summaryrefslogtreecommitdiff
path: root/drivers/usb/host/ehci-q-iram.c
diff options
context:
space:
mode:
authorDinh Nguyen <r00091@freescale.com>2009-09-16 12:56:38 -0500
committerJason Liu <r64343@freescale.com>2012-01-09 19:53:42 +0800
commit88871608f139e8a8b3470a196a0e7034b2355698 (patch)
tree6a3e7a38af89f4eed60f82c14893344b97c26d47 /drivers/usb/host/ehci-q-iram.c
parent5af5570f7c4f002ba1fea78bd00db9af14dc24e3 (diff)
usb: imx usb buffers in iram work-around
Some i.MX parts (MX31, MX37) need to have usb host queue descriptors and/or buffers in on-chip IRAM in cases of heavily loaded memory system (i.e. large LCDs). Signed-off-by: Dinh Nguyen <r00091@freescale.com>
Diffstat (limited to 'drivers/usb/host/ehci-q-iram.c')
-rw-r--r--drivers/usb/host/ehci-q-iram.c1345
1 files changed, 1345 insertions, 0 deletions
diff --git a/drivers/usb/host/ehci-q-iram.c b/drivers/usb/host/ehci-q-iram.c
new file mode 100644
index 000000000000..318888563380
--- /dev/null
+++ b/drivers/usb/host/ehci-q-iram.c
@@ -0,0 +1,1345 @@
+/*
+ * Copyright (C) 2001-2004 by David Brownell
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+#undef EHCI_NO_ERR_COUNT
+static size_t g_iram_size = IRAM_TD_SIZE;
+
+/* this file is part of ehci-hcd.c */
+
+/*-------------------------------------------------------------------------*/
+
+/*
+ * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
+ *
+ * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
+ * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
+ * buffers needed for the larger number). We use one QH per endpoint, queue
+ * multiple urbs (all three types) per endpoint. URBs may need several qtds.
+ *
+ * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
+ * interrupts) needs careful scheduling. Performance improvements can be
+ * an ongoing challenge. That's in "ehci-sched.c".
+ *
+ * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
+ * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
+ * (b) special fields in qh entries or (c) split iso entries. TTs will
+ * buffer low/full speed data so the host collects it at high speed.
+ */
+
+/*-------------------------------------------------------------------------*/
+/* fill a qtd, returning how much of the buffer we were able to queue up */
+static int qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
+ size_t len, int token, int maxpacket)
+{
+ int i, count;
+ u64 addr = buf;
+ struct urb *urb = qtd->urb;
+
+ if (usb_pipebulk(urb->pipe) &&
+ (address_to_buffer(ehci, usb_pipedevice(urb->pipe)) != 2)) {
+ urb->use_iram = 1;
+ qtd->buffer_offset = (size_t) (buf - urb->transfer_dma);
+ token |= QTD_IOC;
+ if (usb_pipeout(urb->pipe)) {
+ addr = ehci->iram_buffer[address_to_buffer(ehci,
+ usb_pipedevice(urb->pipe))];
+ } else if (usb_pipein(urb->pipe)) {
+ addr = ehci->iram_buffer[address_to_buffer(ehci,
+ usb_pipedevice(urb->pipe))] +
+ g_iram_size;
+ }
+ } else {
+ urb->use_iram = 0;
+ addr = buf;
+ }
+ len = min(g_iram_size, len);
+
+ /* one buffer entry per 4K ... first might be short or unaligned */
+ qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32) addr);
+ qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32) (addr >> 32));
+ count = 0x1000 - (buf & 0x0fff); /* rest of that page */
+ if (likely(len < count)) /* ... iff needed */
+ count = len;
+ else {
+ buf += 0x1000;
+ buf &= ~0x0fff;
+
+ /* per-qtd limit: from 16K to 20K (best alignment) */
+ for (i = 1; count < len && i < 5; i++) {
+ addr = buf;
+ qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32) addr);
+ qtd->hw_buf_hi[i] =
+ cpu_to_hc32(ehci, (u32) (addr >> 32));
+ buf += 0x1000;
+ if ((count + 0x1000) < len)
+ count += 0x1000;
+ else
+ count = len;
+ }
+
+ /* short packets may only terminate transfers */
+ if (count != len)
+ count -= (count % maxpacket);
+ }
+ qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
+ qtd->length = count;
+
+ return count;
+}
+
+/*-------------------------------------------------------------------------*/
+
+static inline void
+qh_update(struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
+{
+ /* writes to an active overlay are unsafe */
+ BUG_ON(qh->qh_state != QH_STATE_IDLE);
+
+ qh->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
+ qh->hw_alt_next = EHCI_LIST_END(ehci);
+
+ /* Except for control endpoints, we make hardware maintain data
+ * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
+ * and set the pseudo-toggle in udev. Only usb_clear_halt() will
+ * ever clear it.
+ */
+ if (!(qh->hw_info1 & cpu_to_hc32(ehci, 1 << 14))) {
+ unsigned is_out, epnum;
+
+ is_out = !(qtd->hw_token & cpu_to_hc32(ehci, 1 << 8));
+ epnum = (hc32_to_cpup(ehci, &qh->hw_info1) >> 8) & 0x0f;
+ if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
+ qh->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
+ usb_settoggle(qh->dev, epnum, is_out, 1);
+ }
+ }
+
+ /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
+ wmb();
+ qh->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
+}
+
+/* if it weren't for a common silicon quirk (writing the dummy into the qh
+ * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
+ * recovery (including urb dequeue) would need software changes to a QH...
