diff options
author | Niu Xule <b23300@freescale.com> | 2010-05-12 15:47:41 +0800 |
---|---|---|
committer | Scott Sweeny <scott.sweeny@timesys.com> | 2011-01-19 11:50:12 -0500 |
commit | 5261db6904bf49a0a4b4ba993909763b0d11d343 (patch) | |
tree | b4755dfb1933261d5e78f7854d76c6a2050c68d9 /drivers | |
parent | 99b74d73518946507be52380e1ef55de73c7d831 (diff) |
ENGR00123078 L2 Switch support
L2 Switch support for mx28
Signed-off-by: Niu Xule <b23300@freescale.com>
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/net/Kconfig | 7 | ||||
-rw-r--r-- | drivers/net/Makefile | 1 | ||||
-rw-r--r-- | drivers/net/fec_switch.c | 3340 | ||||
-rw-r--r-- | drivers/net/fec_switch.h | 989 |
4 files changed, 4337 insertions, 0 deletions
diff --git a/drivers/net/Kconfig b/drivers/net/Kconfig index 217784200db0..aaae8b17f83a 100644 --- a/drivers/net/Kconfig +++ b/drivers/net/Kconfig @@ -1938,6 +1938,13 @@ config IN_BAND endchoice +config FEC_L2SWITCH + bool "L2 Switch Ethernet Controller (of ColdFire CPUs)" + depends on ARCH_MX28 && !FEC + help + Say Y here if you want to use the built-in 10/100 Ethernet Switch + Controller on some Motorola ColdFire processors. + config FEC2 bool "Second FEC ethernet controller (on some ColdFire CPUs)" depends on FEC diff --git a/drivers/net/Makefile b/drivers/net/Makefile index c29085716bf8..d2c9afda12bf 100644 --- a/drivers/net/Makefile +++ b/drivers/net/Makefile @@ -121,6 +121,7 @@ obj-$(CONFIG_HP100) += hp100.o obj-$(CONFIG_SMC9194) += smc9194.o obj-$(CONFIG_FEC) += fec.o obj-$(CONFIG_FEC_1588) += imx_ptp.o +obj-$(CONFIG_FEC_L2SWITCH) += fec_switch.o obj-$(CONFIG_FEC_MPC52xx) += fec_mpc52xx.o ifeq ($(CONFIG_FEC_MPC52xx_MDIO),y) obj-$(CONFIG_FEC_MPC52xx) += fec_mpc52xx_phy.o diff --git a/drivers/net/fec_switch.c b/drivers/net/fec_switch.c new file mode 100644 index 000000000000..e58289c36a34 --- /dev/null +++ b/drivers/net/fec_switch.c @@ -0,0 +1,3340 @@ +/* + * L2 switch Controller (Etheren switch) driver for Mx28. + * + * Copyright (C) 2010 Freescale Semiconductor, Inc. All Rights Reserved. + * Shrek Wu (B16972@freescale.com) + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/string.h> +#include <linux/ptrace.h> +#include <linux/errno.h> +#include <linux/ioport.h> +#include <linux/slab.h> +#include <linux/interrupt.h> +#include <linux/pci.h> +#include <linux/init.h> +#include <linux/delay.h> +#include <linux/netdevice.h> +#include <linux/etherdevice.h> +#include <linux/skbuff.h> +#include <linux/spinlock.h> +#include <linux/workqueue.h> +#include <linux/bitops.h> +#include <linux/clk.h> +#include <linux/platform_device.h> +#include <linux/fsl_devices.h> +#include <linux/fec.h> +#include <linux/phy.h> + +#include <asm/irq.h> +#include <linux/uaccess.h> +#include <linux/io.h> +#include <asm/pgtable.h> +#include <asm/cacheflush.h> + +#include "fec_switch.h" + +#define SWITCH_MAX_PORTS 1 + +#if defined(CONFIG_ARCH_MXC) || defined(CONFIG_ARCH_MXS) +#include <mach/hardware.h> +#define FEC_ALIGNMENT 0xf +#else +#define FEC_ALIGNMENT 0x3 +#endif + +/* The number of Tx and Rx buffers. These are allocated from the page + * pool. The code may assume these are power of two, so it it best + * to keep them that size. + * We don't need to allocate pages for the transmitter. We just use + * the skbuffer directly. + */ +#define FEC_ENET_RX_PAGES 8 +#define FEC_ENET_RX_FRSIZE 2048 +#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) +#define FEC_ENET_TX_FRSIZE 2048 +#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE) +#define TX_RING_SIZE 16 /* Must be power of two */ +#define TX_RING_MOD_MASK 15 /* for this to work */ + +#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE) +#error "FEC: descriptor ring size constants too large" +#endif + +/* Interrupt events/masks */ +#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ +#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ +#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ +#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ +#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ +#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ +#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ +#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ +#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ +#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ + +/* FEC MII MMFR bits definition */ +#define FEC_MMFR_ST (1 << 30) +#define FEC_MMFR_OP_READ (2 << 28) +#define FEC_MMFR_OP_WRITE (1 << 28) +#define FEC_MMFR_PA(v) ((v & 0x1f) << 23) +#define FEC_MMFR_RA(v) ((v & 0x1f) << 18) +#define FEC_MMFR_TA (2 << 16) +#define FEC_MMFR_DATA(v) (v & 0xffff) + +#ifdef FEC_PHY +static struct phy_device *g_phy_dev; +static struct mii_bus *fec_mii_bus; +#endif + +static int switch_enet_open(struct net_device *dev); +static int switch_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); +static irqreturn_t switch_enet_interrupt(int irq, void *dev_id); +static void switch_enet_tx(struct net_device *dev); +static void switch_enet_rx(struct net_device *dev); +static int switch_enet_close(struct net_device *dev); +static void set_multicast_list(struct net_device *dev); +static void switch_restart(struct net_device *dev, int duplex); +static void switch_stop(struct net_device *dev); +static int switch_set_mac_address(struct net_device *dev, void *addr); + +#define NMII 20 + +/* Make MII read/write commands for the FEC */ +#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) +#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \ + (VAL & 0xffff)) + +/* Transmitter timeout */ +#define TX_TIMEOUT (2*HZ) +#define FEC_MII_TIMEOUT 10 + +#ifdef CONFIG_ARCH_MXS +static void *swap_buffer(void *bufaddr, int len) +{ + int i; + unsigned int *buf = bufaddr; + + for (i = 0; i < (len + 3) / 4; i++, buf++) + *buf = __swab32(*buf); + return bufaddr; +} +#endif + +/*last read entry from learning interface*/ +struct eswPortInfo g_info; + +static unsigned char switch_mac_default[] = { + 0x00, 0x04, 0x9F, 0x00, 0xB3, 0x49, +}; + +static void switch_request_intrs(struct net_device *dev, + irqreturn_t switch_net_irq_handler(int irq, void *private), + void *irq_privatedata) +{ + struct switch_enet_private *fep; + + fep = netdev_priv(dev); + + /* Setup interrupt handlers */ + if (request_irq(dev->irq, + switch_net_irq_handler, IRQF_DISABLED, + "mxs-l2switch", irq_privatedata) != 0) + printk(KERN_ERR "FEC: Could not alloc %s IRQ(%d)!