summaryrefslogtreecommitdiff
path: root/drivers/net/wan/z85230.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/wan/z85230.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/net/wan/z85230.c')
-rw-r--r--drivers/net/wan/z85230.c1851
1 files changed, 1851 insertions, 0 deletions
diff --git a/drivers/net/wan/z85230.c b/drivers/net/wan/z85230.c
new file mode 100644
index 000000000000..caa48f12fd0f
--- /dev/null
+++ b/drivers/net/wan/z85230.c
@@ -0,0 +1,1851 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ *
+ * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
+ * (c) Copyright 2000, 2001 Red Hat Inc
+ *
+ * Development of this driver was funded by Equiinet Ltd
+ * http://www.equiinet.com
+ *
+ * ChangeLog:
+ *
+ * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
+ * unification of all the Z85x30 asynchronous drivers for real.
+ *
+ * DMA now uses get_free_page as kmalloc buffers may span a 64K
+ * boundary.
+ *
+ * Modified for SMP safety and SMP locking by Alan Cox <alan@redhat.com>
+ *
+ * Performance
+ *
+ * Z85230:
+ * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
+ * X.25 is not unrealistic on all machines. DMA mode can in theory
+ * handle T1/E1 quite nicely. In practice the limit seems to be about
+ * 512Kbit->1Mbit depending on motherboard.
+ *
+ * Z85C30:
+ * 64K will take DMA, 9600 baud X.25 should be ok.
+ *
+ * Z8530:
+ * Synchronous mode without DMA is unlikely to pass about 2400 baud.
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/net.h>
+#include <linux/skbuff.h>
+#include <linux/netdevice.h>
+#include <linux/if_arp.h>
+#include <linux/delay.h>
+#include <linux/ioport.h>
+#include <linux/init.h>
+#include <asm/dma.h>
+#include <asm/io.h>
+#define RT_LOCK
+#define RT_UNLOCK
+#include <linux/spinlock.h>
+
+#include <net/syncppp.h>
+#include "z85230.h"
+
+
+/**
+ * z8530_read_port - Architecture specific interface function
+ * @p: port to read
+ *
+ * Provided port access methods. The Comtrol SV11 requires no delays
+ * between accesses and uses PC I/O. Some drivers may need a 5uS delay
+ *
+ * In the longer term this should become an architecture specific
+ * section so that this can become a generic driver interface for all
+ * platforms. For now we only handle PC I/O ports with or without the
+ * dread 5uS sanity delay.
+ *
+ * The caller must hold sufficient locks to avoid violating the horrible
+ * 5uS delay rule.
+ */
+
+static inline int z8530_read_port(unsigned long p)
+{
+ u8 r=inb(Z8530_PORT_OF(p));
+ if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
+ udelay(5);
+ return r;
+}
+
+/**
+ * z8530_write_port - Architecture specific interface function
+ * @p: port to write
+ * @d: value to write
+ *
+ * Write a value to a port with delays if need be. Note that the
+ * caller must hold locks to avoid read/writes from other contexts
+ * violating the 5uS rule
+ *
+ * In the longer term this should become an architecture specific
+ * section so that this can become a generic driver interface for all
+ * platforms. For now we only handle PC I/O ports with or without the
+ * dread 5uS sanity delay.
+ */
+
+
+static inline void z8530_write_port(unsigned long p, u8 d)
+{
+ outb(d,Z8530_PORT_OF(p));
+ if(p&Z8530_PORT_SLEEP)
+ udelay(5);
+}
+
+
+
+static void z8530_rx_done(struct z8530_channel *c);
+static void z8530_tx_done(struct z8530_channel *c);
+
+
+/**
+ * read_zsreg - Read a register from a Z85230
+ * @c: Z8530 channel to read from (2 per chip)
+ * @reg: Register to read
+ * FIXME: Use a spinlock.
+ *
+ * Most of the Z8530 registers are indexed off the control registers.
+ * A read is done by writing to the control register and reading the
+ * register back. The caller must hold the lock
+ */
+
+static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
+{
+ if(reg)
+ z8530_write_port(c->ctrlio, reg);
+ return z8530_read_port(c->ctrlio);
+}
+
+/**
+ * read_zsdata - Read the data port of a Z8530 channel
+ * @c: The Z8530 channel to read the data port from
+ *
+ * The data port provides fast access to some things. We still
+ * have all the 5uS delays to worry about.
+ */
+
+static inline u8 read_zsdata(struct z8530_channel *c)
+{
+ u8 r;
+ r=z8530_read_port(c->dataio);
+ return r;
+}
+
+/**
+ * write_zsreg - Write to a Z8530 channel register
+ * @c: The Z8530 channel
+ * @reg: Register number
+ * @val: Value to write
+ *
+ * Write a value to an indexed register. The caller must hold the lock
+ * to honour the irritating delay rules. We know about register 0
+ * being fast to access.
+ *
+ * Assumes c->lock is held.
+ */
+static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
+{
+ if(reg)
+ z8530_write_port(c->ctrlio, reg);
+ z8530_write_port(c->ctrlio, val);
+
+}
+
+/**
+ * write_zsctrl - Write to a Z8530 control register
+ * @c: The Z8530 channel
+ * @val: Value to write
+ *
+ * Write directly to the control register on the Z8530
+ */
+
+static inline void write_zsctrl(struct z8530_channel *c, u8 val)
+{
+ z8530_write_port(c->ctrlio, val);
+}
+
+/**
+ * write_zsdata - Write to a Z8530 control register
+ * @c: The Z8530 channel
+ * @val: Value to write
+ *
+ * Write directly to the data register on the Z8530
+ */
+
+
+static inline void write_zsdata(struct z8530_channel *c, u8 val)
+{
+ z8530_write_port(c->dataio, val);
+}
+
+/*
+ * Register loading parameters for a dead port
+ */
+
+u8 z8530_dead_port[]=
+{
+ 255
+};
+
+EXPORT_SYMBOL(z8530_dead_port);
+
+/*
+ * Register loading parameters for currently supported circuit types
+ */
+
+
+/*
+ * Data clocked by telco end. This is the correct data for the UK
+ * "kilostream" service, and most other similar services.
+ */
+
+u8 z8530_hdlc_kilostream[]=
+{
+ 4, SYNC_ENAB|SDLC|X1CLK,
+ 2, 0, /* No vector */
+ 1, 0,
+ 3, ENT_HM|RxCRC_ENAB|Rx8,
+ 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
+ 9, 0, /* Disable interrupts */
+ 6, 0xFF,
+ 7, FLAG,
+ 10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
+ 11, TCTRxCP,
+ 14, DISDPLL,
+ 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
+ 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
+ 9, NV|MIE|NORESET,
+ 255
+};
+
+EXPORT_SYMBOL(z8530_hdlc_kilostream);
+
+/*
+ * As above but for enhanced chips.
