_82541_rev_2: case e1000_82547: case e1000_82547_rev_2: - if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; + if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; break; case e1000_82573: - if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; + if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; break; case e1000_80003es2lan: if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; @@ -4035,14 +4037,14 @@ e1000_phy_reset_dsp(struct e1000_hw *hw) do { if (hw->phy_type != e1000_phy_gg82563) { ret_val = e1000_write_phy_reg(hw, 29, 0x001d); - if(ret_val) break; + if (ret_val) break; } ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); - if(ret_val) break; + if (ret_val) break; ret_val = e1000_write_phy_reg(hw, 30, 0x0000); - if(ret_val) break; + if (ret_val) break; ret_val = E1000_SUCCESS; - } while(0); + } while (0); return ret_val; } @@ -4053,7 +4055,7 @@ e1000_phy_reset_dsp(struct e1000_hw *hw) * hw - Struct containing variables accessed by shared code * phy_info - PHY information structure ******************************************************************************/ -static int32_t +int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) { @@ -4074,23 +4076,23 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, /* Check polarity status */ ret_val = e1000_check_polarity(hw, &polarity); - if(ret_val) + if (ret_val) return ret_val; phy_info->cable_polarity = polarity; ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >> IGP01E1000_PSSR_MDIX_SHIFT; - if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { /* Local/Remote Receiver Information are only valid at 1000 Mbps */ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> @@ -4100,19 +4102,19 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, /* Get cable length */ ret_val = e1000_get_cable_length(hw, &min_length, &max_length); - if(ret_val) + if (ret_val) return ret_val; /* Translate to old method */ average = (max_length + min_length) / 2; - if(average <= e1000_igp_cable_length_50) + if (average <= e1000_igp_cable_length_50) phy_info->cable_length = e1000_cable_length_50; - else if(average <= e1000_igp_cable_length_80) + else if (average <= e1000_igp_cable_length_80) phy_info->cable_length = e1000_cable_length_50_80; - else if(average <= e1000_igp_cable_length_110) + else if (average <= e1000_igp_cable_length_110) phy_info->cable_length = e1000_cable_length_80_110; - else if(average <= e1000_igp_cable_length_140) + else if (average <= e1000_igp_cable_length_140) phy_info->cable_length = e1000_cable_length_110_140; else phy_info->cable_length = e1000_cable_length_140; @@ -4188,7 +4190,7 @@ e1000_phy_m88_get_info(struct e1000_hw *hw, phy_info->downshift = (e1000_downshift)hw->speed_downgraded; ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_info->extended_10bt_distance = @@ -4200,12 +4202,12 @@ e1000_phy_m88_get_info(struct e1000_hw *hw, /* Check polarity status */ ret_val = e1000_check_polarity(hw, &polarity); - if(ret_val) + if (ret_val) return ret_val; phy_info->cable_polarity = polarity; ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >> @@ -4228,7 +4230,7 @@ e1000_phy_m88_get_info(struct e1000_hw *hw, } ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> @@ -4265,20 +4267,20 @@ e1000_phy_get_info(struct e1000_hw *hw, phy_info->local_rx = e1000_1000t_rx_status_undefined; phy_info->remote_rx = e1000_1000t_rx_status_undefined; - if(hw->media_type != e1000_media_type_copper) { + if (hw->media_type != e1000_media_type_copper) { DEBUGOUT("PHY info is only valid for copper media\n"); return -E1000_ERR_CONFIG; } ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { + if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { DEBUGOUT("PHY info is only valid if link is up\n"); return -E1000_ERR_CONFIG; } @@ -4298,7 +4300,7 @@ e1000_validate_mdi_setting(struct e1000_hw *hw) { DEBUGFUNC("e1000_validate_mdi_settings"); - if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { + if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { DEBUGOUT("Invalid MDI setting detected\n"); hw->mdix = 1; return -E1000_ERR_CONFIG; @@ -4345,7 +4347,7 @@ e1000_init_eeprom_params(struct e1000_hw *hw) eeprom->type = e1000_eeprom_microwire; eeprom->opcode_bits = 3; eeprom->delay_usec = 50; - if(eecd & E1000_EECD_SIZE) { + if (eecd & E1000_EECD_SIZE) { eeprom->word_size = 256; eeprom->address_bits = 8; } else { @@ -4413,7 +4415,7 @@ e1000_init_eeprom_params(struct e1000_hw *hw) } eeprom->use_eerd = TRUE; eeprom->use_eewr = TRUE; - if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) { + if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) { eeprom->type = e1000_eeprom_flash; eeprom->word_size = 2048; @@ -4474,17 +4476,17 @@ e1000_init_eeprom_params(struct e1000_hw *hw) /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to * 32KB (incremented by powers of 2). */ - if(hw->mac_type <= e1000_82547_rev_2) { + if (hw->mac_type <= e1000_82547_rev_2) { /* Set to default value for initial eeprom read. */ eeprom->word_size = 64; ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); - if(ret_val) + if (ret_val) return ret_val; eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; /* 256B eeprom size was not supported in earlier