\n", + dev->name, dev->irq); +} + +static void switch_set_mii(struct net_device *dev) +{ + struct switch_enet_private *fep = netdev_priv(dev); + struct switch_t *fecp; + + fecp = (struct switch_t *)fep->hwp; + + writel(MCF_FEC_RCR_PROM | MCF_FEC_RCR_RMII_MODE | + MCF_FEC_RCR_MAX_FL(1522) | MCF_FEC_RCR_CRC_FWD, + fep->enet_addr + MCF_FEC_RCR0); + writel(MCF_FEC_RCR_PROM | MCF_FEC_RCR_RMII_MODE | + MCF_FEC_RCR_MAX_FL(1522) | MCF_FEC_RCR_CRC_FWD, + fep->enet_addr + MCF_FEC_RCR1); + /* TCR */ + writel(MCF_FEC_TCR_FDEN, fep->enet_addr + MCF_FEC_TCR0); + writel(MCF_FEC_TCR_FDEN, fep->enet_addr + MCF_FEC_TCR1); + + /* ECR */ +#ifdef MODELO_ENHANCE_BUFFER + writel(MCF_FEC_ECR_ETHER_EN | MCF_FEC_ECR_ENA_1588, + fep->enet_addr + MCF_FEC_ECR0); + writel(MCF_FEC_ECR_ETHER_EN | MCF_FEC_ECR_ENA_1588, + fep->enet_addr + MCF_FEC_ECR1); +#else /*legac buffer*/ + writel(MCF_FEC_ECR_ETHER_EN, fep->enet_addr + MCF_FEC_ECR0); + writel(MCF_FEC_ECR_ETHER_EN, fep->enet_addr + MCF_FEC_ECR1); +#endif + writel(FEC_ENET_TXF | FEC_ENET_RXF, fep->enet_addr + MCF_FEC_EIMR0); + writel(FEC_ENET_TXF | FEC_ENET_RXF, fep->enet_addr + MCF_FEC_EIMR1); + + /* + * Set MII speed to 2.5 MHz + */ + writel(DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1, + fep->enet_addr + MCF_FEC_MSCR0); + writel(DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1, + fep->enet_addr + MCF_FEC_MSCR1); + +#ifdef CONFIG_ARCH_MXS + /* Can't get phy(8720) ID when set to 2.5M on MX28, lower it*/ + writel((readl(fep->enet_addr + MCF_FEC_MSCR0) << 2), + fep->enet_addr + MCF_FEC_MSCR0); + writel((readl(fep->enet_addr + MCF_FEC_MSCR0) << 2), + fep->enet_addr + MCF_FEC_MSCR1); +#endif + +} + +static void switch_get_mac(struct net_device *dev) +{ + struct switch_enet_private *fep = netdev_priv(dev); + unsigned char *iap, tmpaddr[ETH_ALEN]; + static int index; + +#ifdef CONFIG_M5272 + if (FEC_FLASHMAC) { + /* + * Get MAC address from FLASH. + * If it is all 1's or 0's, use the default. + */ + iap = (unsigned char *)FEC_FLASHMAC; + if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && + (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) + iap = switch_mac_default; + if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && + (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) + iap = switch_mac_default; + } +#else + if (is_valid_ether_addr(switch_mac_default)) + iap = switch_mac_default; +#endif + else { + *((unsigned long *) &tmpaddr[0]) = + be32_to_cpu(readl(fep->enet_addr + + FEC_ADDR_LOW / sizeof(unsigned long))); + *((unsigned short *) &tmpaddr[4]) = + be16_to_cpu(readl(fep->enet_addr + + FEC_ADDR_HIGH / sizeof(unsigned long)) >> 16); + iap = &tmpaddr[0]; + } + + memcpy(dev->dev_addr, iap, ETH_ALEN); + + /* Adjust MAC if using default MAC address */ + if (iap == switch_mac_default) { + dev->dev_addr[ETH_ALEN-1] = + switch_mac_default[ETH_ALEN-1] + index; + index++; + } +} + +static void switch_enable_phy_intr(void) +{ +} + +static void switch_disable_phy_intr(void) +{ +} + +static void switch_phy_ack_intr(void) +{ +} + +static void switch_localhw_setup(void) +{ +} + +static void switch_uncache(unsigned long addr) +{ +} + +static void switch_platform_flush_cache(void) +{ +} + +/* + * Calculate Galois Field Arithmetic CRC for Polynom x^8+x^2+x+1. + * It omits the final shift in of 8 zeroes a "normal" CRC would do + * (getting the remainder). + * + * Examples (hexadecimal values):<br> + * 10-11-12-13-14-15 => CRC=0xc2 + * 10-11-cc-dd-ee-00 => CRC=0xe6 + * + * param: pmacaddress + * A 6-byte array with the MAC address. + * The first byte is the first byte transmitted + * return The 8-bit CRC in bits 7:0 + */ +int crc8_calc(unsigned char *pmacaddress) +{ + /* byte index */ + int byt; + /* bit index */ + int bit; + int inval; + int crc; + /* preset */ + crc = 0x12; + for (byt = 0; byt < 6; byt++) { + inval = (((int)pmacaddress[byt]) & 0xff); + /* + * shift bit 0 to bit 8 so all our bits + * travel through bit 8 + * (simplifies below calc) + */ + inval <<= 8; + + for (bit = 0; bit < 8; bit++) { + /* next input bit comes into d7 after shift */ + crc |= inval & 0x100; + if (crc & 0x01) + /* before shift */ + crc ^= 0x1c0; + + crc >>= 1; + inval >>= 1; + } + + } + /* upper bits are clean as we shifted in zeroes! */ + return crc; +} + +void read_atable(struct switch_enet_private *fep, + int index, + unsigned long *read_lo, unsigned long *read_hi) +{ + unsigned long atable_base = (unsigned long)fep->hwentry; + + *read_lo = readl(atable_base + (index<<3)); + *read_hi = readl(atable_base + (index<<3) + 4); +} + +void write_atable(struct switch_enet_private *fep, + int index, + unsigned long write_lo, unsigned long write_hi) +{ + unsigned long atable_base = (unsigned long)fep->hwentry; + + writel(write_lo, atable_base + (index<<3)); + writel(write_hi, atable_base + (index<<3) + 4); +} + +/* + * Check if the Port Info FIFO has data available + * for reading. 