+ */
+
+u8 z8530_hdlc_kilostream_85230[]=
+{
+ 4, SYNC_ENAB|SDLC|X1CLK,
+ 2, 0, /* No vector */
+ 1, 0,
+ 3, ENT_HM|RxCRC_ENAB|Rx8,
+ 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
+ 9, 0, /* Disable interrupts */
+ 6, 0xFF,
+ 7, FLAG,
+ 10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */
+ 11, TCTRxCP,
+ 14, DISDPLL,
+ 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
+ 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
+ 9, NV|MIE|NORESET,
+ 23, 3, /* Extended mode AUTO TX and EOM*/
+
+ 255
+};
+
+EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
+
+/**
+ * z8530_flush_fifo - Flush on chip RX FIFO
+ * @c: Channel to flush
+ *
+ * Flush the receive FIFO. There is no specific option for this, we
+ * blindly read bytes and discard them. Reading when there is no data
+ * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
+ *
+ * All locking is handled for the caller. On return data may still be
+ * present if it arrived during the flush.
+ */
+
+static void z8530_flush_fifo(struct z8530_channel *c)
+{
+ read_zsreg(c, R1);
+ read_zsreg(c, R1);
+ read_zsreg(c, R1);
+ read_zsreg(c, R1);
+ if(c->dev->type==Z85230)
+ {
+ read_zsreg(c, R1);
+ read_zsreg(c, R1);
+ read_zsreg(c, R1);
+ read_zsreg(c, R1);
+ }
+}
+
+/**
+ * z8530_rtsdtr - Control the outgoing DTS/RTS line
+ * @c: The Z8530 channel to control;
+ * @set: 1 to set, 0 to clear
+ *
+ * Sets or clears DTR/RTS on the requested line. All locking is handled
+ * by the caller. For now we assume all boards use the actual RTS/DTR
+ * on the chip. Apparently one or two don't. We'll scream about them
+ * later.
+ */
+
+static void z8530_rtsdtr(struct z8530_channel *c, int set)
+{
+ if (set)
+ c->regs[5] |= (RTS | DTR);
+ else
+ c->regs[5] &= ~(RTS | DTR);
+ write_zsreg(c, R5, c->regs[5]);
+}
+
+/**
+ * z8530_rx - Handle a PIO receive event
+ * @c: Z8530 channel to process
+ *
+ * Receive handler for receiving in PIO mode. This is much like the
+ * async one but not quite the same or as complex
+ *
+ * Note: Its intended that this handler can easily be separated from
+ * the main code to run realtime. That'll be needed for some machines
+ * (eg to ever clock 64kbits on a sparc ;)).
+ *
+ * The RT_LOCK macros don't do anything now. Keep the code covered
+ * by them as short as possible in all circumstances - clocks cost
+ * baud. The interrupt handler is assumed to be atomic w.r.t. to
+ * other code - this is true in the RT case too.
+ *
+ * We only cover the sync cases for this. If you want 2Mbit async
+ * do it yourself but consider medical assistance first. This non DMA
+ * synchronous mode is portable code. The DMA mode assumes PCI like
+ * ISA DMA
+ *
+ * Called with the device lock held
+ */
+
+static void z8530_rx(struct z8530_channel *c)
+{
+ u8 ch,stat;
+ spin_lock(c->lock);
+
+ while(1)
+ {
+ /* FIFO empty ? */
+ if(!(read_zsreg(c, R0)&1))
+ break;
+ ch=read_zsdata(c);
+ stat=read_zsreg(c, R1);
+
+ /*
+ * Overrun ?
+ */
+ if(c->count < c->max)
+ {
+ *c->dptr++=ch;
+ c->count++;
+ }
+
+ if(stat&END_FR)
+ {
+
+ /*
+ * Error ?
+ */
+ if(stat&(Rx_OVR|CRC_ERR))
+ {
+ /* Rewind the buffer and return */
+ if(c->skb)
+ c->dptr=c->skb->data;
+ c->count=0;
+ if(stat&Rx_OVR)
+ {
+ printk(KERN_WARNING "%s: overrun\n", c->dev->name);
+ c->rx_overrun++;
+ }
+ if(stat&CRC_ERR)
+ {
+ c->rx_crc_err++;
+ /* printk("crc error\n"); */
+ }
+ /* Shove the frame upstream */
+ }
+ else
+ {
+ /*
+ * Drop the lock for RX processing, or
+ * there are deadlocks
+ */
+ z8530_rx_done(c);
+ write_zsctrl(c, RES_Rx_CRC);
+ }
+ }
+ }
+ /*
+ * Clear irq
+ */
+ write_zsctrl(c, ERR_RES);
+ write_zsctrl(c, RES_H_IUS);
+ spin_unlock(c->lock);
+}
+
+
+/**
+ * z8530_tx - Handle a PIO transmit event
+ * @c: Z8530 channel to process
+ *
+ * Z8530 transmit interrupt handler for the PIO mode. The basic
+ * idea is to attempt to keep the FIFO fed. We fill as many bytes
+ * in as possible, its quite possible that we won't keep up with the
+ * data rate otherwise.
+ */
+
+static void z8530_tx(struct z8530_channel *c)
+{
+ spin_lock(c->lock);
+ while(c->txcount) {
+ /* FIFO full ? */
+ if(!(read_zsreg(c, R0)&4))
+ break;
+ c->txcount--;
+ /*
+ * Shovel out the byte
+ */
+ write_zsreg(c, R8, *c->tx_ptr++);
+ write_zsctrl(c, RES_H_IUS);
+ /* We are about to underflow */
+ if(c->txcount==0)
+ {
+ write_zsctrl(c, RES_EOM_L);
+ write_zsreg(c, R10, c->regs[10]&~ABUNDER);
+ }
+ }
+
+
+ /*
+ * End of frame TX - fire another one
+ */
+
+ write_zsctrl(c, RES_Tx_P);
+
+ z8530_tx_done(c);
+ write_zsctrl(c, RES_H_IUS);
+ spin_unlock(c->lock);
+}
+
+/**
+ * z8530_status - Handle a PIO status exception
+ * @chan: Z8530 channel to process
+ *
+ * A status event occurred in PIO synchronous mode. There are several
+ * reasons the chip will bother us here. A transmit underrun means we
+ * failed to feed the chip fast enough and just broke a packet. A DCD
+ * change is a line up or down. We communicate that back to the protocol
+ * layer for synchronous PPP to renegotiate.