hardware, so we * bump eeprom_size up one to ensure that "1" (which maps to 256B) * is never the result used in the shifting logic below. */ - if(eeprom_size) + if (eeprom_size) eeprom_size++; } else { eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> @@ -4569,7 +4571,7 @@ e1000_shift_out_ee_bits(struct e1000_hw *hw, */ eecd &= ~E1000_EECD_DI; - if(data & mask) + if (data & mask) eecd |= E1000_EECD_DI; E1000_WRITE_REG(hw, EECD, eecd); @@ -4582,7 +4584,7 @@ e1000_shift_out_ee_bits(struct e1000_hw *hw, mask = mask >> 1; - } while(mask); + } while (mask); /* We leave the "DI" bit set to "0" when we leave this routine. */ eecd &= ~E1000_EECD_DI; @@ -4614,14 +4616,14 @@ e1000_shift_in_ee_bits(struct e1000_hw *hw, eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); data = 0; - for(i = 0; i < count; i++) { + for (i = 0; i < count; i++) { data = data << 1; e1000_raise_ee_clk(hw, &eecd); eecd = E1000_READ_REG(hw, EECD); eecd &= ~(E1000_EECD_DI); - if(eecd & E1000_EECD_DO) + if (eecd & E1000_EECD_DO) data |= 1; e1000_lower_ee_clk(hw, &eecd); @@ -4652,17 +4654,17 @@ e1000_acquire_eeprom(struct e1000_hw *hw) if (hw->mac_type != e1000_82573) { /* Request EEPROM Access */ - if(hw->mac_type > e1000_82544) { + if (hw->mac_type > e1000_82544) { eecd |= E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); eecd = E1000_READ_REG(hw, EECD); - while((!(eecd & E1000_EECD_GNT)) && + while ((!(eecd & E1000_EECD_GNT)) && (i < E1000_EEPROM_GRANT_ATTEMPTS)) { i++; udelay(5); eecd = E1000_READ_REG(hw, EECD); } - if(!(eecd & E1000_EECD_GNT)) { + if (!(eecd & E1000_EECD_GNT)) { eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); DEBUGOUT("Could not acquire EEPROM grant\n"); @@ -4705,7 +4707,7 @@ e1000_standby_eeprom(struct e1000_hw *hw) eecd = E1000_READ_REG(hw, EECD); - if(eeprom->type == e1000_eeprom_microwire) { + if (eeprom->type == e1000_eeprom_microwire) { eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); @@ -4728,7 +4730,7 @@ e1000_standby_eeprom(struct e1000_hw *hw) E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); - } else if(eeprom->type == e1000_eeprom_spi) { + } else if (eeprom->type == e1000_eeprom_spi) { /* Toggle CS to flush commands */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, EECD, eecd); @@ -4762,7 +4764,7 @@ e1000_release_eeprom(struct e1000_hw *hw) E1000_WRITE_REG(hw, EECD, eecd); udelay(hw->eeprom.delay_usec); - } else if(hw->eeprom.type == e1000_eeprom_microwire) { + } else if (hw->eeprom.type == e1000_eeprom_microwire) { /* cleanup eeprom */ /* CS on Microwire is active-high */ @@ -4784,7 +4786,7 @@ e1000_release_eeprom(struct e1000_hw *hw) } /* Stop requesting EEPROM access */ - if(hw->mac_type > e1000_82544) { + if (hw->mac_type > e1000_82544) { eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); } @@ -4822,12 +4824,12 @@ e1000_spi_eeprom_ready(struct e1000_hw *hw) retry_count += 5; e1000_standby_eeprom(hw); - } while(retry_count < EEPROM_MAX_RETRY_SPI); + } while (retry_count < EEPROM_MAX_RETRY_SPI); /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and * only 0-5mSec on 5V devices) */ - if(retry_count >= EEPROM_MAX_RETRY_SPI) { + if (retry_count >= EEPROM_MAX_RETRY_SPI) { DEBUGOUT("SPI EEPROM Status error\n"); return -E1000_ERR_EEPROM; } @@ -4858,7 +4860,7 @@ e1000_read_eeprom(struct e1000_hw *hw, /* A check for invalid values: offset too large, too many words, and not * enough words. */ - if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || + if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || (words == 0)) { DEBUGOUT("\"words\" parameter out of bounds\n"); return -E1000_ERR_EEPROM; @@ -4866,7 +4868,7 @@ e1000_read_eeprom(struct e1000_hw *hw, /* FLASH reads without acquiring the semaphore are safe */ if (e1000_is_onboard_nvm_eeprom(hw) == TRUE && - hw->eeprom.use_eerd == FALSE) { + hw->eeprom.use_eerd == FALSE) { switch (hw->mac_type) { case e1000_80003es2lan: break; @@ -4893,7 +4895,7 @@ e1000_read_eeprom(struct e1000_hw *hw, uint16_t word_in; uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; - if(e1000_spi_eeprom_ready(hw)) { + if (e1000_spi_eeprom_ready(hw)) { e1000_release_eeprom(hw); return -E1000_ERR_EEPROM; } @@ -4901,7 +4903,7 @@ e1000_read_eeprom(struct e1000_hw *hw, e1000_standby_eeprom(hw); /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if((eeprom->address_bits == 8) && (offset >= 128)) + if ((eeprom->address_bits == 8) && (offset >= 128)) read_opcode |= EEPROM_A8_OPCODE_SPI; /* Send the READ command (opcode + addr) */ @@ -4917,7 +4919,7 @@ e1000_read_eeprom(struct e1000_hw *hw, word_in = e1000_shift_in_ee_bits(hw, 16); data[i] = (word_in >> 8) | (word_in << 8); } - } else if(eeprom->type == e1000_eeprom_microwire) { + } else if (eeprom->type == e1000_eeprom_microwire) { for (i = 0; i < words; i++) { /* Send the READ command (opcode + addr) */ e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, @@ -4962,7 +4964,7 @@ e1000_read_eeprom_eerd(struct e1000_hw *hw, E1000_WRITE_REG(hw, EERD, eerd); error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); - if(error) { + if (error) { break; } data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); @@ -4999,7 +5001,7 @@ e1000_write_eeprom_eewr(struct e1000_hw *hw, E1000_EEPROM_RW_REG_START; error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); - if(error) { + if (error) { break; } @@ -5007,7 +5009,7 @@ e1000_write_eeprom_eewr(struct e1000_hw *hw, error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); - if(error) { + if (error) { break; } } @@ -5028,13 +5030,13 @@ e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) uint32_t i, reg = 0; int32_t done = E1000_ERR_EEPROM; - for(i = 0; i < attempts; i++) { - if(eerd == E1000_EEPROM_POLL_READ) + for (i = 0; i < attempts; i++) { + if (eerd == E1000_EEPROM_POLL_READ) reg = E1000_READ_REG(hw, EERD); else reg = E1000_READ_REG(hw, EEWR); - if(reg & E1000_EEPROM_RW_REG_DONE) { + if (reg & E1000_EEPROM_RW_REG_DONE) { done = E1000_SUCCESS; break; } @@ -5066,7 +5068,7 @@ e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) eecd = ((eecd >> 15) & 0x03); /* If both bits are set, device is Flash type */ - if(eecd == 0x03) { + if (eecd == 0x03) { return FALSE; } } @@ -5131,7 +5133,7 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw) checksum += eeprom_data; } - if(checksum == (uint16_t) EEPROM_SUM) + if (checksum == (uint16_t) EEPROM_SUM) return E1000_SUCCESS; else { DEBUGOUT("EEPROM Checksum Invalid\n"); @@ -5156,15 +5158,15 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw) DEBUGFUNC("e1000_update_eeprom_checksum"); - for(i = 0; i < EEPROM_CHECKSUM_REG; i++) { - if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { + if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } checksum += eeprom_data; } checksum = (uint16_t) EEPROM_SUM - checksum; - if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { + if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { DEBUGOUT("EEPROM Write Error\n"); return -E1000_ERR_EEPROM; } else if (hw->eeprom.type == e1000_eeprom_flash) { @@ -5206,14 +5208,14 @@ e1000_write_eeprom(struct e1000_hw *hw, /* A check for invalid values: offset too large, too many words, and not * enough words. */ - if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || + if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || (words == 0)) { DEBUGOUT("\"words\" parameter out of bounds\n"); return -E1000_ERR_EEPROM; } /* 82573 writes only through eewr */ - if(eeprom->use_eewr == TRUE) + if (eeprom->use_eewr == TRUE) return e1000_write_eeprom_eewr(hw, offset, words, data); if (eeprom->type == e1000_eeprom_ich8) @@ -5223,7 +5225,7 @@ e1000_write_eeprom(struct e1000_hw *hw, if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) return -E1000_ERR_EEPROM; - if(eeprom->type == e1000_eeprom_microwire) { + if (eeprom->type == e1000_eeprom_microwire) { status = e1000_write_eeprom_microwire(hw, offset, words, data); } else { status = e1000_write_eeprom_spi(hw, offset, words, data); @@ -5259,7 +5261,7 @@ e1000_write_eeprom_spi(struct e1000_hw *hw, while (widx < words) { uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; - if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; + if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; e1000_standby_eeprom(hw); @@ -5270,7 +5272,7 @@ e1000_write_eeprom_spi(struct e1000_hw *hw, e1000_standby_eeprom(hw); /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if((eeprom->address_bits == 8) && (offset >= 128)) + if ((eeprom->address_bits == 8) && (offset >= 128)) write_opcode |= EEPROM_A8_OPCODE_SPI; /* Send the Write command (8-bit opcode + addr) */ @@ -5292,7 +5294,7 @@ e1000_write_eeprom_spi(struct e1000_hw *hw, * operation, while the smaller eeproms are capable of an 8-byte * PAGE WRITE operation. Break the inner loop to pass new address */ - if((((offset + widx)*2) % eeprom->page_size) == 0) { + if ((((offset + widx)*2) % eeprom->page_size) == 0) { e1000_standby_eeprom(hw); break; } @@ -5358,12 +5360,12 @@ e1000_write_eeprom_microwire(struct e1000_hw *hw, * signal that the command has been completed by raising the DO signal. * If DO does not go high in 10 milliseconds, then error out. */ - for(i = 0; i < 200; i++) { + for (i = 0; i < 200; i++) { eecd = E1000_READ_REG(hw, EECD); - if(eecd & E1000_EECD_DO) break; + if (eecd & E1000_EECD_DO) break; udelay(50); } - if(i == 200) { + if (i == 200) { DEBUGOUT("EEPROM Write did not complete\n"); return -E1000_ERR_EEPROM; } @@ -5569,7 +5571,7 @@ e1000_read_part_num(struct e1000_hw *hw, DEBUGFUNC("e1000_read_part_num"); /* Get word 0 from EEPROM */ - if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { + if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } @@ -5577,7 +5579,7 @@ e1000_read_part_num(struct e1000_hw *hw, *part_num = (uint32_t) (eeprom_data << 16); /* Get word 1 from EEPROM */ - if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { + if (e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } @@ -5601,9 +5603,9 @@ e1000_read_mac_addr(struct e1000_hw * hw) DEBUGFUNC("e1000_read_mac_addr"); - for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) { + for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { offset = i >> 1; - if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { + if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } @@ -5618,12 +5620,12 @@ e1000_read_mac_addr(struct e1000_hw * hw) case e1000_82546_rev_3: case e1000_82571: case e1000_80003es2lan: - if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) + if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) hw->perm_mac_addr[5] ^= 0x01; break; } - for(i = 0; i < NODE_ADDRESS_SIZE; i++) + for (i = 0; i < NODE_ADDRESS_SIZE; i++) hw->mac_addr[i] = hw->perm_mac_addr[i]; return E1000_SUCCESS; } @@ -5662,7 +5664,7 @@ e1000_init_rx_addrs(struct e1000_hw *hw) /* Zero out the other 15 receive addresses. */ DEBUGOUT("Clearing RAR[1-15]\n"); - for(i = 1; i < rar_num; i++) { + for (i = 1; i < rar_num; i++) { E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); @@ -5713,7 +5715,7 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) num_rar_entry -= 1; - for(i = rar_used_count; i < num_rar_entry; i++) { + for (i = rar_used_count; i < num_rar_entry; i++) { E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); E1000_WRITE_FLUSH(hw); E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); @@ -5725,13 +5727,13 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, num_mta_entry = E1000_NUM_MTA_REGISTERS; if (hw->mac_type == e1000_ich8lan) num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN; - for(i = 0; i < num_mta_entry; i++) { + for (i = 0; i < num_mta_entry; i++) { E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); E1000_WRITE_FLUSH(hw); } /* Add the new addresses */ - for(i = 0; i < mc_addr_count; i++) { + for (i = 0; i < mc_addr_count; i++) { DEBUGOUT(" Adding the multicast addresses:\n"); DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], @@ -5863,7 +5865,7 @@ e1000_mta_set(struct e1000_hw *hw, * in the MTA, save off the previous entry before writing and * restore the old value after writing. */ - if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { + if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); E1000_WRITE_FLUSH(hw); @@ -6013,7 +6015,7 @@ e1000_id_led_init(struct e1000_hw * hw) DEBUGFUNC("e1000_id_led_init"); - if(hw->mac_type < e1000_82540) { + if (hw->mac_type < e1000_82540) { /* Nothing to do */ return E1000_SUCCESS; } @@ -6023,7 +6025,7 @@ e1000_id_led_init(struct e1000_hw * hw) hw->ledctl_mode1 = hw->ledctl_default; hw->ledctl_mode2 = hw->ledctl_default; - if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { + if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } @@ -6040,7 +6042,7 @@ e1000_id_led_init(struct e1000_hw * hw) } for (i = 0; i < 4; i++) { temp = (eeprom_data >> (i << 2)) & led_mask; - switch(temp) { + switch (temp) { case ID_LED_ON1_DEF2: case ID_LED_ON1_ON2: case ID_LED_ON1_OFF2: @@ -6057,7 +6059,7 @@ e1000_id_led_init(struct e1000_hw * hw) /* Do nothing */ break; } - switch(temp) { + switch (temp) { case ID_LED_DEF1_ON2: case ID_LED_ON1_ON2: case ID_LED_OFF1_ON2: @@ -6091,7 +6093,7 @@ e1000_setup_led(struct e1000_hw *hw) DEBUGFUNC("e1000_setup_led"); - switch(hw->mac_type) { + switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: @@ -6105,16 +6107,16 @@ e1000_setup_led(struct e1000_hw *hw) /* Turn off PHY Smart Power Down (if enabled) */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &hw->phy_spd_default); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, (uint16_t)(hw->phy_spd_default & ~IGP01E1000_GMII_SPD)); - if(ret_val) + if (ret_val) return ret_val; /* Fall Through */ default: - if(hw->media_type == e1000_media_type_fiber) { + if (hw->media_type == e1000_media_type_fiber) { ledctl = E1000_READ_REG(hw, LEDCTL); /* Save current LEDCTL settings */ hw->ledctl_default = ledctl; @@ -6125,7 +6127,7 @@ e1000_setup_led(struct e1000_hw *hw) ledctl |= (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT); E1000_WRITE_REG(hw, LEDCTL, ledctl); - } else if(hw->media_type == e1000_media_type_copper) + } else if (hw->media_type == e1000_media_type_copper) E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); break; } @@ -6133,6 +6135,7 @@ e1000_setup_led(struct e1000_hw *hw) return E1000_SUCCESS; } + /****************************************************************************** * Used on 82571 and later Si that has LED blink bits. * Callers must use their own timer and should have already called @@ -6183,7 +6186,7 @@ e1000_cleanup_led(struct e1000_hw *hw) DEBUGFUNC("e1000_cleanup_led"); - switch(hw->mac_type) { + switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: @@ -6197,7 +6200,7 @@ e1000_cleanup_led(struct e1000_hw *hw) /* Turn on PHY Smart Power Down (if previously enabled) */ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, hw->phy_spd_default); - if(ret_val) + if (ret_val) return ret_val; /* Fall Through */ default: @@ -6225,7 +6228,7 @@ e1000_led_on(struct e1000_hw *hw) DEBUGFUNC("e1000_led_on"); - switch(hw->mac_type) { + switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: @@ -6234,7 +6237,7 @@ e1000_led_on(struct e1000_hw *hw) ctrl |= E1000_CTRL_SWDPIO0; break; case e1000_82544: - if(hw->media_type == e1000_media_type_fiber) { + if (hw->media_type == e1000_media_type_fiber) { /* Set SW Defineable Pin 0 to turn on the LED */ ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; @@ -6245,7 +6248,7 @@ e1000_led_on(struct e1000_hw *hw) } break; default: - if(hw->media_type == e1000_media_type_fiber) { + if (hw->media_type == e1000_media_type_fiber) { /* Clear SW Defineable Pin 0 to turn on the LED */ ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; @@ -6276,7 +6279,7 @@ e1000_led_off(struct e1000_hw *hw) DEBUGFUNC("e1000_led_off"); - switch(hw->mac_type) { + switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: @@ -6285,7 +6288,7 @@ e1000_led_off(struct e1000_hw *hw) ctrl |= E1000_CTRL_SWDPIO0; break; case e1000_82544: - if(hw->media_type == e1000_media_type_fiber) { + if (hw->media_type == e1000_media_type_fiber) { /* Clear SW Defineable Pin 0 to turn off the LED */ ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; @@ -6296,7 +6299,7 @@ e1000_led_off(struct e1000_hw *hw) } break; default: - if(hw->media_type == e1000_media_type_fiber) { + if (hw->media_type == e1000_media_type_fiber) { /* Set SW Defineable Pin 0 to turn off the LED */ ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; @@ -6320,7 +6323,7 @@ e1000_led_off(struct e1000_hw *hw) * * hw - Struct containing variables accessed by shared code *****************************************************************************/ -static void +void e1000_clear_hw_cntrs(struct e1000_hw *hw) { volatile uint32_t temp; @@ -6383,7 +6386,7 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) temp = E1000_READ_REG(hw, MPTC); temp = E1000_READ_REG(hw, BPTC); - if(hw->mac_type < e1000_82543) return; + if (hw->mac_type < e1000_82543) return; temp = E1000_READ_REG(hw, ALGNERRC); temp = E1000_READ_REG(hw, RXERRC); @@ -6392,13 +6395,13 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) temp = E1000_READ_REG(hw, TSCTC); temp = E1000_READ_REG(hw, TSCTFC); - if(hw->mac_type <= e1000_82544) return; + if (hw->mac_type <= e1000_82544) return; temp = E1000_READ_REG(hw, MGTPRC); temp = E1000_READ_REG(hw, MGTPDC); temp = E1000_READ_REG(hw, MGTPTC); - if(hw->mac_type <= e1000_82547_rev_2) return; + if (hw->mac_type <= e1000_82547_rev_2) return; temp = E1000_READ_REG(hw, IAC); temp = E1000_READ_REG(hw, ICRXOC); @@ -6429,8 +6432,8 @@ e1000_reset_adaptive(struct e1000_hw *hw) { DEBUGFUNC("e1000_reset_adaptive"); - if(hw->adaptive_ifs) { - if(!hw->ifs_params_forced) { + if (hw->adaptive_ifs) { + if (!hw->ifs_params_forced) { hw->current_ifs_val = 0; hw->ifs_min_val = IFS_MIN; hw->ifs_max_val = IFS_MAX; @@ -6457,12 +6460,12 @@ e1000_update_adaptive(struct e1000_hw *hw) { DEBUGFUNC("e1000_update_adaptive"); - if(hw->adaptive_ifs) { - if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { - if(hw->tx_packet_delta > MIN_NUM_XMITS) { + if (hw->adaptive_ifs) { + if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { + if (hw->tx_packet_delta > MIN_NUM_XMITS) { hw->in_ifs_mode = TRUE; - if(hw->current_ifs_val < hw->ifs_max_val) { - if(hw->current_ifs_val == 0) + if (hw->current_ifs_val < hw->ifs_max_val) { + if (hw->current_ifs_val == 0) hw->current_ifs_val = hw->ifs_min_val; else hw->current_ifs_val += hw->ifs_step_size; @@ -6470,7 +6473,7 @@ e1000_update_adaptive(struct e1000_hw *hw) } } } else { - if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { + if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { hw->current_ifs_val = 0; hw->in_ifs_mode = FALSE; E1000_WRITE_REG(hw, AIT, 0); @@ -6517,46 +6520,46 @@ e1000_tbi_adjust_stats(struct e1000_hw *hw, * This could be simplified if all environments supported * 64-bit integers. */ - if(carry_bit && ((stats->gorcl & 0x80000000) == 0)) + if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) stats->gorch++; /* Is this a broadcast or multicast? Check broadcast first, * since the test for a multicast frame will test positive on * a broadcast frame. */ - if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) + if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) /* Broadcast packet */ stats->bprc++; - else if(*mac_addr & 0x01) + else if (*mac_addr & 0x01) /* Multicast packet */ stats->mprc++; - if(frame_len == hw->max_frame_size) { + if (frame_len == hw->max_frame_size) { /* In this case, the hardware has overcounted the number of * oversize frames. */ - if(stats->roc > 0) + if (stats->roc > 0) stats->roc--; } /* Adjust the bin counters when the extra byte put the frame in the * wrong bin. Remember that the frame_len was adjusted above. */ - if(frame_len == 64) { + if (frame_len == 64) { stats->prc64++; stats->prc127--; - } else if(frame_len == 127) { + } else if (frame_len == 127) { stats->prc127++; stats->prc255--; - } else if(frame_len == 255) { + } else if (frame_len == 255) { stats->prc255++; stats->prc511--; - } else if(frame_len == 511) { + } else if (frame_len == 511) { stats->prc511++; stats->prc1023--; - } else if(frame_len == 1023) { + } else if (frame_len == 1023) { stats->prc1023++; stats->prc1522--; - } else if(frame_len == 1522) { + } else if (frame_len == 1522) { stats->prc1522++; } } @@ -6596,10 +6599,10 @@ e1000_get_bus_info(struct e1000_hw *hw) hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? e1000_bus_type_pcix : e1000_bus_type_pci; - if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { + if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? e1000_bus_speed_66 : e1000_bus_speed_120; - } else if(hw->bus_type == e1000_bus_type_pci) { + } else if (hw->bus_type == e1000_bus_type_pci) { hw->bus_speed = (status & E1000_STATUS_PCI66) ? e1000_bus_speed_66 : e1000_bus_speed_33; } else { @@ -6694,11 +6697,11 @@ e1000_get_cable_length(struct e1000_hw *hw, *min_length = *max_length = 0; /* Use old method for Phy older than IGP */ - if(hw->phy_type == e1000_phy_m88) { + if (hw->phy_type == e1000_phy_m88) { ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> M88E1000_PSSR_CABLE_LENGTH_SHIFT; @@ -6757,7 +6760,7 @@ e1000_get_cable_length(struct e1000_hw *hw, return -E1000_ERR_PHY; break; } - } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ + } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ uint16_t cur_agc_value; uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = @@ -6766,10 +6769,10 @@ e1000_get_cable_length(struct e1000_hw *hw, IGP01E1000_PHY_AGC_C, IGP01E1000_PHY_AGC_D}; /* Read the AGC registers for all channels */ - for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); - if(ret_val) + if (ret_val) return ret_val; cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; @@ -6819,7 +6822,7 @@ e1000_get_cable_length(struct e1000_hw *hw, if (ret_val) return ret_val; - /* Getting bits 15:9, which represent the combination of course and + /* Getting bits 15:9, which represent the combination of course and * fine gain values. The result is a number that can be put into * the lookup table to obtain the approximate cable length. */ cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & @@ -6884,7 +6887,7 @@ e1000_check_polarity(struct e1000_hw *hw, /* return the Polarity bit in the Status register. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> M88E1000_PSSR_REV_POLARITY_SHIFT; @@ -6894,18 +6897,18 @@ e1000_check_polarity(struct e1000_hw *hw, /* Read the Status register to check the speed */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to * find the polarity status */ - if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { /* Read the GIG initialization PCS register (0x00B4) */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, &phy_data); - if(ret_val) + if (ret_val) return ret_val; /* Check the polarity bits */ @@ -6954,7 +6957,7 @@ e1000_check_downshift(struct e1000_hw *hw) hw->phy_type == e1000_phy_igp_2) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, &phy_data); - if(ret_val) + if (ret_val) return ret_val; hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; @@ -6962,7 +6965,7 @@ e1000_check_downshift(struct e1000_hw *hw) (hw->phy_type == e1000_phy_gg82563)) { ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> @@ -7002,42 +7005,42 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, DEBUGFUNC("e1000_config_dsp_after_link_change"); - if(hw->phy_type != e1000_phy_igp) + if (hw->phy_type != e1000_phy_igp) return E1000_SUCCESS; - if(link_up) { + if (link_up) { ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); - if(ret_val) { + if (ret_val) { DEBUGOUT("Error getting link speed and duplex\n"); return ret_val; } - if(speed == SPEED_1000) { + if (speed == SPEED_1000) { ret_val = e1000_get_cable_length(hw, &min_length, &max_length); if (ret_val) return ret_val; - if((hw->dsp_config_state == e1000_dsp_config_enabled) && + if ((hw->dsp_config_state == e1000_dsp_config_enabled) && min_length >= e1000_igp_cable_length_50) { - for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], phy_data); - if(ret_val) + if (ret_val) return ret_val; } hw->dsp_config_state = e1000_dsp_config_activated; } - if((hw->ffe_config_state == e1000_ffe_config_enabled) && + if ((hw->ffe_config_state == e1000_ffe_config_enabled) && (min_length < e1000_igp_cable_length_50)) { uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; @@ -7046,70 +7049,70 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, /* clear previous idle error counts */ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; - for(i = 0; i < ffe_idle_err_timeout; i++) { + for (i = 0; i < ffe_idle_err_timeout; i++) { udelay(1000); ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if(ret_val) + if (ret_val) return ret_val; idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); - if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { + if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { hw->ffe_config_state = e1000_ffe_config_active; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, IGP01E1000_PHY_DSP_FFE_CM_CP); - if(ret_val) + if (ret_val) return ret_val; break; } - if(idle_errs) + if (idle_errs) ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; } } } } else { - if(hw->dsp_config_state == e1000_dsp_config_activated) { + if (hw->dsp_config_state == e1000_dsp_config_activated) { /* Save off the current value of register 0x2F5B to be restored at * the end of the routines. */ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - if(ret_val) + if (ret_val) return ret_val; /* Disable the PHY transmitter */ ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(20); ret_val = e1000_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_FORCE_GIGA); - if(ret_val) + if (ret_val) return ret_val; - for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); - if(ret_val) + if (ret_val) return ret_val; } ret_val = e1000_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_RESTART_AUTONEG); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(20); @@ -7117,40 +7120,40 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, /* Now