1 valid, 0 invalid + */ +int esw_portinfofifo_status(struct switch_enet_private *fep) +{ + struct switch_t *fecp; + fecp = fep->hwp; + return fecp->ESW_LSR; +} + +/* Initialize the Port Info FIFO */ +void esw_portinfofifo_initialize( + struct switch_enet_private *fep) +{ + struct switch_t *fecp; + unsigned long tmp; + fecp = fep->hwp; + + /*disable all learn*/ + fecp->switch_imask &= (~MCF_ESW_IMR_LRN); + /* remove all entries from FIFO */ + while (esw_portinfofifo_status(fep)) { + /* read one data word */ + tmp = fecp->ESW_LREC0; + tmp = fecp->ESW_LREC1; + } + +} + +/* Read one element from the HW receive FIFO (Queue) + * if available and return it. + * return ms_HwPortInfo or null if no data is available + */ +struct eswPortInfo *esw_portinfofifo_read( + struct switch_enet_private *fep) +{ + struct switch_t *fecp; + unsigned long tmp; + + fecp = fep->hwp; + if (fecp->ESW_LSR == 0) { + printk(KERN_ERR "%s: ESW_LSR = %lx\n", + __func__, fecp->ESW_LSR); + return NULL; + } + /* read word from FIFO */ + g_info.maclo = fecp->ESW_LREC0; + /* but verify that we actually did so + * (0=no data available) + */ + if (g_info.maclo == 0) { + printk(KERN_ERR "%s: mac lo %x\n", + __func__, g_info.maclo); + return NULL; + } + /* read 2nd word from FIFO */ + tmp = fecp->ESW_LREC1; + g_info.machi = tmp & 0xffff; + g_info.hash = (tmp >> 16) & 0xff; + g_info.port = (tmp >> 24) & 0xf; + + return &g_info; +} + + +/* + * Clear complete MAC Look Up Table + */ +void esw_clear_atable(struct switch_enet_private *fep) +{ + int index; + for (index = 0; index < 2048; index++) + write_atable(fep, index, 0, 0); +} + +void esw_dump_atable(struct switch_enet_private *fep) +{ + int index; + unsigned long read_lo, read_hi; + for (index = 0; index < 2048; index++) { + read_atable(fep, index, &read_lo, &read_hi); + printk(KERN_ERR "%s: index %d, lo %lu hi %lu\n", + __func__, index, read_lo, read_hi); + } + +} + +/* + * pdates MAC address lookup table with a static entry + * Searches if the MAC address is already there in the block and replaces + * the older entry with new one. If MAC address is not there then puts a + * new entry in the first empty slot available in the block + * + * mac_addr Pointer to the array containing MAC address to + * be put as static entry + * port Port bitmask numbers to be added in static entry, + * valid values are 1-7 + * priority Priority for the static entry in table + * + * return 0 for a successful update else -1 when no slot available + */ +int esw_update_atable_static(unsigned char *mac_addr, + unsigned int port, unsigned int priority, + struct switch_enet_private *fep) +{ + unsigned long block_index, entry, index_end; + + unsigned long read_lo, read_hi; + unsigned long write_lo, write_hi; + + write_lo = (unsigned long)((mac_addr[3] << 24) | + (mac_addr[2] << 16) | + (mac_addr[1] << 8) | + mac_addr[0]); + write_hi = (unsigned long)(0 | + (port << AT_SENTRY_PORTMASK_shift) | + (priority << AT_SENTRY_PRIO_shift) | + (AT_ENTRY_TYPE_STATIC << AT_ENTRY_TYPE_shift) | + (AT_ENTRY_RECORD_VALID << AT_ENTRY_VALID_shift) | + (mac_addr[5] << 8) | (mac_addr[4])); + + block_index = GET_BLOCK_PTR(crc8_calc(mac_addr)); + index_end = block_index + ATABLE_ENTRY_PER_SLOT; + /* Now search all the entries in the selected block */ + for (entry = block_index; entry < index_end; entry++) { + read_atable(fep, entry, &read_lo, &read_hi); + /* + * MAC address matched, so update the + * existing entry + * even if its a dynamic one + */ + if ((read_lo == write_lo) && + ((read_hi & 0x0000ffff) == + (write_hi & 0x0000ffff))) { + write_atable(fep, entry, write_lo, write_hi); + return 0; + } else if (!(read_hi & (1 << 16))) { + /* + * Fill this empty slot (valid bit zero), + * assuming no holes in the block + */ + write_atable(fep, entry, write_lo, write_hi); + fep->atCurrEntries++; + return 0; + } + } + + /* No space available for this static entry */ + return -1; +} + +/* lookup entry in given Address Table slot and + * insert (learn) it if it is not found. + * return 0 if entry was found and updated. + * 1 if entry was not found and has been inserted (learned). + */ +int esw_update_atable_dynamic(unsigned char *mac_addr, + unsigned int port, unsigned int currTime, + struct switch_enet_private *fep) +{ + unsigned long block_index, entry, index_end; + unsigned long read_lo, read_hi; + unsigned long write_lo, write_hi; + unsigned long tmp; + int time, timeold, indexold; + + /* prepare update port and timestamp */ + write_hi = (mac_addr[5] << 8) | (mac_addr[4]); + write_lo = (unsigned long)((mac_addr[3] << 24) | + (mac_addr[2] << 16) | + (mac_addr[1] << 8) | + mac_addr[0]); + tmp = AT_ENTRY_RECORD_VALID << AT_ENTRY_VALID_shift; + tmp |= AT_ENTRY_TYPE_DYNAMIC << AT_ENTRY_TYPE_shift; + tmp |= currTime << AT_DENTRY_TIME_shift; + tmp |= port << AT_DENTRY_PORT_shift; + tmp |= write_hi; + + /* + * linear search through all slot + * entries and update if found + */ + block_index = GET_BLOCK_PTR(crc8_calc(mac_addr)); + index_end = block_index + ATABLE_ENTRY_PER_SLOT; + /* Now search all the entries in the selected block */ + for (entry = block_index; entry < index_end; entry++) { + read_atable(fep, entry, &read_lo, &read_hi); + if ((read_lo == write_lo) && + ((read_hi & 0x0000ffff) == + (write_hi & 0x0000ffff))) { + /* found correct address, + * update timestamp. */ + write_atable(fep, entry, write_lo, tmp); + return 0; + } else if (!