+ */
+
+static void z8530_status(struct z8530_channel *chan)
+{
+ u8 status, altered;
+
+ spin_lock(chan->lock);
+ status=read_zsreg(chan, R0);
+ altered=chan->status^status;
+
+ chan->status=status;
+
+ if(status&TxEOM)
+ {
+/* printk("%s: Tx underrun.\n", chan->dev->name); */
+ chan->stats.tx_fifo_errors++;
+ write_zsctrl(chan, ERR_RES);
+ z8530_tx_done(chan);
+ }
+
+ if(altered&chan->dcdcheck)
+ {
+ if(status&chan->dcdcheck)
+ {
+ printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
+ write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
+ if(chan->netdevice &&
+ ((chan->netdevice->type == ARPHRD_HDLC) ||
+ (chan->netdevice->type == ARPHRD_PPP)))
+ sppp_reopen(chan->netdevice);
+ }
+ else
+ {
+ printk(KERN_INFO "%s: DCD lost\n", chan->dev->name);
+ write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
+ z8530_flush_fifo(chan);
+ }
+
+ }
+ write_zsctrl(chan, RES_EXT_INT);
+ write_zsctrl(chan, RES_H_IUS);
+ spin_unlock(chan->lock);
+}
+
+struct z8530_irqhandler z8530_sync=
+{
+ z8530_rx,
+ z8530_tx,
+ z8530_status
+};
+
+EXPORT_SYMBOL(z8530_sync);
+
+/**
+ * z8530_dma_rx - Handle a DMA RX event
+ * @chan: Channel to handle
+ *
+ * Non bus mastering DMA interfaces for the Z8x30 devices. This
+ * is really pretty PC specific. The DMA mode means that most receive
+ * events are handled by the DMA hardware. We get a kick here only if
+ * a frame ended.
+ */
+
+static void z8530_dma_rx(struct z8530_channel *chan)
+{
+ spin_lock(chan->lock);
+ if(chan->rxdma_on)
+ {
+ /* Special condition check only */
+ u8 status;
+
+ read_zsreg(chan, R7);
+ read_zsreg(chan, R6);
+
+ status=read_zsreg(chan, R1);
+
+ if(status&END_FR)
+ {
+ z8530_rx_done(chan); /* Fire up the next one */
+ }
+ write_zsctrl(chan, ERR_RES);
+ write_zsctrl(chan, RES_H_IUS);
+ }
+ else
+ {
+ /* DMA is off right now, drain the slow way */
+ z8530_rx(chan);
+ }
+ spin_unlock(chan->lock);
+}
+
+/**
+ * z8530_dma_tx - Handle a DMA TX event
+ * @chan: The Z8530 channel to handle
+ *
+ * We have received an interrupt while doing DMA transmissions. It
+ * shouldn't happen. Scream loudly if it does.
+ */
+
+static void z8530_dma_tx(struct z8530_channel *chan)
+{
+ spin_lock(chan->lock);
+ if(!chan->dma_tx)
+ {
+ printk(KERN_WARNING "Hey who turned the DMA off?\n");
+ z8530_tx(chan);
+ return;
+ }
+ /* This shouldnt occur in DMA mode */
+ printk(KERN_ERR "DMA tx - bogus event!\n");
+ z8530_tx(chan);
+ spin_unlock(chan->lock);
+}
+
+/**
+ * z8530_dma_status - Handle a DMA status exception
+ * @chan: Z8530 channel to process
+ *
+ * A status event occurred on the Z8530. We receive these for two reasons
+ * when in DMA mode. Firstly if we finished a packet transfer we get one
+ * and kick the next packet out. Secondly we may see a DCD change and
+ * have to poke the protocol layer.
+ *
+ */
+
+static void z8530_dma_status(struct z8530_channel *chan)
+{
+ u8 status, altered;
+
+ status=read_zsreg(chan, R0);
+ altered=chan->status^status;
+
+ chan->status=status;
+
+
+ if(chan->dma_tx)
+ {
+ if(status&TxEOM)
+ {
+ unsigned long flags;
+
+ flags=claim_dma_lock();
+ disable_dma(chan->txdma);
+ clear_dma_ff(chan->txdma);
+ chan->txdma_on=0;
+ release_dma_lock(flags);
+ z8530_tx_done(chan);
+ }
+ }
+
+ spin_lock(chan->lock);
+ if(altered&chan->dcdcheck)
+ {
+ if(status&chan->dcdcheck)
+ {
+ printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
+ write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
+ if(chan->netdevice &&
+ ((chan->netdevice->type == ARPHRD_HDLC) ||
+ (chan->netdevice->type == ARPHRD_PPP)))
+ sppp_reopen(chan->netdevice);
+ }
+ else
+ {
+ printk(KERN_INFO "%s:DCD lost\n", chan->dev->name);
+ write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
+ z8530_flush_fifo(chan);
+ }
+ }
+
+ write_zsctrl(chan, RES_EXT_INT);
+ write_zsctrl(chan, RES_H_IUS);
+ spin_unlock(chan->lock);
+}
+
+struct z8530_irqhandler z8530_dma_sync=
+{
+ z8530_dma_rx,
+ z8530_dma_tx,
+ z8530_dma_status
+};
+
+EXPORT_SYMBOL(z8530_dma_sync);
+
+struct z8530_irqhandler z8530_txdma_sync=
+{
+ z8530_rx,
+ z8530_dma_tx,
+ z8530_dma_status
+};
+
+EXPORT_SYMBOL(z8530_txdma_sync);
+
+/**
+ * z8530_rx_clear - Handle RX events from a stopped chip
+ * @c: Z8530 channel to shut up
+ *
+ * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
+ * For machines with PCI Z85x30 cards, or level triggered interrupts
+ * (eg the MacII) we must clear the interrupt cause or die.
+ */
+
+
+static void z8530_rx_clear(struct z8530_channel *c)
+{
+ /*
+ * Data and status bytes
+ */
+ u8 stat;
+
+ read_zsdata(c);
+ stat=read_zsreg(c, R1);
+
+ if(stat&END_FR)
+ write_zsctrl(c, RES_Rx_CRC);
+ /*
+ * Clear irq
+ */
+ write_zsctrl(c, ERR_RES);
+ write_zsctrl(c, RES_H_IUS);
+}
+
+/**
+ * z8530_tx_clear - Handle TX events from a stopped chip
+ * @c: Z8530 channel to shut up
+ *
+ * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
+ * For machines with PCI Z85x30 cards, or level triggered interrupts
+ * (eg the MacII) we must clear the interrupt cause or die.
+ */
+
+static void z8530_tx_clear(struct z8530_channel *c)
+{
+ write_zsctrl(c, RES_Tx_P);
+ write_zsctrl(c, RES_H_IUS);
+}
+
+/**
+ * z8530_status_clear - Handle status events from a stopped chip
+ * @chan: Z8530 channel to shut up
+ *
+ * Status interrupt vectors for a Z8530 that is in 'parked' mode.