+ */
+static void qh_refresh(struct ehci_hcd *ehci, struct ehci_qh *qh)
+{
+ struct ehci_qtd *qtd;
+
+ if (list_empty(&qh->qtd_list))
+ qtd = qh->dummy;
+ else {
+ qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
+ /* first qtd may already be partially processed */
+ if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw_current)
+ qtd = NULL;
+ }
+
+ if (qtd)
+ qh_update(ehci, qh, qtd);
+}
+
+/*-------------------------------------------------------------------------*/
+
+static int qtd_copy_status(struct ehci_hcd *ehci,
+ struct urb *urb, size_t length, u32 token)
+{
+ int status = -EINPROGRESS;
+
+ /* count IN/OUT bytes, not SETUP (even short packets) */
+ if (likely(QTD_PID(token) != 2))
+ urb->actual_length += length - QTD_LENGTH(token);
+
+ /* don't modify error codes */
+ if (unlikely(urb->unlinked))
+ return status;
+
+ /* force cleanup after short read; not always an error */
+ if (unlikely(IS_SHORT_READ(token)))
+ status = -EREMOTEIO;
+
+ /* serious "can't proceed" faults reported by the hardware */
+ if (token & QTD_STS_HALT) {
+ if (token & QTD_STS_BABBLE) {
+ /* FIXME "must" disable babbling device's port too */
+ status = -EOVERFLOW;
+ } else if (token & QTD_STS_MMF) {
+ /* fs/ls interrupt xfer missed the complete-split */
+ status = -EPROTO;
+ } else if (token & QTD_STS_DBE) {
+ status = (QTD_PID(token) == 1) /* IN ? */
+ ? -ENOSR /* hc couldn't read data */
+ : -ECOMM; /* hc couldn't write data */
+ } else if (token & QTD_STS_XACT) {
+ /* timeout, bad crc, wrong PID, etc; retried */
+ if (QTD_CERR(token))
+ status = -EPIPE;
+ else {
+ ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
+ urb->dev->devpath,
+ usb_pipeendpoint(urb->pipe),
+ usb_pipein(urb->pipe) ? "in" : "out");
+ status = -EPROTO;
+ }
+ /* CERR nonzero + no errors + halt --> stall */
+ } else if (QTD_CERR(token))
+ status = -EPIPE;
+ else /* unknown */
+ status = -EPROTO;
+
+ ehci_vdbg(ehci,
+ "dev%d ep%d%s qtd token %08x --> status %d\n",
+ usb_pipedevice(urb->pipe),
+ usb_pipeendpoint(urb->pipe),
+ usb_pipein(urb->pipe) ? "in" : "out", token, status);
+
+ /* if async CSPLIT failed, try cleaning out the TT buffer */
+ if (status != -EPIPE && urb->dev->tt && !usb_pipeint(urb->pipe)
+ && ((token & QTD_STS_MMF) != 0 || QTD_CERR(token) == 0)
+ && (!ehci_is_TDI(ehci)
+ || urb->dev->tt->hub !=
+ ehci_to_hcd(ehci)->self.root_hub)) {
+#ifdef DEBUG
+ struct usb_device *tt = urb->dev->tt->hub;
+ dev_dbg(&tt->dev,
+ "clear tt buffer port %d, a%d ep%d t%08x\n",
+ urb->dev->ttport, urb->dev->devnum,
+ usb_pipeendpoint(urb->pipe), token);
+#endif /* DEBUG */
+ /* REVISIT ARC-derived cores don't clear the root
+ * hub TT buffer in this way...
+ */
+ usb_hub_tt_clear_buffer(urb->dev, urb->pipe);
+ }
+ }
+
+ return status;
+}
+
+static void
+ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
+__releases(ehci->lock) __acquires(ehci->lock)
+{
+ if (likely(urb->hcpriv != NULL)) {
+ struct ehci_qh *qh = (struct ehci_qh *)urb->hcpriv;
+
+ /* S-mask in a QH means it's an interrupt urb */
+ if ((qh->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) {
+
+ /* ... update hc-wide periodic stats (for usbfs) */
+ ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
+ }
+ qh_put(qh);
+ }
+
+ if (unlikely(urb->unlinked)) {
+ COUNT(ehci->stats.unlink);
+ } else {
+ /* report non-error and short read status as zero */
+ if (status == -EINPROGRESS || status == -EREMOTEIO)
+ status = 0;
+ COUNT(ehci->stats.complete);
+ }
+
+#ifdef EHCI_URB_TRACE
+ ehci_dbg(ehci,
+ "%s %s urb %p ep%d%s status %d len %d/%d\n",
+ __func__, urb->dev->devpath, urb,
+ usb_pipeendpoint(urb->pipe),
+ usb_pipein(urb->pipe) ? "in" : "out",
+ status, urb->actual_length, urb->transfer_buffer_length);
+#endif
+
+ /* complete() can reenter this HCD */
+ usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
+ spin_unlock(&ehci->lock);
+ usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
+ spin_lock(&ehci->lock);
+}
+
+static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
+static void unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
+
+static void intr_deschedule(struct ehci_hcd *ehci, struct ehci_qh *qh);
+static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh);
+
+/*
+ * Process and free completed qtds for a qh, returning URBs to drivers.
+ * Chases up to qh->hw_current. Returns number of completions called,
+ * indicating how much "real" work we did.
+ */
+static unsigned qh_completions(struct ehci_hcd *ehci, struct ehci_qh *qh)
+{
+ struct ehci_qtd *last = NULL, *end = qh->dummy;
+ struct list_head *entry, *tmp;
+ int last_status = -EINPROGRESS;
+ int stopped;
+ unsigned count = 0;
+ u8 state;
+ __le32 halt = HALT_BIT(ehci);
+ __hc32 temp_hw_qtd_next = 0;
+
+ if (unlikely(list_empty(&qh->qtd_list)))
+ return count;
+
+ /* completions (or tasks on other cpus) must never clobber HALT
+ * till we've gone through and cleaned everything up, even when
+ * they add urbs to this qh's queue or mark them for unlinking.
+ *
+ * NOTE: unlinking expects to be done in queue order.
+ */
+ state = qh->qh_state;
+ qh->qh_state = QH_STATE_COMPLETING;
+ stopped = (state == QH_STATE_IDLE);
+
+ /* remove de-activated QTDs from front of queue.