enable the transmitter */ ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); - if(ret_val) + if (ret_val) return ret_val; hw->dsp_config_state = e1000_dsp_config_enabled; } - if(hw->ffe_config_state == e1000_ffe_config_active) { + if (hw->ffe_config_state == e1000_ffe_config_active) { /* Save off the current value of register 0x2F5B to be restored at * the end of the routines. */ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - if(ret_val) + if (ret_val) return ret_val; /* Disable the PHY transmitter */ ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(20); ret_val = e1000_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_FORCE_GIGA); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, IGP01E1000_PHY_DSP_FFE_DEFAULT); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_RESTART_AUTONEG); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(20); @@ -7158,7 +7161,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, /* Now enable the transmitter */ ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); - if(ret_val) + if (ret_val) return ret_val; hw->ffe_config_state = e1000_ffe_config_enabled; @@ -7183,20 +7186,20 @@ e1000_set_phy_mode(struct e1000_hw *hw) DEBUGFUNC("e1000_set_phy_mode"); - if((hw->mac_type == e1000_82545_rev_3) && - (hw->media_type == e1000_media_type_copper)) { + if ((hw->mac_type == e1000_82545_rev_3) && + (hw->media_type == e1000_media_type_copper)) { ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); - if(ret_val) { + if (ret_val) { return ret_val; } - if((eeprom_data != EEPROM_RESERVED_WORD) && - (eeprom_data & EEPROM_PHY_CLASS_A)) { + if ((eeprom_data != EEPROM_RESERVED_WORD) && + (eeprom_data & EEPROM_PHY_CLASS_A)) { ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); - if(ret_val) + if (ret_val) return ret_val; hw->phy_reset_disable = FALSE; @@ -7247,16 +7250,16 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); } else { ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); - if(ret_val) + if (ret_val) return ret_val; } - if(!active) { - if(hw->mac_type == e1000_82541_rev_2 || - hw->mac_type == e1000_82547_rev_2) { + if (!active) { + if (hw->mac_type == e1000_82541_rev_2 || + hw->mac_type == e1000_82547_rev_2) { phy_data &= ~IGP01E1000_GMII_FLEX_SPD; ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); - if(ret_val) + if (ret_val) return ret_val; } else { if (hw->mac_type == e1000_ich8lan) { @@ -7278,13 +7281,13 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, if (hw->smart_speed == e1000_smart_speed_on) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if(ret_val) + if (ret_val) return ret_val; } else if (hw->smart_speed == e1000_smart_speed_off) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, @@ -7295,19 +7298,19 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if(ret_val) + if (ret_val) return ret_val; } - } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || - (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || - (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { + } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || + (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || + (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { - if(hw->mac_type == e1000_82541_rev_2 || + if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { phy_data |= IGP01E1000_GMII_FLEX_SPD; ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); - if(ret_val) + if (ret_val) return ret_val; } else { if (hw->mac_type == e1000_ich8lan) { @@ -7324,12 +7327,12 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, /* When LPLU is enabled we should disable SmartSpeed */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if(ret_val) + if (ret_val) return ret_val; } @@ -7359,14 +7362,14 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw, uint16_t phy_data; DEBUGFUNC("e1000_set_d0_lplu_state"); - if(hw->mac_type <= e1000_82547_rev_2) + if (hw->mac_type <= e1000_82547_rev_2) return E1000_SUCCESS; if (hw->mac_type == e1000_ich8lan) { phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); } else { ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); - if(ret_val) + if (ret_val) return ret_val; } @@ -7388,13 +7391,13 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw, if (hw->smart_speed == e1000_smart_speed_on) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if(ret_val) + if (ret_val) return ret_val; } else if (hw->smart_speed == e1000_smart_speed_off) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, @@ -7405,7 +7408,7 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw, phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if(ret_val) + if (ret_val) return ret_val; } @@ -7424,12 +7427,12 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw, /* When LPLU is enabled we should disable SmartSpeed */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if(ret_val) + if (ret_val) return ret_val; } @@ -7450,7 +7453,7 @@ e1000_set_vco_speed(struct e1000_hw *hw) DEBUGFUNC("e1000_set_vco_speed"); - switch(hw->mac_type) { + switch (hw->mac_type) { case e1000_82545_rev_3: case e1000_82546_rev_3: break; @@ -7461,39 +7464,39 @@ e1000_set_vco_speed(struct e1000_hw *hw) /* Set PHY register 30, page 5, bit 8 to 