+ * For machines with PCI Z85x30 cards, or level triggered interrupts
+ * (eg the MacII) we must clear the interrupt cause or die.
+ */
+
+static void z8530_status_clear(struct z8530_channel *chan)
+{
+ u8 status=read_zsreg(chan, R0);
+ if(status&TxEOM)
+ write_zsctrl(chan, ERR_RES);
+ write_zsctrl(chan, RES_EXT_INT);
+ write_zsctrl(chan, RES_H_IUS);
+}
+
+struct z8530_irqhandler z8530_nop=
+{
+ z8530_rx_clear,
+ z8530_tx_clear,
+ z8530_status_clear
+};
+
+
+EXPORT_SYMBOL(z8530_nop);
+
+/**
+ * z8530_interrupt - Handle an interrupt from a Z8530
+ * @irq: Interrupt number
+ * @dev_id: The Z8530 device that is interrupting.
+ * @regs: unused
+ *
+ * A Z85[2]30 device has stuck its hand in the air for attention.
+ * We scan both the channels on the chip for events and then call
+ * the channel specific call backs for each channel that has events.
+ * We have to use callback functions because the two channels can be
+ * in different modes.
+ *
+ * Locking is done for the handlers. Note that locking is done
+ * at the chip level (the 5uS delay issue is per chip not per
+ * channel). c->lock for both channels points to dev->lock
+ */
+
+irqreturn_t z8530_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+ struct z8530_dev *dev=dev_id;
+ u8 intr;
+ static volatile int locker=0;
+ int work=0;
+ struct z8530_irqhandler *irqs;
+
+ if(locker)
+ {
+ printk(KERN_ERR "IRQ re-enter\n");
+ return IRQ_NONE;
+ }
+ locker=1;
+
+ spin_lock(&dev->lock);
+
+ while(++work<5000)
+ {
+
+ intr = read_zsreg(&dev->chanA, R3);
+ if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
+ break;
+
+ /* This holds the IRQ status. On the 8530 you must read it from chan
+ A even though it applies to the whole chip */
+
+ /* Now walk the chip and see what it is wanting - it may be
+ an IRQ for someone else remember */
+
+ irqs=dev->chanA.irqs;
+
+ if(intr & (CHARxIP|CHATxIP|CHAEXT))
+ {
+ if(intr&CHARxIP)
+ irqs->rx(&dev->chanA);
+ if(intr&CHATxIP)
+ irqs->tx(&dev->chanA);
+ if(intr&CHAEXT)
+ irqs->status(&dev->chanA);
+ }
+
+ irqs=dev->chanB.irqs;
+
+ if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
+ {
+ if(intr&CHBRxIP)
+ irqs->rx(&dev->chanB);
+ if(intr&CHBTxIP)
+ irqs->tx(&dev->chanB);
+ if(intr&CHBEXT)
+ irqs->status(&dev->chanB);
+ }
+ }
+ spin_unlock(&dev->lock);
+ if(work==5000)
+ printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr);
+ /* Ok all done */
+ locker=0;
+ return IRQ_HANDLED;
+}
+
+EXPORT_SYMBOL(z8530_interrupt);
+
+static char reg_init[16]=
+{
+ 0,0,0,0,
+ 0,0,0,0,
+ 0,0,0,0,
+ 0x55,0,0,0
+};
+
+
+/**
+ * z8530_sync_open - Open a Z8530 channel for PIO
+ * @dev: The network interface we are using
+ * @c: The Z8530 channel to open in synchronous PIO mode
+ *
+ * Switch a Z8530 into synchronous mode without DMA assist. We
+ * raise the RTS/DTR and commence network operation.
+ */
+
+int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(c->lock, flags);
+
+ c->sync = 1;
+ c->mtu = dev->mtu+64;
+ c->count = 0;
+ c->skb = NULL;
+ c->skb2 = NULL;
+ c->irqs = &z8530_sync;
+
+ /* This loads the double buffer up */
+ z8530_rx_done(c); /* Load the frame ring */
+ z8530_rx_done(c); /* Load the backup frame */
+ z8530_rtsdtr(c,1);
+ c->dma_tx = 0;
+ c->regs[R1]|=TxINT_ENAB;
+ write_zsreg(c, R1, c->regs[R1]);
+ write_zsreg(c, R3, c->regs[R3]|RxENABLE);
+
+ spin_unlock_irqrestore(c->lock, flags);
+ return 0;
+}
+
+
+EXPORT_SYMBOL(z8530_sync_open);
+
+/**
+ * z8530_sync_close - Close a PIO Z8530 channel
+ * @dev: Network device to close
+ * @c: Z8530 channel to disassociate and move to idle
+ *
+ * Close down a Z8530 interface and switch its interrupt handlers
+ * to discard future events.
+ */
+
+int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
+{
+ u8 chk;
+ unsigned long flags;
+
+ spin_lock_irqsave(c->lock, flags);
+ c->irqs = &z8530_nop;
+ c->max = 0;
+ c->sync = 0;
+
+ chk=read_zsreg(c,R0);
+ write_zsreg(c, R3, c->regs[R3]);
+ z8530_rtsdtr(c,0);
+
+ spin_unlock_irqrestore(c->lock, flags);
+ return 0;
+}
+
+EXPORT_SYMBOL(z8530_sync_close);
+
+/**
+ * z8530_sync_dma_open - Open a Z8530 for DMA I/O
+ * @dev: The network device to attach
+ * @c: The Z8530 channel to configure in sync DMA mode.
+ *
+ * Set up a Z85x30 device for synchronous DMA in both directions. Two
+ * ISA DMA channels must be available for this to work. We assume ISA
+ * DMA driven I/O and PC limits on access.
+ */
+
+int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
+{
+ unsigned long cflags, dflags;
+
+ c->sync = 1;
+ c->mtu = dev->mtu+64;
+ c->count = 0;
+ c->skb = NULL;
+ c->skb2 = NULL;
+ /*
+ * Load the DMA interfaces up
+ */
+ c->rxdma_on = 0;
+ c->txdma_on = 0;
+
+ /*
+ * Allocate the DMA flip buffers. Limit by page size.
+ * Everyone runs 1500 mtu or less on wan links so this
+ * should be fine.