+ * after faults (including short reads), cleanup this urb
+ * then let the queue advance.
+ * if queue is stopped, handles unlinks.
+ */
+ list_for_each_safe(entry, tmp, &qh->qtd_list) {
+ struct ehci_qtd *qtd;
+ struct urb *urb;
+ struct ehci_qtd *qtd2;
+ struct urb *urb2;
+
+ u32 token = 0;
+
+ qtd = list_entry(entry, struct ehci_qtd, qtd_list);
+ urb = qtd->urb;
+
+ /* clean up any state from previous QTD ... */
+ if (last) {
+ if (likely(last->urb != urb)) {
+ ehci_urb_done(ehci, last->urb, last_status);
+ count++;
+ last_status = -EINPROGRESS;
+ }
+ ehci_qtd_free(ehci, last);
+ last = NULL;
+ }
+
+ /* ignore urbs submitted during completions we reported */
+ if (qtd == end)
+ break;
+
+ /* hardware copies qtd out of qh overlay */
+ rmb();
+ token = hc32_to_cpu(ehci, qtd->hw_token);
+
+ /* always clean up qtds the hc de-activated */
+ if ((token & QTD_STS_ACTIVE) == 0) {
+
+ /* on STALL, error, and short reads this urb must
+ * complete and all its qtds must be recycled.
+ */
+ if ((token & QTD_STS_HALT) != 0) {
+ stopped = 1;
+
+ /* magic dummy for some short reads; qh won't advance.
+ * that silicon quirk can kick in with this dummy too.
+ *
+ * other short reads won't stop the queue, including
+ * control transfers (status stage handles that) or
+ * most other single-qtd reads ... the queue stops if
+ * URB_SHORT_NOT_OK was set so the driver submitting
+ * the urbs could clean it up.
+ */
+ } else if (IS_SHORT_READ(token)
+ && !(qtd->hw_alt_next & EHCI_LIST_END(ehci))) {
+ if (urb->use_iram && usb_pipein(urb->pipe)) {
+ if (urb->transfer_buffer == NULL) {
+ memcpy(phys_to_virt
+ (urb->transfer_dma) +
+ qtd->buffer_offset,
+ ehci->
+ iram_buffer_v
+ [address_to_buffer
+ (ehci,
+ usb_pipedevice(urb->
+ pipe))]
+ + g_iram_size,
+ min(g_iram_size,
+ qtd->length));
+ } else {
+ memcpy(urb->transfer_buffer +
+ qtd->buffer_offset,
+ ehci->
+ iram_buffer_v
+ [address_to_buffer
+ (ehci,
+ usb_pipedevice(urb->
+ pipe))]
+ + g_iram_size,
+ min(g_iram_size,
+ qtd->length));
+ }
+ }
+ stopped = 1;
+ goto halt;
+ } else if (urb->use_iram && (!qtd->last_one)
+ && usb_pipeout(urb->pipe)) {
+ ehci->
+ iram_in_use[address_to_buffer
+ (ehci,
+ usb_pipedevice(urb->pipe))] =
+ 1;
+ qtd2 =
+ list_entry(tmp, struct ehci_qtd, qtd_list);
+ if (urb->transfer_buffer == NULL) {
+ memcpy(ehci->
+ iram_buffer_v[address_to_buffer
+ (ehci,
+ usb_pipedevice
+ (urb->pipe))],
+ phys_to_virt(urb->transfer_dma) +
+ qtd->buffer_offset + qtd->length,
+ min(g_iram_size, qtd2->length));
+ } else {
+ memcpy(ehci->
+ iram_buffer_v[address_to_buffer
+ (ehci,
+ usb_pipedevice
+ (urb->pipe))],
+ urb->transfer_buffer +
+ qtd->buffer_offset + qtd->length,
+ min(g_iram_size, qtd2->length));
+ }
+ temp_hw_qtd_next =
+ QTD_NEXT(ehci, qtd->hw_next) & 0xFFFFFFFE;
+ } else if (urb->use_iram && (qtd->last_one)
+ && usb_pipeout(urb->pipe)) {
+ urb->use_iram = 0;
+ qtd2 =
+ list_entry(tmp, struct ehci_qtd, qtd_list);
+ if (tmp != &qh->qtd_list) {
+ urb2 = qtd2->urb;
+ if (urb2 && urb2->use_iram == 1) {
+ ehci->
+ iram_in_use
+ [address_to_buffer
+ (ehci,
+ usb_pipedevice(urb->
+ pipe))] =
+ 1;
+ if (urb2->transfer_buffer ==
+ NULL) {
+ memcpy(ehci->
+ iram_buffer_v
+ [address_to_buffer
+ (ehci,
+ usb_pipedevice
+ (urb->pipe))],
+ phys_to_virt
+ (urb2->
+ transfer_dma),
+ min(g_iram_size,
+ qtd2->
+ length));
+ } else {
+ memcpy(ehci->
+ iram_buffer_v
+ [address_to_buffer
+ (ehci,
+ usb_pipedevice
+ (urb->pipe))],
+ urb2->
+ transfer_buffer,
+ min(g_iram_size,
+ qtd2->
+ length));
+ }
+ } else {
+ ehci->
+ iram_in_use
+ [address_to_buffer
+ (ehci,
+ usb_pipedevice(urb->
+ pipe))] =
+ 0;
+ }
+ } else {
+ ehci->
+ iram_in_use[address_to_buffer
+ (ehci,
+ usb_pipedevice(urb->
+ pipe))]
+ = 0;
+ }
+ temp_hw_qtd_next =
+ QTD_NEXT(ehci, qtd->hw_next) & 0xFFFFFFFE;
+ } else if (urb->use_iram && usb_pipein(urb->pipe)) {
+ if (urb->transfer_buffer == NULL) {
+ memcpy(phys_to_virt(urb->transfer_dma) +
+ qtd->buffer_offset,
+ ehci->
+ iram_buffer_v[address_to_buffer
+ (ehci,
+ usb_pipedevice
+ (urb->pipe))] +
+ g_iram_size, min(g_iram_size,
+ qtd->length));
+ } else {
+ memcpy(urb->transfer_buffer +
+ qtd->buffer_offset,
+ ehci->
+ iram_buffer_v[address_to_buffer
+ (ehci,
+ usb_pipedevice
+ (urb->pipe))] +
+ g_iram_size, min(g_iram_size,
+ qtd->length));
+ }
+ temp_hw_qtd_next =
+ QTD_NEXT(ehci, qtd->hw_next) & 0xFFFFFFFE;
+ }
+ /* stop scanning when we reach qtds the hc is using */
+ } else if (likely(!stopped
+ && HC_IS_RUNNING(ehci_to_hcd(ehci)->state))) {
+ break;
+
+ /* scan the whole queue for unlinks whenever it stops */
+ } else {
+ stopped = 1;
+
+ /* cancel everything if we halt, suspend, etc */
+ if (!HC_IS_RUNNING(ehci_to_hcd(ehci)->state))
+ last_status = -ESHUTDOWN;
+
+ /* this qtd is active; skip it unless a previous qtd
+ * for its urb faulted, or its urb was canceled.