0 */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if(ret_val) + if (ret_val) return ret_val; /* Set PHY register 30, page 4, bit 11 to 1 */ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if(ret_val) + if (ret_val) return ret_val; phy_data |= M88E1000_PHY_VCO_REG_BIT11; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); - if(ret_val) + if (ret_val) return ret_val; return E1000_SUCCESS; @@ -7572,7 +7575,7 @@ e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer, { uint8_t *tmp; uint8_t *bufptr = buffer; - uint32_t data; + uint32_t data = 0; uint16_t remaining, i, j, prev_bytes; /* sum = only sum of the data and it is not checksum */ @@ -7652,7 +7655,7 @@ e1000_mng_write_cmd_header(struct e1000_hw * hw, buffer = (uint8_t *) hdr; i = length; - while(i--) + while (i--) sum += buffer[i]; hdr->checksum = 0 - sum; @@ -7675,8 +7678,7 @@ e1000_mng_write_cmd_header(struct e1000_hw * hw, * returns - E1000_SUCCESS for success. ****************************************************************************/ static int32_t -e1000_mng_write_commit( - struct e1000_hw * hw) +e1000_mng_write_commit(struct e1000_hw * hw) { uint32_t hicr; @@ -7848,31 +7850,31 @@ e1000_polarity_reversal_workaround(struct e1000_hw *hw) /* Disable the transmitter on the PHY */ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if(ret_val) + if (ret_val) return ret_val; /* This loop will early-out if the NO link condition has been met. */ - for(i = PHY_FORCE_TIME; i > 0; i--) { + for (i = PHY_FORCE_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Link Status bit * to be clear. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; - if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; + if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; msec_delay_irq(100); } @@ -7882,40 +7884,40 @@ e1000_polarity_reversal_workaround(struct e1000_hw *hw) /* Now we will re-enable th transmitter on the PHY */ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(50); ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(50); ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); - if(ret_val) + if (ret_val) return ret_val; msec_delay_irq(50); ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if(ret_val) + if (ret_val) return ret_val; /* This loop will early-out if the link condition has been met. */ - for(i = PHY_FORCE_TIME; i > 0; i--) { + for (i = PHY_FORCE_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Link Status bit * to be set. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if(ret_val) + if (ret_val) return ret_val; - if(mii_status_reg & MII_SR_LINK_STATUS) break; + if (mii_status_reg & MII_SR_LINK_STATUS) break; msec_delay_irq(100); } return E1000_SUCCESS; @@ -7994,15 +7996,15 @@ e1000_disable_pciex_master(struct e1000_hw *hw) e1000_set_pci_express_master_disable(hw); - while(timeout) { - if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) + while (timeout) { + if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) break; else udelay(100); timeout--; } - if(!timeout) { + if (!timeout) { DEBUGOUT("Master requests are pending.\n"); return -E1000_ERR_MASTER_REQUESTS_PENDING; } @@ -8043,7 +8045,7 @@ e1000_get_auto_rd_done(struct e1000_hw *hw) timeout--; } - if(!timeout) { + if (!timeout) { DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); return -E1000_ERR_RESET; } @@ -8124,7 +8126,7 @@ e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) DEBUGFUNC("e1000_get_hw_eeprom_semaphore"); - if(!hw->eeprom_semaphore_present) + if (!hw->eeprom_semaphore_present) return E1000_SUCCESS; if (hw->mac_type == e1000_80003es2lan) { @@ -8135,20 +8137,20 @@ e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) /* Get the FW semaphore. */ timeout = hw->eeprom.word_size + 1; - while(timeout) { + while (timeout) { swsm = E1000_READ_REG(hw, SWSM); swsm |= E1000_SWSM_SWESMBI; E1000_WRITE_REG(hw, SWSM, swsm); /* if we managed to set the bit we got the semaphore. */ swsm = E1000_READ_REG(hw, SWSM); - if(swsm & E1000_SWSM_SWESMBI) + if (swsm & E1000_SWSM_SWESMBI) break; udelay(50); timeout--; } - if(!timeout) { + if (!timeout) { /* Release semaphores */ e1000_put_hw_eeprom_semaphore(hw); DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); @@ -8173,7 +8175,7 @@ e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) DEBUGFUNC("e1000_put_hw_eeprom_semaphore"); - if(!hw->eeprom_semaphore_present) + if (!hw->eeprom_semaphore_present) return; swsm = E1000_READ_REG(hw, SWSM); @@ -8206,16 +8208,16 @@ e1000_get_software_semaphore(struct e1000_hw *hw) if (hw->mac_type != e1000_80003es2lan) return E1000_SUCCESS; - while(timeout) { + while (timeout) { swsm = E1000_READ_REG(hw, SWSM); /* If SMBI bit cleared, it is now set and we hold the semaphore */ - if(!(swsm & E1000_SWSM_SMBI)) + if (!(swsm & E1000_SWSM_SMBI)) break; msec_delay_irq(1); timeout--; } - if(!timeout) { + if (!timeout) { DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); return -E1000_ERR_RESET; } @@ -8291,7 +8293,7 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw) case e1000_82573: case e1000_80003es2lan: fwsm = E1000_READ_REG(hw, FWSM); - if((fwsm & E1000_FWSM_MODE_MASK) != 0) + if ((fwsm & E1000_FWSM_MODE_MASK) != 0) return TRUE; break; case e1000_ich8lan: |