+ */
+
+ if(c->mtu > PAGE_SIZE/2)
+ return -EMSGSIZE;
+
+ c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
+ if(c->rx_buf[0]==NULL)
+ return -ENOBUFS;
+ c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
+
+ c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
+ if(c->tx_dma_buf[0]==NULL)
+ {
+ free_page((unsigned long)c->rx_buf[0]);
+ c->rx_buf[0]=NULL;
+ return -ENOBUFS;
+ }
+ c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
+
+ c->tx_dma_used=0;
+ c->dma_tx = 1;
+ c->dma_num=0;
+ c->dma_ready=1;
+
+ /*
+ * Enable DMA control mode
+ */
+
+ spin_lock_irqsave(c->lock, cflags);
+
+ /*
+ * TX DMA via DIR/REQ
+ */
+
+ c->regs[R14]|= DTRREQ;
+ write_zsreg(c, R14, c->regs[R14]);
+
+ c->regs[R1]&= ~TxINT_ENAB;
+ write_zsreg(c, R1, c->regs[R1]);
+
+ /*
+ * RX DMA via W/Req
+ */
+
+ c->regs[R1]|= WT_FN_RDYFN;
+ c->regs[R1]|= WT_RDY_RT;
+ c->regs[R1]|= INT_ERR_Rx;
+ c->regs[R1]&= ~TxINT_ENAB;
+ write_zsreg(c, R1, c->regs[R1]);
+ c->regs[R1]|= WT_RDY_ENAB;
+ write_zsreg(c, R1, c->regs[R1]);
+
+ /*
+ * DMA interrupts
+ */
+
+ /*
+ * Set up the DMA configuration
+ */
+
+ dflags=claim_dma_lock();
+
+ disable_dma(c->rxdma);
+ clear_dma_ff(c->rxdma);
+ set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
+ set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
+ set_dma_count(c->rxdma, c->mtu);
+ enable_dma(c->rxdma);
+
+ disable_dma(c->txdma);
+ clear_dma_ff(c->txdma);
+ set_dma_mode(c->txdma, DMA_MODE_WRITE);
+ disable_dma(c->txdma);
+
+ release_dma_lock(dflags);
+
+ /*
+ * Select the DMA interrupt handlers
+ */
+
+ c->rxdma_on = 1;
+ c->txdma_on = 1;
+ c->tx_dma_used = 1;
+
+ c->irqs = &z8530_dma_sync;
+ z8530_rtsdtr(c,1);
+ write_zsreg(c, R3, c->regs[R3]|RxENABLE);
+
+ spin_unlock_irqrestore(c->lock, cflags);
+
+ return 0;
+}
+
+EXPORT_SYMBOL(z8530_sync_dma_open);
+
+/**
+ * z8530_sync_dma_close - Close down DMA I/O
+ * @dev: Network device to detach
+ * @c: Z8530 channel to move into discard mode
+ *
+ * Shut down a DMA mode synchronous interface. Halt the DMA, and
+ * free the buffers.
+ */
+
+int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
+{
+ u8 chk;
+ unsigned long flags;
+
+ c->irqs = &z8530_nop;
+ c->max = 0;
+ c->sync = 0;
+
+ /*
+ * Disable the PC DMA channels
+ */
+
+ flags=claim_dma_lock();
+ disable_dma(c->rxdma);
+ clear_dma_ff(c->rxdma);
+
+ c->rxdma_on = 0;
+
+ disable_dma(c->txdma);
+ clear_dma_ff(c->txdma);
+ release_dma_lock(flags);
+
+ c->txdma_on = 0;
+ c->tx_dma_used = 0;
+
+ spin_lock_irqsave(c->lock, flags);
+
+ /*
+ * Disable DMA control mode
+ */
+
+ c->regs[R1]&= ~WT_RDY_ENAB;
+ write_zsreg(c, R1, c->regs[R1]);
+ c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
+ c->regs[R1]|= INT_ALL_Rx;
+ write_zsreg(c, R1, c->regs[R1]);
+ c->regs[R14]&= ~DTRREQ;
+ write_zsreg(c, R14, c->regs[R14]);
+
+ if(c->rx_buf[0])
+ {
+ free_page((unsigned long)c->rx_buf[0]);
+ c->rx_buf[0]=NULL;
+ }
+ if(c->tx_dma_buf[0])
+ {
+ free_page((unsigned long)c->tx_dma_buf[0]);
+ c->tx_dma_buf[0]=NULL;
+ }
+ chk=read_zsreg(c,R0);
+ write_zsreg(c, R3, c->regs[R3]);
+ z8530_rtsdtr(c,0);
+
+ spin_unlock_irqrestore(c->lock, flags);
+
+ return 0;
+}
+
+EXPORT_SYMBOL(z8530_sync_dma_close);
+
+/**
+ * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
+ * @dev: The network device to attach
+ * @c: The Z8530 channel to configure in sync DMA mode.
+ *
+ * Set up a Z85x30 device for synchronous DMA tranmission. One
+ * ISA DMA channel must be available for this to work. The receive
+ * side is run in PIO mode, but then it has the bigger FIFO.
+ */
+
+int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
+{
+ unsigned long cflags, dflags;
+
+ printk("Opening sync interface for TX-DMA\n");
+ c->sync = 1;
+ c->mtu = dev->mtu+64;
+ c->count = 0;
+ c->skb = NULL;
+ c->skb2 = NULL;
+
+ /*
+ * Allocate the DMA flip buffers. Limit by page size.
+ * Everyone runs 1500 mtu or less on wan links so this
+ * should be fine.
+ */
+
+ if(c->mtu > PAGE_SIZE/2)
+ return -EMSGSIZE;
+
+ c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
+ if(c->tx_dma_buf[0]==NULL)
+ return -ENOBUFS;
+
+ c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
+
+
+ spin_lock_irqsave(c->lock, cflags);
+
+ /*
+ * Load the PIO receive ring
+ */
+
+ z8530_rx_done(c);
+ z8530_rx_done(c);
+
+ /*
+ * Load the DMA interfaces up
+ */
+
+ c->rxdma_on = 0;
+ c->txdma_on = 0;
+
+ c->tx_dma_used=0;
+ c->dma_num=0;
+ c->dma_ready=1;
+ c->dma_tx = 1;
+
+ /*
+ * Enable DMA control mode
+ */
+
+ /*
+ * TX DMA via DIR/REQ
+ */
+ c->regs[R14]|= DTRREQ;
+ write_zsreg(c, R14, c->regs[R14]);
+
+ c->regs[R1]&= ~TxINT_ENAB;
+ write_zsreg(c, R1, c->regs[R1]);
+
+ /*
+ * Set up the DMA configuration
+ */
+
+ dflags = claim_dma_lock();
+
+ disable_dma(c->txdma);
+ clear_dma_ff(c->txdma);
+ set_dma_mode(c->txdma, DMA_MODE_WRITE);
+ disable_dma(c->txdma);
+
+ release_dma_lock(dflags);
+
+ /*
+ * Select the DMA interrupt handlers
+ */
+
+ c->rxdma_on = 0;
+ c->txdma_on = 1;
+ c->tx_dma_used = 1;
+
+ c->irqs = &z8530_txdma_sync;
+ z8530_rtsdtr(c,1);
+ write_zsreg(c, R3, c->regs[R3]|RxENABLE);
+ spin_unlock_irqrestore(c->lock, cflags);
+
+ return 0;
+}
+
+EXPORT_SYMBOL(z8530_sync_txdma_open);
+
+/**
+ * z8530_sync_txdma_close - Close down a TX driven DMA channel
+ * @dev: Network device to detach
+ * @c: Z8530 channel to move into discard mode
+ *
+ * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
+ * and free the buffers.