+ */
+ else if (last_status == -EINPROGRESS && !urb->unlinked)
+ continue;
+
+ /* qh unlinked; token in overlay may be most current */
+ if (state == QH_STATE_IDLE
+ && cpu_to_hc32(ehci, qtd->qtd_dma)
+ == qh->hw_current)
+ token = hc32_to_cpu(ehci, qh->hw_token);
+
+ /* qh unlinked; token in overlay may be most current */
+ if (state == QH_STATE_IDLE
+ && cpu_to_hc32(ehci, qtd->qtd_dma)
+ == qh->hw_current)
+ token = hc32_to_cpu(ehci, qh->hw_token);
+
+ /* force halt for unlinked or blocked qh, so we'll
+ * patch the qh later and so that completions can't
+ * activate it while we "know" it's stopped.
+ */
+ if ((halt & qh->hw_token) == 0) {
+halt:
+ qh->hw_token |= halt;
+ wmb();
+ }
+ }
+
+ /* unless we already know the urb's status, collect qtd status
+ * and update count of bytes transferred. in common short read
+ * cases with only one data qtd (including control transfers),
+ * queue processing won't halt. but with two or more qtds (for
+ * example, with a 32 KB transfer), when the first qtd gets a
+ * short read the second must be removed by hand.
+ */
+ if (last_status == -EINPROGRESS) {
+ last_status = qtd_copy_status(ehci, urb,
+ qtd->length, token);
+ if (last_status == -EREMOTEIO
+ && (qtd->hw_alt_next
+ & EHCI_LIST_END(ehci)))
+ last_status = -EINPROGRESS;
+ }
+
+ /* if we're removing something not at the queue head,
+ * patch the hardware queue pointer.
+ */
+
+ if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
+ last = list_entry(qtd->qtd_list.prev,
+ struct ehci_qtd, qtd_list);
+ last->hw_next = qtd->hw_next;
+ }
+
+/* remove qtd; it's recycled after possible urb completion */
+ list_del(&qtd->qtd_list);
+ last = qtd;
+ }
+
+ /* last urb's completion might still need calling */
+ if (likely(last != NULL)) {
+ ehci_urb_done(ehci, last->urb, last_status);
+ count++;
+ ehci_qtd_free(ehci, last);
+ }
+
+ /* restore original state; caller must unlink or relink */
+ qh->qh_state = state;
+
+ /* be sure the hardware's done with the qh before refreshing
+ * it after fault cleanup, or recovering from silicon wrongly
+ * overlaying the dummy qtd (which reduces DMA chatter).
+ */
+ if ((stopped != 0) || (qh->hw_qtd_next == EHCI_LIST_END(ehci))
+ && (temp_hw_qtd_next == 0)) {
+ switch (state) {
+ case QH_STATE_IDLE:
+ qh_refresh(ehci, qh);
+ break;
+ case QH_STATE_LINKED:
+ /* We won't refresh a QH that's linked (after the HC
+ * stopped the queue). That avoids a race:
+ * - HC reads first part of QH;
+ * - CPU updates that first part and the token;
+ * - HC reads rest of that QH, including token
+ * Result: HC gets an inconsistent image, and then
+ * DMAs to/from the wrong memory (corrupting it).
+ *
+ * That should be rare for interrupt transfers,
+ * except maybe high bandwidth ...
+ */
+ if ((cpu_to_hc32(ehci, QH_SMASK)
+ & qh->hw_info2) != 0) {
+ intr_deschedule(ehci, qh);
+ (void)qh_schedule(ehci, qh);
+ } else
+ unlink_async(ehci, qh);
+ break;
+ /* otherwise, unlink already started */
+ }
+ }
+ if (temp_hw_qtd_next)
+ qh->hw_qtd_next = temp_hw_qtd_next;
+
+ return count;
+}
+
+/*-------------------------------------------------------------------------*/
+
+/* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
+#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
+/* ... and packet size, for any kind of endpoint descriptor */
+#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
+
+/*
+ * reverse of qh_urb_transaction: free a list of TDs.
+ * used for cleanup after errors, before HC sees an URB's TDs.
+ */
+static void qtd_list_free(struct ehci_hcd *ehci,
+ struct urb *urb, struct list_head *qtd_list)
+{
+ struct list_head *entry, *temp;
+
+ list_for_each_safe(entry, temp, qtd_list) {
+ struct ehci_qtd *qtd;
+
+ qtd = list_entry(entry, struct ehci_qtd, qtd_list);
+ list_del(&qtd->qtd_list);
+ ehci_qtd_free(ehci, qtd);
+ }
+}
+
+/*
+ * create a list of filled qtds for this URB; won't link into qh.