(read_hi & (1 << 16))) { + /* slot is empty, then use it + * for new entry + * Note: There are no holes, + * therefore cannot be any + * more that need to be compared. + */ + write_atable(fep, entry, write_lo, tmp); + /* statistics (we do it between writing + * .hi an .lo due to + * hardware limitation... + */ + fep->atCurrEntries++; + /* newly inserted */ + return 1; + } + } + + /* + * no more entry available in blockk ... + * overwrite oldest + */ + timeold = 0; + indexold = 0; + for (entry = block_index; entry < index_end; entry++) { + read_atable(fep, entry, &read_lo, &read_hi); + time = AT_EXTRACT_TIMESTAMP(read_hi); + time = TIMEDELTA(currTime, time); + if (time > timeold) { + /* is it older ?*/ + timeold = time; + indexold = entry; + } + } + + write_atable(fep, indexold, write_lo, tmp); + /* Statistics (do it inbetween + * writing to .lo and .hi + */ + fep->atBlockOverflows++; + /* newly inserted */ + return 1; + +} + +int esw_update_atable_dynamic1(unsigned long write_lo, + unsigned long write_hi, int block_index, + unsigned int port, unsigned int currTime, + struct switch_enet_private *fep) +{ + unsigned long entry, index_end; + unsigned long read_lo, read_hi; + unsigned long tmp; + int time, timeold, indexold; + + /* prepare update port and timestamp */ + tmp = AT_ENTRY_RECORD_VALID << AT_ENTRY_VALID_shift; + tmp |= AT_ENTRY_TYPE_DYNAMIC << AT_ENTRY_TYPE_shift; + tmp |= currTime << AT_DENTRY_TIME_shift; + tmp |= port << AT_DENTRY_PORT_shift; + tmp |= write_hi; + + /* + * linear search through all slot + * entries and update if found + */ + index_end = block_index + ATABLE_ENTRY_PER_SLOT; + /* Now search all the entries in the selected block */ + for (entry = block_index; entry < index_end; entry++) { + read_atable(fep, entry, &read_lo, &read_hi); + if ((read_lo == write_lo) && + ((read_hi & 0x0000ffff) == + (write_hi & 0x0000ffff))) { + /* found correct address, + * update timestamp. + */ + write_atable(fep, entry, write_lo, tmp); + return 0; + } else if (!(read_hi & (1 << 16))) { + /* slot is empty, then use it + * for new entry + * Note: There are no holes, + * therefore cannot be any + * more that need to be compared. + */ + write_atable(fep, entry, write_lo, tmp); + /* statistics (we do it between writing + * .hi an .lo due to + * hardware limitation... + */ + fep->atCurrEntries++; + /* newly inserted */ + return 1; + } else { + } + printk(KERN_ERR "%s: nothing to do\n", __func__); + } + + /* + * no more entry available in block ... + * overwrite oldest + */ + timeold = 0; + indexold = 0; + for (entry = block_index; entry < index_end; entry++) { + read_atable(fep, entry, &read_lo, &read_hi); + time = AT_EXTRACT_TIMESTAMP(read_hi); + printk(KERN_ERR "%s : time %x currtime %x\n", + __func__, time, currTime); + time = TIMEDELTA(currTime, time); + if (time > timeold) { + /* is it older ? */ + timeold = time; + indexold = entry; + } + } + + write_atable(fep, indexold, write_lo, tmp); + /* + * Statistics (do it inbetween + *writing to .lo and .hi + */ + fep->atBlockOverflows++; + printk(KERN_ERR "%s update time, atBlockOverflows %x\n", + __func__, fep->atBlockOverflows); + /* newly inserted */ + return 1; +} + +/* + * Delete one dynamic entry within the given block + * of 64-bit entries. + * return number of valid entries in the block after deletion. + */ +int esw_del_atable_dynamic(struct switch_enet_private *fep, + int blockidx, int entryidx) +{ + unsigned long index_start, index_end; + int i; + unsigned long read_lo, read_hi; + + /* the entry to delete */ + index_start = blockidx + entryidx; + /* one after last */ + index_end = blockidx + ATABLE_ENTRY_PER_SLOT; + /* Statistics */ + fep->atCurrEntries--; + + if (entryidx == (ATABLE_ENTRY_PER_SLOT - 1)) { + /* + * if it is the very last entry, + * just delete it without further efford + */ + write_atable(fep, index_start, 0, 0); + /*number of entries left*/ + i = ATABLE_ENTRY_PER_SLOT - 1; + return i; + } else { + /* + * not the last in the block, then + * shift all that follow the one + * that is deleted to avoid "holes". + */ + for (i = index_start; i < (index_end - 1); i++) { + read_atable(fep, i + 1, &read_lo, &read_hi); + /* move it down */ + write_atable(fep, i, read_lo, read_hi); + if (!(read_hi & (1 << 16))) { + /* stop if we just copied the last */ + return i - blockidx; + } + } + + /* + * moved all entries up to the last. + * then set invalid flag in the last + */ + write_atable(fep, index_end - 1, 0, 0); + /* number of valid entries left */ + return i - blockidx; + } + +} + +void esw_atable_dynamicms_del_entries_for_port( + struct switch_enet_private *fep, + int port_index) +{ + unsigned long read_lo, read_hi; + + unsigned int port_idx; + int i; + + for (i = 0; i < ESW_ATABLE_MEM_NUM_ENTRIES; i++) { + read_atable(fep, i, &read_lo, &read_hi); + if (read_hi & (1 << 16)) { + port_idx = AT_EXTRACT_PORT(read_hi); + + if (port_idx == port_index) { + write_atable(fep, i, 0, 0); + printk(KERN_ERR "Deleted entry " + "is number %d\n", i); + } + } + } + +} + +/* + * Scan one complete block (Slot) for outdated entries and delete them. + * blockidx index of block of entries that should be analyzed. + * return number of deleted entries, 0 if nothing was modified. + */ +int esw_atable_dynamicms_check_block_age( + struct switch_enet_private *fep, int blockidx) { + + int i, tm, tdelta; + int deleted = 0, entries = 0; + unsigned long read_lo, read_hi; + /* Scan all entries from last down to + * have faster deletion speed if necessary + */ + for (i = (blockidx + ATABLE_ENTRY_PER_SLOT - 1); + i >= blockidx; i--) { + read_atable(fep, i, &read_lo, &read_hi); + + if (read_hi & (1 << 16)) { + /* the entry is valide */ + tm = AT_EXTRACT_TIMESTAMP(read_hi); + tdelta = TIMEDELTA(fep->currTime, tm); + if (tdelta > fep->ageMax) { + esw_del_atable_dynamic(fep, + blockidx, i-blockidx); + deleted++; + } else { + /* statistics */ + entries++; + } + } + } + + /* update statistics */ + if (fep->atMaxEntriesPerBlock < entries) + fep->atMaxEntriesPerBlock = entries; + + return deleted; +} + +/* scan the complete address table and find the most current entry. + * The time of the most current entry then is used as current time + * for the context structure. + * In addition the atCurrEntries value is updated as well. + * return time that has been set in the context. + */ +int esw_atable_dynamicms_find_set_latesttime( + struct switch_enet_private *fep) { + + int tm_min, tm_max, tm; + int delta, current_val, i; + unsigned long read_lo, read_hi; + + tm_min = (1 << AT_DENTRY_TIMESTAMP_WIDTH) - 1; + tm_max = 0; + current_val = 0; + + for (i = 0; i < ESW_ATABLE_MEM_NUM_ENTRIES; i++) { + read_atable(fep, i, &read_lo, &read_hi); + if (read_hi & (1 << 16)) { + /* the entry is valid */ + tm = AT_EXTRACT_TIMESTAMP(read_hi); + if (tm > tm_max) + tm_max = tm; + if (tm < tm_min) + tm_min = tm; + current_val++; + } + } + + delta = TIMEDELTA(tm_max, tm_min); + if (delta < fep->ageMax) { + /* Difference must be in range */ + fep->currTime = tm_max; + } else { + fep->currTime = tm_min; + } + + fep->atCurrEntries = current_val; + return fep->currTime; +} + +int esw_atable_dynamicms_get_port( + struct switch_enet_private *fep, + unsigned long write_lo, + unsigned long write_hi, + int block_index) +{ + + int i, index_end; + unsigned long read_lo, read_hi, port; + + index_end = block_index + ATABLE_ENTRY_PER_SLOT; + /* Now search all the entries in the selected block */ + for (i = block_index; i < index_end; i++) { + read_atable(fep, i, &read_lo, &read_hi); + + if ((read_lo == write_lo) && + ((read_hi & 0x0000ffff) == + (write_hi & 0x0000ffff))) { + /* found correct address,*/ + if (read_hi & (1 << 16)) { + /* + * extract the port index + * from the valid entry + */ + port = AT_EXTRACT_PORT(read_hi); + return port; + } + } + } + + return -1; + +} + + +/* Get the port index from the source MAC address + * of the received frame + * @return port index + */ +int esw_atable_dynamicms_get_portindex_from_mac( + struct switch_enet_private *fep, + unsigned char *mac_addr, + unsigned long write_lo, + unsigned long write_hi) +{ + + int blockIdx; + int rc; + /* compute the block index */ + blockIdx = GET_BLOCK_PTR(crc8_calc(mac_addr)); + /* Get the ingress port index of the received BPDU */ + rc = esw_atable_dynamicms_get_port(fep, + write_lo, write_hi, blockIdx); + + return rc; + +} + +/* dynamicms MAC address table learn and migration */ +int esw_atable_dynamicms_learn_migration( + struct switch_enet_private *fep, + int currTime) +{ + struct eswPortInfo *pESWPortInfo; + int index; + int inserted = 0; + + pESWPortInfo = esw_portinfofifo_read(fep); + /* Anything to learn */ + if (pESWPortInfo != 0) { + /* get block index from lookup table */ + index = GET_BLOCK_PTR(pESWPortInfo->hash); + inserted = esw_update_atable_dynamic1( + pESWPortInfo->maclo, + pESWPortInfo->machi, index, + pESWPortInfo->port, currTime, fep); + } else { + printk(KERN_ERR "%s:hav invalidate learned data \n", __func__); + return -1; + } + + return 0; + +} + +void esw_basic_switching(struct switch_enet_private *fep) +{ + struct switch_t *fecp; + + fecp = fep->hwp; + fecp->ESW_DBCR = MCF_ESW_DBCR_P1; +} + +/* + * esw_forced_forward + * The frame is forwared to the forced destination ports. + * It only replace the MAC lookup function, + * all other filtering(eg.VLAN verification) act as normal + */ +int esw_forced_forward(struct switch_enet_private *fep, + int port1, int port2) +{ + unsigned long tmp = 0; + struct switch_t *fecp; + + fecp = fep->hwp; + /* Enable Deafault broadcast for port 0 */ + writel(MCF_ESW_DBCR_P0, fecp + MCF_ESW_DBCR); + + /* Enable Forced forwarding for port num */ + tmp = MCF_ESW_P0FFEN_FEN; + if ((port1 == 1) && (port2 == 1)) + tmp |= MCF_ESW_P0FFEN_FD(3); + else if (port1 == 1) + /* Enable Forced forwarding for port 1 only */ + tmp |= MCF_ESW_P0FFEN_FD(1); + else if (port2 == 1) + /* Enable Forced forwarding for port 2 only */ + tmp |= MCF_ESW_P0FFEN_FD(2); + else { + printk(KERN_ERR "%s:do not support " + "the forced forward mode" + "port1 %x port2 %x\n", + __func__, port1, port2); + return -1; + } + + fecp->ESW_P0FFEN = tmp; + return 0; +} + +/* + * enable or disable port n tx or rx + * tx_en 0 disable port n tx + * tx_en 1 enable port n tx + * rx_en 0 disbale port n rx + * rx_en 1 enable port n rx + */ +int esw_port_enable_config(struct switch_enet_private *fep, + int port, int tx_en, int rx_en) +{ + unsigned long tmp = 0; + struct switch_t *fecp; + + fecp = fep->hwp; + tmp = fecp->ESW_PER; + if (tx_en == 1) { + if (port == 1) + tmp |= MCF_ESW_PER_TE0; + else if (port == 2) + tmp |= MCF_ESW_PER_TE1; + else if (port == 3) + tmp |= MCF_ESW_PER_TE2; + else { + printk(KERN_ERR "%s:do not support the" + " port %x tx enable %d\n", + __func__, port, tx_en); + return -1; + } + } else if (tx_en == 0) { + if (port == 1) + tmp &= (~MCF_ESW_PER_TE0); + else if (port == 2) + tmp &= (~MCF_ESW_PER_TE1); + else if (port == 3) + tmp &= (~MCF_ESW_PER_TE2); + else { + printk(KERN_ERR "%s:do not support " + "the port %x tx disable %d\n", + __func__, port, tx_en); + return -2; + } + } else { + printk(KERN_ERR "%s:do not support the port %x" + " tx op value %x\n", + __func__, port, tx_en); + return -3; + } + + if (rx_en == 1) { + if (port == 1) + tmp |= MCF_ESW_PER_RE0; + else