+ */
+
+int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
+{
+ unsigned long dflags, cflags;
+ u8 chk;
+
+
+ spin_lock_irqsave(c->lock, cflags);
+
+ c->irqs = &z8530_nop;
+ c->max = 0;
+ c->sync = 0;
+
+ /*
+ * Disable the PC DMA channels
+ */
+
+ dflags = claim_dma_lock();
+
+ disable_dma(c->txdma);
+ clear_dma_ff(c->txdma);
+ c->txdma_on = 0;
+ c->tx_dma_used = 0;
+
+ release_dma_lock(dflags);
+
+ /*
+ * Disable DMA control mode
+ */
+
+ c->regs[R1]&= ~WT_RDY_ENAB;
+ write_zsreg(c, R1, c->regs[R1]);
+ c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
+ c->regs[R1]|= INT_ALL_Rx;
+ write_zsreg(c, R1, c->regs[R1]);
+ c->regs[R14]&= ~DTRREQ;
+ write_zsreg(c, R14, c->regs[R14]);
+
+ if(c->tx_dma_buf[0])
+ {
+ free_page((unsigned long)c->tx_dma_buf[0]);
+ c->tx_dma_buf[0]=NULL;
+ }
+ chk=read_zsreg(c,R0);
+ write_zsreg(c, R3, c->regs[R3]);
+ z8530_rtsdtr(c,0);
+
+ spin_unlock_irqrestore(c->lock, cflags);
+ return 0;
+}
+
+
+EXPORT_SYMBOL(z8530_sync_txdma_close);
+
+
+/*
+ * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
+ * it exists...
+ */
+
+static char *z8530_type_name[]={
+ "Z8530",
+ "Z85C30",
+ "Z85230"
+};
+
+/**
+ * z8530_describe - Uniformly describe a Z8530 port
+ * @dev: Z8530 device to describe
+ * @mapping: string holding mapping type (eg "I/O" or "Mem")
+ * @io: the port value in question
+ *
+ * Describe a Z8530 in a standard format. We must pass the I/O as
+ * the port offset isnt predictable. The main reason for this function
+ * is to try and get a common format of report.
+ */
+
+void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
+{
+ printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n",
+ dev->name,
+ z8530_type_name[dev->type],
+ mapping,
+ Z8530_PORT_OF(io),
+ dev->irq);
+}
+
+EXPORT_SYMBOL(z8530_describe);
+
+/*
+ * Locked operation part of the z8530 init code
+ */
+
+static inline int do_z8530_init(struct z8530_dev *dev)
+{
+ /* NOP the interrupt handlers first - we might get a
+ floating IRQ transition when we reset the chip */
+ dev->chanA.irqs=&z8530_nop;
+ dev->chanB.irqs=&z8530_nop;
+ dev->chanA.dcdcheck=DCD;
+ dev->chanB.dcdcheck=DCD;
+
+ /* Reset the chip */
+ write_zsreg(&dev->chanA, R9, 0xC0);
+ udelay(200);
+ /* Now check its valid */
+ write_zsreg(&dev->chanA, R12, 0xAA);
+ if(read_zsreg(&dev->chanA, R12)!=0xAA)
+ return -ENODEV;
+ write_zsreg(&dev->chanA, R12, 0x55);
+ if(read_zsreg(&dev->chanA, R12)!=0x55)
+ return -ENODEV;
+
+ dev->type=Z8530;
+
+ /*
+ * See the application note.
+ */
+
+ write_zsreg(&dev->chanA, R15, 0x01);
+
+ /*
+ * If we can set the low bit of R15 then
+ * the chip is enhanced.
+ */
+
+ if(read_zsreg(&dev->chanA, R15)==0x01)
+ {
+ /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
+ /* Put a char in the fifo */
+ write_zsreg(&dev->chanA, R8, 0);
+ if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
+ dev->type = Z85230; /* Has a FIFO */
+ else
+ dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
+ }
+
+ /*
+ * The code assumes R7' and friends are
+ * off. Use write_zsext() for these and keep
+ * this bit clear.
+ */
+
+ write_zsreg(&dev->chanA, R15, 0);
+
+ /*
+ * At this point it looks like the chip is behaving
+ */
+
+ memcpy(dev->chanA.regs, reg_init, 16);
+ memcpy(dev->chanB.regs, reg_init ,16);
+
+ return 0;
+}
+
+/**
+ * z8530_init - Initialise a Z8530 device
+ * @dev: Z8530 device to initialise.
+ *
+ * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
+ * is present, identify the type and then program it to hopefully
+ * keep quite and behave. This matters a lot, a Z8530 in the wrong
+ * state will sometimes get into stupid modes generating 10Khz
+ * interrupt streams and the like.
+ *
+ * We set the interrupt handler up to discard any events, in case
+ * we get them during reset or setp.
+ *
+ * Return 0 for success, or a negative value indicating the problem
+ * in errno form.
+ */
+
+int z8530_init(struct z8530_dev *dev)
+{
+ unsigned long flags;
+ int ret;
+
+ /* Set up the chip level lock */
+ spin_lock_init(&dev->lock);
+ dev->chanA.lock = &dev->lock;
+ dev->chanB.lock = &dev->lock;
+
+ spin_lock_irqsave(&dev->lock, flags);
+ ret = do_z8530_init(dev);
+ spin_unlock_irqrestore(&dev->lock, flags);
+
+ return ret;
+}
+
+
+EXPORT_SYMBOL(z8530_init);
+
+/**
+ * z8530_shutdown - Shutdown a Z8530 device
+ * @dev: The Z8530 chip to shutdown
+ *
+ * We set the interrupt handlers to silence any interrupts. We then
+ * reset the chip and wait 100uS to be sure the reset completed. Just
+ * in case the caller then tries to do stuff.