+ */
+static struct list_head *qh_urb_transaction(struct ehci_hcd *ehci,
+ struct urb *urb,
+ struct list_head *head, gfp_t flags)
+{
+ struct ehci_qtd *qtd, *qtd_prev;
+ dma_addr_t buf;
+ int len, maxpacket;
+ int is_input;
+ u32 token;
+
+ /*
+ * URBs map to sequences of QTDs: one logical transaction
+ */
+ qtd = ehci_qtd_alloc(ehci, flags);
+ if (unlikely(!qtd))
+ return NULL;
+ list_add_tail(&qtd->qtd_list, head);
+ qtd->urb = urb;
+
+ token = QTD_STS_ACTIVE;
+ token |= (EHCI_TUNE_CERR << 10);
+ /* for split transactions, SplitXState initialized to zero */
+
+ len = urb->transfer_buffer_length;
+ is_input = usb_pipein(urb->pipe);
+ if (usb_pipecontrol(urb->pipe)) {
+ /* SETUP pid */
+ qtd_fill(ehci, qtd, urb->setup_dma,
+ sizeof(struct usb_ctrlrequest),
+ token | (2 /* "setup" */ << 8), 8);
+
+ /* ... and always at least one more pid */
+ token ^= QTD_TOGGLE;
+ qtd_prev = qtd;
+ qtd = ehci_qtd_alloc(ehci, flags);
+ if (unlikely(!qtd))
+ goto cleanup;
+ qtd->urb = urb;
+ qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
+ list_add_tail(&qtd->qtd_list, head);
+
+ /* for zero length DATA stages, STATUS is always IN */
+ if (len == 0)
+ token |= (1 /* "in" */ << 8);
+ }
+
+ /*
+ * data transfer stage: buffer setup
+ */
+ buf = urb->transfer_dma;
+
+ if (is_input)
+ token |= (1 /* "in" */ << 8);
+ /* else it's already initted to "out" pid (0 << 8) */
+
+ maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
+
+ /*
+ * buffer gets wrapped in one or more qtds;
+ * last one may be "short" (including zero len)
+ * and may serve as a control status ack
+ */
+ for (;;) {
+ int this_qtd_len;
+ this_qtd_len = qtd_fill(ehci, qtd, buf, len, token, maxpacket);
+ if (urb->use_iram && (!qtd->buffer_offset)
+ && usb_pipeout(urb->pipe)
+ && (ehci->
+ iram_in_use[address_to_buffer
+ (ehci, usb_pipedevice(urb->pipe))] == 0)) {
+ ehci->
+ iram_in_use[address_to_buffer
+ (ehci, usb_pipedevice(urb->pipe))] = 1;
+ if (urb->transfer_buffer == NULL) {
+ memcpy(ehci->
+ iram_buffer_v[address_to_buffer
+ (ehci,
+ usb_pipedevice(urb->
+ pipe))],
+ phys_to_virt(urb->transfer_dma),
+ min((int)g_iram_size, len));
+ } else {
+ memcpy(ehci->
+ iram_buffer_v[address_to_buffer
+ (ehci,
+ usb_pipedevice(urb->
+ pipe))],
+ urb->transfer_buffer,
+ min((int)g_iram_size, len));
+ }
+ }
+ len -= this_qtd_len;
+ buf += this_qtd_len;
+
+ /*
+ * short reads advance to a "magic" dummy instead of the next
+ * qtd ... that forces the queue to stop, for manual cleanup.
+ * (this will usually be overridden later.)
+ */
+ if (is_input)
+ qtd->hw_alt_next = ehci->async->hw_alt_next;
+
+ /* qh makes control packets use qtd toggle; maybe switch it */
+ if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
+ token ^= QTD_TOGGLE;
+
+ if (likely(len <= 0)) {
+ qtd->last_one = 1;
+ break;
+ }
+ qtd_prev = qtd;
+ qtd = ehci_qtd_alloc(ehci, flags);
+ if (unlikely(!qtd))
+ goto cleanup;
+ qtd->urb = urb;
+ if (urb->use_iram)
+ qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma) | 0x1;
+ else
+ qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
+
+ list_add_tail(&qtd->qtd_list, head);
+ }
+
+ /*
+ * unless the caller requires manual cleanup after short reads,
+ * have the alt_next mechanism keep the queue running after the
+ * last data qtd (the only one, for control and most other cases).
+ */
+ if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
+ || usb_pipecontrol(urb->pipe)))
+ qtd->hw_alt_next = EHCI_LIST_END(ehci);
+
+ /*
+ * control requests may need a terminating data "status" ack;
+ * bulk ones may need a terminating short packet (zero length).
+ */
+ if (likely(urb->transfer_buffer_length != 0)) {
+ int one_more = 0;
+
+ if (usb_pipecontrol(urb->pipe)) {
+ one_more = 1;
+ token ^= 0x0100; /* "in" <--> "out" */
+ token |= QTD_TOGGLE; /* force DATA1 */
+ } else if (usb_pipebulk(urb->pipe)
+ && (urb->transfer_flags & URB_ZERO_PACKET)
+ && !(urb->transfer_buffer_length % maxpacket))
+ one_more = 1;
+ if (one_more) {
+ qtd_prev = qtd;
+ qtd = ehci_qtd_alloc(ehci, flags);
+ if (unlikely(!qtd))
+ goto cleanup;
+ qtd->urb = urb;
+ qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
+ list_add_tail(&qtd->qtd_list, head);
+
+ /* never any data in such packets */
+ qtd_fill(ehci, qtd, 0, 0, token, 0);
+ }
+ }
+
+ /* by default, enable interrupt on urb completion */
+ if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
+ qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
+ return head;
+
+cleanup:
+ qtd_list_free(ehci, urb, head);
+ return NULL;
+}
+
+/*-------------------------------------------------------------------------*/
+
+/* Would be best to create all qh's from config descriptors,
+ * when each interface/altsetting is established. Unlink
+ * any previous qh and cancel its urbs first; endpoints are
+ * implicitly reset then (data toggle too).
