diff options
author | Mel Gorman <mgorman@suse.de> | 2012-11-26 16:29:45 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2012-11-26 17:41:24 -0800 |
commit | 82b212f40059bffd6808c07266a942d444d5558a (patch) | |
tree | bf0910ed6dade9445f2a8a7fc9d351565e0a45b1 /drivers | |
parent | 05f564849d49499ced97913a0914b5950577d07d (diff) |
Revert "mm: remove __GFP_NO_KSWAPD"
With "mm: vmscan: scale number of pages reclaimed by reclaim/compaction
based on failures" reverted, Zdenek Kabelac reported the following
Hmm, so it's just took longer to hit the problem and observe
kswapd0 spinning on my CPU again - it's not as endless like before -
but still it easily eats minutes - it helps to turn off Firefox
or TB (memory hungry apps) so kswapd0 stops soon - and restart
those apps again. (And I still have like >1GB of cached memory)
kswapd0 R running task 0 30 2 0x00000000
Call Trace:
preempt_schedule+0x42/0x60
_raw_spin_unlock+0x55/0x60
put_super+0x31/0x40
drop_super+0x22/0x30
prune_super+0x149/0x1b0
shrink_slab+0xba/0x510
The sysrq+m indicates the system has no swap so it'll never reclaim
anonymous pages as part of reclaim/compaction. That is one part of the
problem but not the root cause as file-backed pages could also be
reclaimed.
The likely underlying problem is that kswapd is woken up or kept awake
for each THP allocation request in the page allocator slow path.
If compaction fails for the requesting process then compaction will be
deferred for a time and direct reclaim is avoided. However, if there
are a storm of THP requests that are simply rejected, it will still be
the the case that kswapd is awake for a prolonged period of time as
pgdat->kswapd_max_order is updated each time. This is noticed by the
main kswapd() loop and it will not call kswapd_try_to_sleep(). Instead
it will loopp, shrinking a small number of pages and calling
shrink_slab() on each iteration.
The temptation is to supply a patch that checks if kswapd was woken for
THP and if so ignore pgdat->kswapd_max_order but it'll be a hack and not
backed up by proper testing. As 3.7 is very close to release and this
is not a bug we should release with, a safer path is to revert "mm:
remove __GFP_NO_KSWAPD" for now and revisit it with the view to ironing
out the balance_pgdat() logic in general.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Zdenek Kabelac <zkabelac@redhat.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Robert Jennings <rcj@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/mtd/mtdcore.c | 6 |
1 files changed, 4 insertions, 2 deletions
diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c index 374c46dff7dd..ec794a72975d 100644 --- a/drivers/mtd/mtdcore.c +++ b/drivers/mtd/mtdcore.c @@ -1077,7 +1077,8 @@ EXPORT_SYMBOL_GPL(mtd_writev); * until the request succeeds or until the allocation size falls below * the system page size. This attempts to make sure it does not adversely * impact system performance, so when allocating more than one page, we - * ask the memory allocator to avoid re-trying. + * ask the memory allocator to avoid re-trying, swapping, writing back + * or performing I/O. * * Note, this function also makes sure that the allocated buffer is aligned to * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. @@ -1091,7 +1092,8 @@ EXPORT_SYMBOL_GPL(mtd_writev); */ void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) { - gfp_t flags = __GFP_NOWARN | __GFP_WAIT | __GFP_NORETRY; + gfp_t flags = __GFP_NOWARN | __GFP_WAIT | + __GFP_NORETRY | __GFP_NO_KSWAPD; size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); void *kbuf; |