+ *
+ * This is called without the lock held
+ */
+
+int z8530_shutdown(struct z8530_dev *dev)
+{
+ unsigned long flags;
+ /* Reset the chip */
+
+ spin_lock_irqsave(&dev->lock, flags);
+ dev->chanA.irqs=&z8530_nop;
+ dev->chanB.irqs=&z8530_nop;
+ write_zsreg(&dev->chanA, R9, 0xC0);
+ /* We must lock the udelay, the chip is offlimits here */
+ udelay(100);
+ spin_unlock_irqrestore(&dev->lock, flags);
+ return 0;
+}
+
+EXPORT_SYMBOL(z8530_shutdown);
+
+/**
+ * z8530_channel_load - Load channel data
+ * @c: Z8530 channel to configure
+ * @rtable: table of register, value pairs
+ * FIXME: ioctl to allow user uploaded tables
+ *
+ * Load a Z8530 channel up from the system data. We use +16 to
+ * indicate the "prime" registers. The value 255 terminates the
+ * table.
+ */
+
+int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(c->lock, flags);
+
+ while(*rtable!=255)
+ {
+ int reg=*rtable++;
+ if(reg>0x0F)
+ write_zsreg(c, R15, c->regs[15]|1);
+ write_zsreg(c, reg&0x0F, *rtable);
+ if(reg>0x0F)
+ write_zsreg(c, R15, c->regs[15]&~1);
+ c->regs[reg]=*rtable++;
+ }
+ c->rx_function=z8530_null_rx;
+ c->skb=NULL;
+ c->tx_skb=NULL;
+ c->tx_next_skb=NULL;
+ c->mtu=1500;
+ c->max=0;
+ c->count=0;
+ c->status=read_zsreg(c, R0);
+ c->sync=1;
+ write_zsreg(c, R3, c->regs[R3]|RxENABLE);
+
+ spin_unlock_irqrestore(c->lock, flags);
+ return 0;
+}
+
+EXPORT_SYMBOL(z8530_channel_load);
+
+
+/**
+ * z8530_tx_begin - Begin packet transmission
+ * @c: The Z8530 channel to kick
+ *
+ * This is the speed sensitive side of transmission. If we are called
+ * and no buffer is being transmitted we commence the next buffer. If
+ * nothing is queued we idle the sync.
+ *
+ * Note: We are handling this code path in the interrupt path, keep it
+ * fast or bad things will happen.
+ *
+ * Called with the lock held.
+ */
+
+static void z8530_tx_begin(struct z8530_channel *c)
+{
+ unsigned long flags;
+ if(c->tx_skb)
+ return;
+
+ c->tx_skb=c->tx_next_skb;
+ c->tx_next_skb=NULL;
+ c->tx_ptr=c->tx_next_ptr;
+
+ if(c->tx_skb==NULL)
+ {
+ /* Idle on */
+ if(c->dma_tx)
+ {
+ flags=claim_dma_lock();
+ disable_dma(c->txdma);
+ /*
+ * Check if we crapped out.
+ */
+ if(get_dma_residue(c->txdma))
+ {
+ c->stats.tx_dropped++;
+ c->stats.tx_fifo_errors++;
+ }
+ release_dma_lock(flags);
+ }
+ c->txcount=0;
+ }
+ else
+ {
+ c->txcount=c->tx_skb->len;
+
+
+ if(c->dma_tx)
+ {
+ /*
+ * FIXME. DMA is broken for the original 8530,
+ * on the older parts we need to set a flag and
+ * wait for a further TX interrupt to fire this
+ * stage off
+ */
+
+ flags=claim_dma_lock();
+ disable_dma(c->txdma);
+
+ /*
+ * These two are needed by the 8530/85C30
+ * and must be issued when idling.
+ */
+
+ if(c->dev->type!=Z85230)
+ {
+ write_zsctrl(c, RES_Tx_CRC);
+ write_zsctrl(c, RES_EOM_L);
+ }
+ write_zsreg(c, R10, c->regs[10]&~ABUNDER);
+ clear_dma_ff(c->txdma);
+ set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
+ set_dma_count(c->txdma, c->txcount);
+ enable_dma(c->txdma);
+ release_dma_lock(flags);
+ write_zsctrl(c, RES_EOM_L);
+ write_zsreg(c, R5, c->regs[R5]|TxENAB);
+ }
+ else
+ {
+
+ /* ABUNDER off */
+ write_zsreg(c, R10, c->regs[10]);
+ write_zsctrl(c, RES_Tx_CRC);
+
+ while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
+ {
+ write_zsreg(c, R8, *c->tx_ptr++);
+ c->txcount--;
+ }
+
+ }
+ }
+ /*
+ * Since we emptied tx_skb we can ask for more
+ */
+ netif_wake_queue(c->netdevice);
+}
+
+/**
+ * z8530_tx_done - TX complete callback
+ * @c: The channel that completed a transmit.
+ *
+ * This is called when we complete a packet send. We wake the queue,
+ * start the next packet going and then free the buffer of the existing
+ * packet. This code is fairly timing sensitive.
+ *
+ * Called with the register lock held.
+ */
+
+static void z8530_tx_done(struct z8530_channel *c)
+{
+ struct sk_buff *skb;
+
+ /* Actually this can happen.*/
+ if(c->tx_skb==NULL)
+ return;
+
+ skb=c->tx_skb;
+ c->tx_skb=NULL;
+ z8530_tx_begin(c);
+ c->stats.tx_packets++;
+ c->stats.tx_bytes+=skb->len;
+ dev_kfree_skb_irq(skb);
+}
+
+/**
+ * z8530_null_rx - Discard a packet
+ * @c: The channel the packet arrived on
+ * @skb: The buffer
+ *
+ * We point the receive handler at this function when idle. Instead
+ * of syncppp processing the frames we get to throw them away.
+ */
+
+void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
+{
+ dev_kfree_skb_any(skb);
+}
+
+EXPORT_SYMBOL(z8530_null_rx);
+
+/**
+ * z8530_rx_done - Receive completion callback
+ * @c: The channel that completed a receive
+ *
+ * A new packet is complete. Our goal here is to get back into receive
+ * mode as fast as possible. On the Z85230 we could change to using
+ * ESCC mode, but on the older chips we have no choice. We flip to the
+ * new buffer immediately in DMA mode so that the DMA of the next
+ * frame can occur while we are copying the previous buffer to an sk_buff
+ *
+ * Called with the lock held
+ */
+
+static void z8530_rx_done(struct z8530_channel *c)
+{
+ struct sk_buff *skb;
+ int ct;
+
+ /*
+ * Is our receive engine in DMA mode
+ */
+
+ if(c->rxdma_on)
+ {
+ /*
+ * Save the ready state and the buffer currently
+ * being used as the DMA target
+ */
+
+ int ready=c->dma_ready;
+ unsigned char *rxb=c->rx_buf[c->dma_num];
+ unsigned long flags;
+
+ /*
+ * Complete this DMA. Neccessary to find the length
+ */
+
+ flags=claim_dma_lock();
+
+ disable_dma(c->rxdma);
+ clear_dma_ff(c->rxdma);
+ c->rxdma_on=0;
+ ct=c->mtu-get_dma_residue(c->rxdma);
+ if(ct<0)
+ ct=2; /* Shit happens.. */
+ c->dma_ready=0;
+
+ /*
+ * Normal case: the other slot is free, start the next DMA
+ * into it immediately.