+ * That'd mean updating how usbcore talks to HCDs. (2.7?)
+ */
+
+/*
+ * Each QH holds a qtd list; a QH is used for everything except iso.
+ *
+ * For interrupt urbs, the scheduler must set the microframe scheduling
+ * mask(s) each time the QH gets scheduled. For highspeed, that's
+ * just one microframe in the s-mask. For split interrupt transactions
+ * there are additional complications: c-mask, maybe FSTNs.
+ */
+static struct ehci_qh *qh_make(struct ehci_hcd *ehci,
+ struct urb *urb, gfp_t flags)
+{
+ struct ehci_qh *qh = ehci_qh_alloc(ehci, flags);
+ u32 info1 = 0, info2 = 0;
+ int is_input, type;
+ int maxp = 0;
+ struct usb_tt *tt = urb->dev->tt;
+
+ if (!qh)
+ return qh;
+
+ /*
+ * init endpoint/device data for this QH
+ */
+ info1 |= usb_pipeendpoint(urb->pipe) << 8;
+ info1 |= usb_pipedevice(urb->pipe) << 0;
+
+ is_input = usb_pipein(urb->pipe);
+ type = usb_pipetype(urb->pipe);
+ maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
+
+ /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
+ * acts like up to 3KB, but is built from smaller packets.
+ */
+ if (max_packet(maxp) > 1024) {
+ ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
+ goto done;
+ }
+
+ /* Compute interrupt scheduling parameters just once, and save.
+ * - allowing for high bandwidth, how many nsec/uframe are used?
+ * - split transactions need a second CSPLIT uframe; same question
+ * - splits also need a schedule gap (for full/low speed I/O)
+ * - qh has a polling interval
+ *
+ * For control/bulk requests, the HC or TT handles these.
+ */
+ if (type == PIPE_INTERRUPT) {
+ qh->usecs =
+ NS_TO_US(usb_calc_bus_time
+ (USB_SPEED_HIGH, is_input, 0,
+ hb_mult(maxp) * max_packet(maxp)));
+ qh->start = NO_FRAME;
+
+ if (urb->dev->speed == USB_SPEED_HIGH) {
+ qh->c_usecs = 0;
+ qh->gap_uf = 0;
+
+ qh->period = urb->interval >> 3;
+ if (qh->period == 0 && urb->interval != 1) {
+ /* NOTE interval 2 or 4 uframes could work.
+ * But interval 1 scheduling is simpler, and
+ * includes high bandwidth.
+ */
+ dbg("intr period %d uframes, NYET!",
+ urb->interval);
+ goto done;
+ }
+ } else {
+ int think_time;
+
+ /* gap is f(FS/LS transfer times) */
+ qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
+ is_input, 0,
+ maxp) / (125 * 1000);
+
+ /* FIXME this just approximates SPLIT/CSPLIT times */
+ if (is_input) {
+ qh->c_usecs = qh->usecs + HS_USECS(0);
+ qh->usecs = HS_USECS(1);
+ } else {
+ qh->usecs += HS_USECS(1);
+ qh->c_usecs = HS_USECS(0);
+ }
+
+ think_time = tt ? tt->think_time : 0;
+ qh->tt_usecs = NS_TO_US(think_time +
+ usb_calc_bus_time(urb->dev->
+ speed,
+ is_input, 0,
+ max_packet
+ (maxp)));
+ qh->period = urb->interval;
+ }
+ }
+
+ /* support for tt scheduling, and access to toggles */
+ qh->dev = urb->dev;
+
+ /* using TT? */
+ switch (urb->dev->speed) {
+ case USB_SPEED_LOW:
+ info1 |= (1 << 12); /* EPS "low" */
+ /* FALL THROUGH */
+
+ case USB_SPEED_FULL:
+ /* EPS 0 means "full" */
+ if (type != PIPE_INTERRUPT)
+ info1 |= (EHCI_TUNE_RL_TT << 28);
+ if (type == PIPE_CONTROL) {
+ info1 |= (1 << 27); /* for TT */
+ info1 |= 1 << 14; /* toggle from qtd */
+ }
+ info1 |= maxp << 16;
+
+ info2 |= (EHCI_TUNE_MULT_TT << 30);
+
+ /* Some Freescale processors have an erratum in which the
+ * port number in the queue head was 0..N-1 instead of 1..N.
+ */
+ if (ehci_has_fsl_portno_bug(ehci))
+ info2 |= (urb->dev->ttport - 1) << 23;
+ else
+ info2 |= urb->dev->ttport << 23;
+
+ /* set the address of the TT; for TDI's integrated
+ * root hub tt, leave it zeroed.
+ */
+ if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
+ info2 |= tt->hub->devnum << 16;
+
+ /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
+
+ break;
+
+ case USB_SPEED_HIGH: /* no TT involved */
+ info1 |= (2 << 12); /* EPS "high" */
+ if (type == PIPE_CONTROL) {
+ info1 |= (EHCI_TUNE_RL_HS << 28);
+ info1 |= 64 << 16; /* usb2 fixed maxpacket */
+ info1 |= 1 << 14; /* toggle from qtd */
+ info2 |= (EHCI_TUNE_MULT_HS << 30);
+ } else if (type == PIPE_BULK) {
+ info1 |= (EHCI_TUNE_RL_HS << 28);
+ /* The USB spec says that high speed bulk endpoints
+ * always use 512 byte maxpacket. But some device
+ * vendors decided to ignore that, and MSFT is happy
+ * to help them do so. So now people expect to use
+ * such nonconformant devices with Linux too; sigh.
+ */
+ info1 |= max_packet(maxp) << 16;
+ info2 |= (EHCI_TUNE_MULT_HS << 30);
+ use_buffer(ehci, usb_pipedevice(urb->pipe));
+ } else { /* PIPE_INTERRUPT */
+ info1 |= max_packet(maxp) << 16;
+ info2 |= hb_mult(maxp) << 30;
+ }
+ break;
+ default:
+ dbg("bogus dev %p speed %d", urb->dev, urb->dev->speed);
+done:
+ qh_put(qh);
+ return NULL;
+ }
+
+ /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
+
+ /* init as live, toggle clear, advance to dummy */
+ qh->qh_state = QH_STATE_IDLE;
+ qh->hw_info1 = cpu_to_hc32(ehci, info1);
+ qh->hw_info2 = cpu_to_hc32(ehci, info2);
+ usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
+ qh_refresh(ehci, qh);
+ return qh;
+}
+
+/*-------------------------------------------------------------------------*/
+
+/* move qh (and its qtds) onto async queue; maybe enable queue. */
+
+static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
+{
+ __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
+ struct ehci_qh *head;
+
+ /* (re)start the async schedule? */
+ head = ehci->async;
+ timer_action_done(ehci, TIMER_ASYNC_OFF);
+ if (!head->qh_next.qh) {
+ u32 cmd = ehci_readl(ehci, &ehci->regs->command);
+
+ if (!(cmd & CMD_ASE)) {
+ /* in case a clear of CMD_ASE didn't take yet */
+ (void)handshake(ehci, &ehci->regs->status,
+ STS_ASS, 0, 150);
+ cmd |= CMD_ASE | CMD_RUN;
+ ehci_writel(ehci, cmd, &ehci->regs->command);
+ ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
+ /* posted write need not be known to HC yet ... */
+ }
+ }
+
+ /* clear halt and/or toggle; and maybe recover from silicon quirk */
+ if (qh->qh_state == QH_STATE_IDLE)
+ qh_refresh(ehci, qh);
+
+ /* splice right after start */
+ qh->qh_next = head->qh_next;
+ qh->hw_next = head->hw_next;
+ wmb();
+
+ head->qh_next.qh = qh;
+ head->hw_next = dma;
+
+ qh->qh_state = QH_STATE_LINKED;
+ /* qtd completions reported later by interrupt */
+}
+
+/*-------------------------------------------------------------------------*/
+
+/*
+ * For control/bulk/interrupt, return QH with these TDs appended.
+ * Allocates and initializes the QH if necessary.
+ * Returns null if it can't allocate a QH it needs to.
+ * If the QH has TDs (urbs) already, that's great.
+ */
+static struct ehci_qh *qh_append_tds(struct ehci_hcd *ehci,
+ struct urb *urb,
+ struct list_head *qtd_list,
+ int epnum, void **ptr)
+{
+ struct ehci_qh *qh = NULL;
+ __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
+
+ qh = (struct ehci_qh *)*ptr;
+ if (unlikely(qh == NULL)) {
+ /* can't sleep here, we have ehci->lock... */
+ qh = qh_make(ehci, urb, GFP_ATOMIC);
+ *ptr = qh;
+ }
+ if (likely(qh != NULL)) {
+ struct ehci_qtd *qtd;
+
+ if (unlikely(list_empty(qtd_list)))
+ qtd = NULL;
+ else
+ qtd = list_entry(qtd_list->next, struct ehci_qtd,
+ qtd_list);
+
+ /* control qh may need patching ... */
+ if (unlikely(epnum == 0)) {
+
+ /* usb_reset_device() briefly reverts to address 0 */
+ if (usb_pipedevice(urb->pipe) == 0)
+ qh->hw_info1 &= ~qh_addr_mask;
+ }
+
+ /* just one way to queue requests: swap with the dummy qtd.
+ * only hc or qh_refresh() ever modify the overlay.
+ */
+ if (likely(qtd != NULL)) {
+ struct ehci_qtd *dummy;
+ dma_addr_t dma;
+ __hc32 token;
+
+ /* to avoid racing the HC, use the dummy td instead of
+ * the first td of our list (becomes new dummy). both
+ * tds stay deactivated until we're done, when the
+ * HC is allowed to fetch the old dummy (4.10.2).
+ */
+ token = qtd->hw_token;
+ qtd->hw_token = HALT_BIT(ehci);
+ wmb();
+ dummy = qh->dummy;
+
+ dma = dummy->qtd_dma;
+ *dummy = *qtd;
+ dummy->qtd_dma = dma;
+
+ list_del(&qtd->qtd_list);
+ list_add(&dummy->qtd_list, qtd_list);
+ __list_splice(qtd_list, qh->qtd_list.prev);
+
+ ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
+ qh->dummy = qtd;
+
+ /* hc must see the new dummy at list end */
+ dma = qtd->qtd_dma;
+ qtd = list_entry(qh->qtd_list.prev,
+ struct ehci_qtd, qtd_list);
+ if (urb->use_iram)
+ qtd->hw_next = QTD_NEXT(ehci, dma) | 0x1;
+ else
+ qtd->hw_next = QTD_NEXT(ehci, dma);
+
+ /* let the hc process these next qtds */
+ wmb();
+ dummy->hw_token = token;
+
+ urb->hcpriv = qh_get(qh);
+ }
+ }
+ return qh;
+}
+
+/*-------------------------------------------------------------------------*/
+
+static int
+submit_async(struct ehci_hcd *ehci,
+ struct urb *urb, struct list_head *qtd_list, gfp_t mem_flags)
+{
+ struct ehci_qtd *qtd;
+ int epnum;
+ unsigned long flags;
+ struct ehci_qh *qh = NULL;
+ int rc;
+
+ qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
+ epnum = urb->ep->desc.bEndpointAddress;
+
+#ifdef EHCI_URB_TRACE
+ ehci_dbg(ehci,
+ "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
+ __func__, urb->dev->devpath, urb,
+ epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
+ urb->transfer_buffer_length, qtd, urb->ep->hcpriv);
+#endif
+
+ spin_lock_irqsave(&ehci->lock, flags);
+ if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
+ &ehci_to_hcd(ehci)->flags))) {
+ rc = -ESHUTDOWN;
+ goto done;
+ }
+ rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
+ if (unlikely(rc))
+ goto done;
+
+ qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
+ if (unlikely(qh == NULL)) {
+ usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ /* Control/bulk operations through TTs don't need scheduling,
+ * the HC and TT handle it when the TT has a buffer ready.