+ */
+
+ if(ready)
+ {
+ c->dma_num^=1;
+ set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
+ set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
+ set_dma_count(c->rxdma, c->mtu);
+ c->rxdma_on = 1;
+ enable_dma(c->rxdma);
+ /* Stop any frames that we missed the head of
+ from passing */
+ write_zsreg(c, R0, RES_Rx_CRC);
+ }
+ else
+ /* Can't occur as we dont reenable the DMA irq until
+ after the flip is done */
+ printk(KERN_WARNING "%s: DMA flip overrun!\n", c->netdevice->name);
+
+ release_dma_lock(flags);
+
+ /*
+ * Shove the old buffer into an sk_buff. We can't DMA
+ * directly into one on a PC - it might be above the 16Mb
+ * boundary. Optimisation - we could check to see if we
+ * can avoid the copy. Optimisation 2 - make the memcpy
+ * a copychecksum.
+ */
+
+ skb=dev_alloc_skb(ct);
+ if(skb==NULL)
+ {
+ c->stats.rx_dropped++;
+ printk(KERN_WARNING "%s: Memory squeeze.\n", c->netdevice->name);
+ }
+ else
+ {
+ skb_put(skb, ct);
+ memcpy(skb->data, rxb, ct);
+ c->stats.rx_packets++;
+ c->stats.rx_bytes+=ct;
+ }
+ c->dma_ready=1;
+ }
+ else
+ {
+ RT_LOCK;
+ skb=c->skb;
+
+ /*
+ * The game we play for non DMA is similar. We want to
+ * get the controller set up for the next packet as fast
+ * as possible. We potentially only have one byte + the
+ * fifo length for this. Thus we want to flip to the new
+ * buffer and then mess around copying and allocating
+ * things. For the current case it doesn't matter but
+ * if you build a system where the sync irq isnt blocked
+ * by the kernel IRQ disable then you need only block the
+ * sync IRQ for the RT_LOCK area.
+ *
+ */
+ ct=c->count;
+
+ c->skb = c->skb2;
+ c->count = 0;
+ c->max = c->mtu;
+ if(c->skb)
+ {
+ c->dptr = c->skb->data;
+ c->max = c->mtu;
+ }
+ else
+ {
+ c->count= 0;
+ c->max = 0;
+ }
+ RT_UNLOCK;
+
+ c->skb2 = dev_alloc_skb(c->mtu);
+ if(c->skb2==NULL)
+ printk(KERN_WARNING "%s: memory squeeze.\n",
+ c->netdevice->name);
+ else
+ {
+ skb_put(c->skb2,c->mtu);
+ }
+ c->stats.rx_packets++;
+ c->stats.rx_bytes+=ct;
+
+ }
+ /*
+ * If we received a frame we must now process it.
+ */
+ if(skb)
+ {
+ skb_trim(skb, ct);
+ c->rx_function(c,skb);
+ }
+ else
+ {
+ c->stats.rx_dropped++;
+ printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name);
+ }
+}
+
+/**
+ * spans_boundary - Check a packet can be ISA DMA'd
+ * @skb: The buffer to check
+ *
+ * Returns true if the buffer cross a DMA boundary on a PC. The poor
+ * thing can only DMA within a 64K block not across the edges of it.
+ */
+
+static inline int spans_boundary(struct sk_buff *skb)
+{
+ unsigned long a=(unsigned long)skb->data;
+ a^=(a+skb->len);
+ if(a&0x00010000) /* If the 64K bit is different.. */
+ return 1;
+ return 0;
+}
+
+/**
+ * z8530_queue_xmit - Queue a packet
+ * @c: The channel to use
+ * @skb: The packet to kick down the channel
+ *
+ * Queue a packet for transmission. Because we have rather
+ * hard to hit interrupt latencies for the Z85230 per packet
+ * even in DMA mode we do the flip to DMA buffer if needed here
+ * not in the IRQ.
+ *
+ * Called from the network code. The lock is not held at this
+ * point.
+ */
+
+int z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
+{
+ unsigned long flags;
+
+ netif_stop_queue(c->netdevice);
+ if(c->tx_next_skb)
+ {
+ return 1;
+ }
+
+ /* PC SPECIFIC - DMA limits */
+
+ /*
+ * If we will DMA the transmit and its gone over the ISA bus
+ * limit, then copy to the flip buffer
+ */
+
+ if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
+ {
+ /*
+ * Send the flip buffer, and flip the flippy bit.
+ * We don't care which is used when just so long as
+ * we never use the same buffer twice in a row. Since
+ * only one buffer can be going out at a time the other
+ * has to be safe.
+ */
+ c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
+ c->tx_dma_used^=1; /* Flip temp buffer */
+ memcpy(c->tx_next_ptr, skb->data, skb->len);
+ }
+ else
+ c->tx_next_ptr=skb->data;
+ RT_LOCK;
+ c->tx_next_skb=skb;
+ RT_UNLOCK;
+
+ spin_lock_irqsave(c->lock, flags);
+ z8530_tx_begin(c);
+ spin_unlock_irqrestore(c->lock, flags);
+
+ return 0;
+}
+
+EXPORT_SYMBOL(z8530_queue_xmit);
+
+/**
+ * z8530_get_stats - Get network statistics
+ * @c: The channel to use
+ *
+ * Get the statistics block. We keep the statistics in software as
+ * the chip doesn't do it for us.
+ *
+ * Locking is ignored here - we could lock for a copy but its
+ * not likely to be that big an issue
+ */
+
+struct net_device_stats *z8530_get_stats(struct z8530_channel *c)
+{
+ return &c->stats;
+}
+
+EXPORT_SYMBOL(z8530_get_stats);
+
+/*
+ * Module support
+ */
+static char banner[] __initdata = KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
+
+static int __init z85230_init_driver(void)
+{
+ printk(banner);
+ return 0;
+}
+module_init(z85230_init_driver);
+
+static void __exit z85230_cleanup_driver(void)
+{
+}
+module_exit(z85230_cleanup_driver);
+
+MODULE_AUTHOR("Red Hat Inc.");
+MODULE_DESCRIPTION("Z85x30 synchronous driver core");
+MODULE_LICENSE("GPL");