+ */
+ if (likely(qh->qh_state == QH_STATE_IDLE))
+ qh_link_async(ehci, qh_get(qh));
+done:
+ spin_unlock_irqrestore(&ehci->lock, flags);
+ if (unlikely(qh == NULL))
+ qtd_list_free(ehci, urb, qtd_list);
+ return rc;
+}
+
+/*-------------------------------------------------------------------------*/
+
+/* the async qh for the qtds being reclaimed are now unlinked from the HC */
+
+static void end_unlink_async(struct ehci_hcd *ehci)
+{
+ struct ehci_qh *qh = ehci->reclaim;
+ struct ehci_qh *next;
+
+ iaa_watchdog_done(ehci);
+
+ qh->qh_state = QH_STATE_IDLE;
+ qh->qh_next.qh = NULL;
+ qh_put(qh); /* refcount from reclaim */
+
+ /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
+ next = qh->reclaim;
+ ehci->reclaim = next;
+ qh->reclaim = NULL;
+
+ qh_completions(ehci, qh);
+
+ if (!list_empty(&qh->qtd_list)
+ && HC_IS_RUNNING(ehci_to_hcd(ehci)->state))
+ qh_link_async(ehci, qh);
+ else {
+ qh_put(qh); /* refcount from async list */
+
+ /* it's not free to turn the async schedule on/off; leave it
+ * active but idle for a while once it empties.
+ */
+ if (HC_IS_RUNNING(ehci_to_hcd(ehci)->state)
+ && ehci->async->qh_next.qh == NULL)
+ timer_action(ehci, TIMER_ASYNC_OFF);
+ }
+
+ if (next) {
+ ehci->reclaim = NULL;
+ start_unlink_async(ehci, next);
+ }
+}
+
+/* makes sure the async qh will become idle */
+/* caller must own ehci->lock */
+
+static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
+{
+ int cmd = ehci_readl(ehci, &ehci->regs->command);
+ struct ehci_qh *prev;
+
+#ifdef DEBUG
+ assert_spin_locked(&ehci->lock);
+ if (ehci->reclaim
+ || (qh->qh_state != QH_STATE_LINKED
+ && qh->qh_state != QH_STATE_UNLINK_WAIT)
+ )
+ BUG();
+#endif
+
+ /* stop async schedule right now? */
+ if (unlikely(qh == ehci->async)) {
+ /* can't get here without STS_ASS set */
+ if (ehci_to_hcd(ehci)->state != HC_STATE_HALT &&
+ !ehci->reclaim) {
+ /* ... and CMD_IAAD clear */
+ ehci_writel(ehci, cmd & ~CMD_ASE, &ehci->regs->command);
+ wmb();
+ /* handshake later, if we need to */
+ timer_action_done(ehci, TIMER_ASYNC_OFF);
+ }
+ return;
+ }
+
+ qh->qh_state = QH_STATE_UNLINK;
+ ehci->reclaim = qh = qh_get(qh);
+
+ prev = ehci->async;
+ while (prev->qh_next.qh != qh)
+ prev = prev->qh_next.qh;
+
+ prev->hw_next = qh->hw_next;
+ prev->qh_next = qh->qh_next;
+ wmb();
+
+ if (unlikely(ehci_to_hcd(ehci)->state == HC_STATE_HALT)) {
+ /* if (unlikely (qh->reclaim != 0))
+ * this will recurse, probably not much
+ */
+ end_unlink_async(ehci);
+ return;
+ }
+
+ cmd |= CMD_IAAD;
+ ehci_writel(ehci, cmd, &ehci->regs->command);
+ (void)ehci_readl(ehci, &ehci->regs->command);
+ iaa_watchdog_start(ehci);
+}
+
+/*-------------------------------------------------------------------------*/
+
+static void scan_async(struct ehci_hcd *ehci)
+{
+ struct ehci_qh *qh;
+ enum ehci_timer_action action = TIMER_IO_WATCHDOG;
+
+ if (!++(ehci->stamp))
+ ehci->stamp++;
+ timer_action_done(ehci, TIMER_ASYNC_SHRINK);
+rescan:
+ qh = ehci->async->qh_next.qh;
+ if (likely(qh != NULL)) {
+ do {
+ /* clean any finished work for this qh */
+ if (!list_empty(&qh->qtd_list)
+ && qh->stamp != ehci->stamp) {
+ int temp;
+
+ /* unlinks could happen here; completion
+ * reporting drops the lock. rescan using
+ * the latest schedule, but don't rescan
+ * qhs we already finished (no looping).
+ */
+ qh = qh_get(qh);
+ qh->stamp = ehci->stamp;
+ temp = qh_completions(ehci, qh);
+ qh_put(qh);
+ if (temp != 0)
+ goto rescan;
+ }
+
+ /* unlink idle entries, reducing HC PCI usage as well
+ * as HCD schedule-scanning costs. delay for any qh
+ * we just scanned, there's a not-unusual case that it
+ * doesn't stay idle for long.
+ * (plus, avoids some kind of re-activation race.)
+ */
+ if (list_empty(&qh->qtd_list)) {
+ if (qh->stamp == ehci->stamp)
+ action = TIMER_ASYNC_SHRINK;
+ else if (!ehci->reclaim
+ && qh->qh_state == QH_STATE_LINKED)
+ start_unlink_async(ehci, qh);
+ }
+
+ qh = qh->qh_next.qh;
+ } while (qh);
+ }
+ if (action == TIMER_ASYNC_SHRINK)
+ timer_action(ehci, TIMER_ASYNC_SHRINK);
+}