if (port == 2) + tmp |= MCF_ESW_PER_RE1; + else if (port == 3) + tmp |= MCF_ESW_PER_RE2; + else { + printk(KERN_ERR "%s:do not support the " + "port %x rx enable %d\n", + __func__, port, tx_en); + return -4; + } + } else if (rx_en == 0) { + if (port == 1) + tmp &= (~MCF_ESW_PER_RE0); + else if (port == 2) + tmp &= (~MCF_ESW_PER_RE1); + else if (port == 3) + tmp &= (~MCF_ESW_PER_RE2); + else { + printk(KERN_ERR "%s:do not support the " + "port %x rx disable %d\n", + __func__, port, rx_en); + return -5; + } + } else { + printk(KERN_ERR "%s:do not support the port %x" + " rx op value %x\n", + __func__, port, tx_en); + return -6; + } + + fecp->ESW_PER = tmp; + return 0; +} + +int esw_port_broadcast_config( + struct switch_enet_private *fep, + int port, int enable) +{ + unsigned long tmp = 0; + struct switch_t *fecp; + + fecp = fep->hwp; + + if ((port > 2) || (port < 0)) { + printk(KERN_ERR "%s:do not support the port %x" + " default broadcast\n", + __func__, port); + return -1; + } + + tmp = fecp->ESW_DBCR; + if (enable == 1) { + if (port == 0) + tmp |= MCF_ESW_DBCR_P0; + else if (port == 1) + tmp |= MCF_ESW_DBCR_P1; + else if (port == 2) + tmp |= MCF_ESW_DBCR_P2; + } else if (enable == 0) { + if (port == 0) + tmp &= ~MCF_ESW_DBCR_P0; + else if (port == 1) + tmp &= ~MCF_ESW_DBCR_P1; + else if (port == 2) + tmp &= ~MCF_ESW_DBCR_P2; + } + + fecp->ESW_DBCR = tmp; + return 0; +} + +int esw_port_multicast_config( + struct switch_enet_private *fep, + int port, int enable) +{ + unsigned long tmp = 0; + struct switch_t *fecp; + + fecp = fep->hwp; + + if ((port > 2) || (port < 0)) { + printk(KERN_ERR "%s:do not support the port %x" + " default broadcast\n", + __func__, port); + return -1; + } + + tmp = fecp->ESW_DMCR; + if (enable == 1) { + if (port == 0) + tmp |= MCF_ESW_DMCR_P0; + else if (port == 1) + tmp |= MCF_ESW_DMCR_P1; + else if (port == 2) + tmp |= MCF_ESW_DMCR_P2; + } else if (enable == 0) { + if (port == 0) + tmp &= ~MCF_ESW_DMCR_P0; + else if (port == 1) + tmp &= ~MCF_ESW_DMCR_P1; + else if (port == 2) + tmp &= ~MCF_ESW_DMCR_P2; + } + + fecp->ESW_DMCR = tmp; + return 0; +} + +int esw_port_blocking_config( + struct switch_enet_private *fep, + int port, int enable) +{ + unsigned long tmp = 0; + struct switch_t *fecp; + + fecp = fep->hwp; + + if ((port > 2) || (port < 0)) { + printk(KERN_ERR "%s:do not support the port %x" + " default broadcast\n", + __func__, port); + return -1; + } + + tmp = fecp->ESW_BKLR; + if (enable == 1) { + if (port == 0) + tmp |= MCF_ESW_BKLR_BE0; + else if (port == 1) + tmp |= MCF_ESW_BKLR_BE1; + else if (port == 2) + tmp |= MCF_ESW_BKLR_BE2; + } else if (enable == 0) { + if (port == 0) + tmp &= ~MCF_ESW_BKLR_BE0; + else if (port == 1) + tmp &= ~MCF_ESW_BKLR_BE1; + else if (port == 2) + tmp &= ~MCF_ESW_BKLR_BE2; + } + + fecp->ESW_BKLR = tmp; + return 0; +} + +int esw_port_learning_config( + struct switch_enet_private *fep, + int port, int disable) +{ + unsigned long tmp = 0; + struct switch_t *fecp; + + fecp = fep->hwp; + + if ((port > 2) || (port < 0)) { + printk(KERN_ERR "%s:do not support the port %x" + " default broadcast\n", + __func__, port); + return -1; + } + + tmp = fecp->ESW_BKLR; + if (disable == 1) { + if (port == 0) + tmp |= MCF_ESW_BKLR_LD0; + else if (port == 1) + tmp |= MCF_ESW_BKLR_LD1; + else if (port == 2) + tmp |= MCF_ESW_BKLR_LD2; + } else if (disable == 0) { + if (port == 0) + tmp &= ~MCF_ESW_BKLR_LD0; + else if (port == 1) + tmp &= ~MCF_ESW_BKLR_LD1; + else if (port == 2) + tmp &= ~MCF_ESW_BKLR_LD2; + } + + fecp->ESW_BKLR = tmp; + return 0; +} + +/* + * Checks IP Snoop options of handling the snooped frame. + * mode 0 : The snooped frame is forward only to management port + * mode 1 : The snooped frame is copy to management port and + * normal forwarding is checked. + * mode 2 : The snooped frame is discarded. + * + * ip_header_protocol : the IP header protocol field + */ +int esw_ip_snoop_config(struct switch_enet_private *fep, + int num, int mode, unsigned long ip_header_protocol) +{ + struct switch_t *fecp; + unsigned long tmp, protocol_type; + + fecp = fep->hwp; + /* Enable transmit/receive on all ports */ + fecp->ESW_PER = 0x50003; + fecp->ESW_P0FFEN = (MCF_ESW_P0FFEN_FD(1) | MCF_ESW_P0FFEN_FEN); + + /* Enable IP Snooping */ + tmp = MCF_ESW_IPSNP_EN; + if (mode == 0) + tmp |= MCF_ESW_IPSNP_MODE(0);/* For Forward */ + else if (mode == 1)/* For Forward and copy_to_mangmnt_port */ + tmp |= MCF_ESW_IPSNP_MODE(1); + else if (mode == 2) + tmp |= MCF_ESW_IPSNP_MODE(2);/* discard */ + else { + printk(KERN_ERR "%s: the mode %d " + "we do not support\n", __func__, mode); + return -1; + } + + protocol_type = ip_header_protocol; + fecp->ESW_IPSNP[num] = + tmp | MCF_ESW_IPSNP_PROTOCOL(protocol_type); + + return 0; +} + +/* + * Checks TCP/UDP Port Snoop options of handling the snooped frame. + * mode 0 : The snooped frame is forward only to management port + * mode 1 : The snooped frame is copy to management port and + * normal forwarding is checked. + * mode 2 : The snooped frame is discarded. + * compare_port : port number in the TCP/UDP header + * compare_num 1: TCP/UDP source port number is compared + * compare_num 2: TCP/UDP destination port number is compared + * compare_num 3: TCP/UDP source and destination port number is compared + */ +int esw_tcpudp_port_snoop_config(struct switch_enet_private *fep, + int num, int mode, int compare_port, int compare_num) +{ + struct switch_t *fecp; + unsigned long tmp = 0; + + fecp = fep->hwp; + /* Enable transmit/receive on all ports */ + fecp->ESW_PER = 0x50003; + fecp->ESW_P0FFEN = (MCF_ESW_P0FFEN_FD(1) | MCF_ESW_P0FFEN_FEN); + + /* Enable TCP/UDP port Snooping */ + tmp = MCF_ESW_PSNP_EN | + MCF_ESW_PSNP_PORT_COMPARE(compare_port); + if (mode == 0) + tmp |= MCF_ESW_PSNP_MODE(0);/* For Forward */ + else if (mode == 1)/* For Forward and copy_to_mangmnt_port */ + tmp |= MCF_ESW_PSNP_MODE(1); + else if (mode == 2) + tmp |= MCF_ESW_PSNP_MODE(2);/* discard */ + else { + printk(KERN_ERR "%s: the mode %x we do not support\n", + __func__, mode); + return -1; + } + + if (compare_num == 1) + tmp |= MCF_ESW_PSNP_CS; + else if (compare_num == 2) + tmp |= MCF_ESW_PSNP_CD; + else if (compare_num == 3) + tmp |= MCF_ESW_PSNP_CD | MCF_ESW_PSNP_CS; + else { + printk(KERN_ERR "%s: the compare port address %x" + " we do not support\n", + __func__, compare_num); + return -1; + } + + fecp->ESW_PSNP[num] = tmp | + MCF_ESW_PSNP_PORT_COMPARE(compare_port); + + return 0; +} + +int esw_port_mirroring_config(struct switch_enet_private *fep, + int mirror_port, int port, + unsigned char *src_mac, unsigned char *des_mac, + int egress_en, int ingress_en, + int egress_mac_src_en, int egress_mac_des_en, + int ingress_mac_src_en, int ingress_mac_des_en) +{ + struct switch_t *fecp; + unsigned long tmp = 0; + + fecp = fep->hwp; + /* Enable transmit/receive on all ports */ + fecp->ESW_PER = 0x50003; + writel(0, fecp + MCF_ESW_DBCR); + fecp->ESW_P0FFEN = (MCF_ESW_P0FFEN_FD(1) | MCF_ESW_P0FFEN_FEN); + + /* Enable TCP/UDP port Snooping */ + + /* mirroring config */ + tmp = MCF_ESW_MCR_MEN | MCF_ESW_MCR_PORT(mirror_port); + if (egress_en == 1) { + tmp |= MCF_ESW_MCR_EGMAP; + if (port == 0) + fecp->ESW_EGMAP = MCF_ESW_EGMAP_EG0; + else if (port == 1) + fecp->ESW_EGMAP = MCF_ESW_EGMAP_EG1; + else if (port == 2) + fecp->ESW_EGMAP = MCF_ESW_EGMAP_EG2; + else { + printk(KERN_ERR "%s: the port %x we do not support\n", + __func__, port); + return -1; + } + } else if (egress_en != 0) { + printk(KERN_ERR "%s: egress_en %x we do not support\n", + __func__, egress_en); + return -1; + } + + if (ingress_en == 1) { + tmp |= MCF_ESW_MCR_INGMAP; + if (port == 0) + fecp->ESW_INGMAP = MCF_ESW_INGMAP_ING0; + else if (port == 1) + fecp->ESW_INGMAP = MCF_ESW_INGMAP_ING1; + else if (port == 2) + fecp->ESW_INGMAP = MCF_ESW_INGMAP_ING2; + else { + printk(KERN_ERR "%s: the port %x we do not support\n", + __func__, port); + return -1; + } + } else if (ingress_en != 0) { + printk(KERN_ERR "%s: ingress_en %x we do not support\n", + __func__, ingress_en); + return -1; + } + + if (egress_mac_src_en == 1) { + tmp |= MCF_ESW_MCR_EGSA; + fecp->ESW_ENGSAH = (src_mac[5] << 8) | (src_mac[4]); + fecp->ESW_ENGSAL = (unsigned long)((src_mac[3] << 24) | + (src_mac[2] << 16) | + (src_mac[1] << 8) | + src_mac[0]); + } else if (egress_mac_src_en != 0) { + printk(KERN_ERR "%s: egress_mac_src_en %x we do not support\n", + __func__, egress_mac_src_en); + return -1; + } + + if (egress_mac_des_en == 1) { + tmp |= MCF_ESW_MCR_EGDA; + fecp->ESW_ENGDAH = (des_mac[5] << 8) | (des_mac[4]); + fecp->ESW_ENGDAL = (unsigned long)((des_mac[3] << 24) | + (des_mac[2] << 16) | + (des_mac[1] << 8) | + des_mac[0]); + } else if (egress_mac_des_en != 0) { + printk(KERN_ERR "%s: egress_mac_des_en %x we do not support\n", + __func__, egress_mac_des_en); + return -1; + } + + if (ingress_mac_src_en == 1) { + tmp |= MCF_ESW_MCR_INGSA; + fecp->ESW_INGSAH = (src_mac[5] << 8) | (src_mac[4]); + fecp->ESW_INGSAL = (unsigned long)((src_mac[3] << 24) | + (src_mac[2] << 16) | + (src_mac[1] << 8) | + src_mac[0]); + } else if (ingress_mac_src_en != 0) { + printk(KERN_ERR "%s: ingress_mac_src_en %x we do not support\n", + __func__, ingress_mac_src_en); + return -1; + } + + if (ingress_mac_des_en == 1) { + tmp |= MCF_ESW_MCR_INGDA; + fecp->ESW_INGSAH = (des_mac[5] << 8) | (des_mac[4]); + fecp->ESW_INGSAL = (unsigned long)((des_mac[3] << 24) | + (des_mac[2] << 16) | + (des_mac[1] << 8) | + des_mac[0]); + } else if (ingress_mac_des_en != 0) { + printk(KERN_ERR "%s: ingress_mac_des_en %x we do not support\n", + __func__, ingress_mac_des_en); + return -1; + } + + fecp->ESW_MCR = tmp; + fecp->ESW_MCVAL = MCF_ESW_MCVAL_COUNT(0); + + return 0; +} + +int esw_vlan_input_process(struct switch_enet_private *fep, + int port, int mode, unsigned short port_vlanid, + int vlan_verify_en, int vlan_domain_num, + int vlan_domain_port) +{ + struct switch_t *fecp; + + fecp = fep->hwp; + /* Enable transmit/receive on all ports */ + fecp->ESW_PER = 0x70007; + fecp->ESW_DBCR = 0; + /* transmit packet */ + /* fecp->ESW_P0FFEN = (MCF_ESW_P0FFEN_FD(1) | MCF_ESW_P0FFEN_FEN); */ + + /* we only support mode1 mode2 mode3 mode4 */ + if ((mode < 1) || (mode > 4)) { + printk(KERN_ERR "%s: do not support the" + " VLAN input processing mode %d\n", + __func__, mode); + return -1; + } + + if ((port < 0) || (port > 3)) { + printk(KERN_ERR "%s: do not support the port %d\n", + __func__, mode); + return -2; + } + + if ((vlan_verify_en == 1) && ((vlan_domain_num < 0) + || (vlan_domain_num > 32))) { + printk(KERN_ERR "%s: do not support the port %d\n", + __func__, mode); + return -3; + } + + fecp->ESW_PID[port] = MCF_ESW_PID_VLANID(port_vlanid); + if (port == 0) { + if (vlan_verify_en == 1) + fecp->ESW_VRES[vlan_domain_num] = + MCF_ESW_VRES_VLANID(port_vlanid) + | MCF_ESW_VRES_P0; + + fecp->ESW_VIMEN |= MCF_ESW_VIMEN_EN0; + fecp->ESW_VIMSEL |= MCF_ESW_VIMSEL_IM0(mode - 1); + } else if (port == 1) { + if (vlan_verify_en == 1) + fecp->ESW_VRES[vlan_domain_num] = + MCF_ESW_VRES_VLANID(port_vlanid) + | MCF_ESW_VRES_P1; + + fecp->ESW_VIMEN |= MCF_ESW_VIMEN_EN1; + fecp->ESW_VIMSEL |= MCF_ESW_VIMSEL_IM1(mode - 1); + } else if (port == 2) { + if (vlan_verify_en == 1) + fecp->ESW_VRES[vlan_domain_num] = + MCF_ESW_VRES_VLANID(port_vlanid) + | MCF_ESW_VRES_P2; + + fecp->ESW_VIMEN |= MCF_ESW_VIMEN_EN2; + fecp->ESW_VIMSEL |= MCF_ESW_VIMSEL_IM2(mode - 1); + } else { + printk(KERN_ERR "%s: do not support the port %d\n", + __func__, port); + return -2; + } + + return 0; +} + +int esw_vlan_output_process(struct switch_enet_private *fep, + int port, int mode) +{ + struct switch_t *fecp; + + fecp = fep->hwp; + /* Enable transmit/receive on all ports */ + fecp->ESW_PER = 0x70007; + fecp->ESW_DBCR = 0; + + if ((port < 0) || (port > 3)) { + printk(KERN_ERR "%s: do not support the port %d\n", + __func__, mode); + return -1; + } + + if (port == 0) { + fecp->ESW_VOMSEL |= MCF_ESW_VOMSEL_OM0(mode - 1); + } else if (port == 1) { + fecp->ESW_VOMSEL |= MCF_ESW_VOMSEL_OM1(mode - 1); + } else if (port == 2) { + fecp->ESW_VOMSEL |= MCF_ESW_VOMSEL_OM2(mode - 1); + } else { + printk(KERN_ERR "%s: do not support the port %d\n", + __func__, port); + return -1; + } + return 0; +} + +/* frame calssify and priority resolution */ +/* vlan priority lookup */ +int esw_framecalssify_vlan_priority_lookup( + struct switch_enet_private *fep, + int port, int func_enable, + int vlan_pri_table_num, + int vlan_pri_table_value) +{ + struct switch_t *fecp; + + fecp = fep->hwp; + + /* Enable transmit/receive on all ports */ + fecp->ESW_PER = 0x70007; + + /* Broadcast configure */ + fecp->ESW_DBCR = 0; + + + if ((port < 0) || (port > 3)) { + printk(KERN_ERR "%s: do not support the port %d\n", + __func__, port); + return -1; + } + + if (func_enable == 0) { + fecp->ESW_PRES[port] &= ~MCF_ESW_PRES_VLAN; + printk(KERN_ERR "%s: disable port %d VLAN priority " + "lookup function\n", __func__, port); + return 0; + } + + if ((vlan_pri_table_num < 0) || (vlan_pri_table_num > 7)) { + printk(KERN_ERR "%s: do not support the priority %d\n", + __func__, vlan_pri_table_num); + return -1; + } + + fecp->ESW_PVRES[port] |= ((vlan_pri_table_value & 0x3) + << (vlan_pri_table_num*3)); + /* enable port VLAN priority lookup function */ + fecp->ESW_PRES[port] |= MCF_ESW_PRES_VLAN; + + return 0; +} + +int esw_framecalssify_ip_priority_lookup( + struct switch_enet_private *fep, + int port, int func_enable, int ipv4_en, + int ip_priority_num, + int ip_priority_value) +{ + struct switch_t *fecp; + unsigned long tmp = 0, tmp_prio = 0; + + fecp = fep->hwp; + /* Enable transmit/receive on all ports */ + fecp->ESW_PER = 0x70007; + /* Broadcast configure */ + fecp->ESW_DBCR = 0; + + if ((port < 0) || (port > 3)) { + printk(KERN_ERR "%s: do not support the port %d\n", + __func__, port); + return -1; + } + + if (func_enable == 0) { + fecp->ESW_PRES[port] &= ~MCF_ESW_PRES_IP; + printk(KERN_ERR "%s: disable port %d ip priority " + "lookup function\n", __func__, port); + return 0; + } + + /* IPV4 priority 64 entry table lookup */ + /* IPv4 head 6 bit TOS field */ + if (ipv4_en == 1) { + if ((ip_priority_num < 0) || (ip_priority_num > 63)) { + printk(KERN_ERR "%s: do not support the table entry %d\n", + __func__, ip_priority_num); + return -2; + } + } else { /* IPV6 priority 256 entry table lookup */ + /* IPv6 head 8 bit COS field */ + if ((ip_priority_num < 0) || (ip_priority_num > 255)) { + printk(KERN_ERR "%s: do not support the table entry %d\n", + __func__, ip_priority_num); + return -3; + } + } + + /* IP priority table lookup : address */ + tmp = MCF_ESW_IPRES_ADDRESS(ip_priority_num); + /* IP priority table lookup : ipv4sel */ + if (ipv4_en == 1) + tmp = tmp | MCF_ESW_IPRES_IPV4SEL; + /* IP priority table lookup : priority */ + if (port == 0) + tmp |= MCF_ESW_IPRES_PRI0(ip_priority_value); + else if (port == 1) + tmp |= MCF_ESW_IPRES_PRI1(ip_priority_value); + else if (port == 2) + tmp |= MCF_ESW_IPRES_PRI2(ip_priority_value); + + /* configure */ + fecp->ESW_IPRES = MCF_ESW_IPRES_READ | + MCF_ESW_IPRES_ADDRESS(ip_priority_num); + tmp_prio = fecp->ESW_IPRES; + + fecp->ESW_IPRES = tmp | tmp_prio; + + fecp->ESW_IPRES = MCF_ESW_IPRES_READ | + MCF_ESW_IPRES_ADDRESS(ip_priority_num); + tmp_prio = fecp->ESW_IPRES; + + /* enable port IP priority lookup function */ + fecp->ESW_PRES[port] |= MCF_ESW_PRES_IP; + + return 0; +} + +int esw_framecalssify_mac_priority_lookup( + struct switch_enet_private *fep, + int port) +{ + struct switch_t *fecp; + + if ((port < 0) || (port > 3)) { + printk(KERN_ERR "%s: do not support the port %d\n", + __func__, port); + return -1; + } + + fecp = fep->hwp; + fecp->ESW_PRES[port] |= MCF_ESW_PRES_IP; + + return 0; +} + +int esw_frame_calssify_priority_init( + struct switch_enet_private *fep, + int port, unsigned char priority_value) +{ + struct switch_t *fecp; + + fecp = fep->hwp; + + if ((port < 0) || (port > 3)) { + printk(KERN_ERR "%s: do not support the port %d\n", + __func__, port); + return -1; + } + /* disable all priority lookup function */ + fecp->ESW_PRES[port] = 0; + fecp->ESW_PRES[port] = MCF_ESW_PRES_DFLT_PRI(priority_value & 0x7); + + return 0; +} + +int esw_get_statistics_status( + struct switch_enet_private *fep, + struct esw_statistics_status *pStatistics) +{ + struct switch_t *fecp; + fecp = fep->hwp; + + pStatistics->ESW_DISCN = fecp->ESW_DISCN; + pStatistics->ESW_DISCB = fecp->ESW_DISCB; + pStatistics->ESW_NDISCN = fecp->ESW_NDISCN; + pStatistics->ESW_NDISCB = fecp->ESW_NDISCB; +#ifdef debug_statistics + printk(KERN_ERR "%s:ESW_DISCN %x, ESW_DISCB %x," + "ESW_NDISCN %x, ESW_NDISCB %x\n", + __func__, fecp->ESW_DISCN, fecp->ESW_DISCB, + fecp->ESW_NDISCN, fecp->ESW_NDISCB); +#endif + return 0; +} + +int esw_get_port_statistics_status( + struct switch_enet_private *fep, + int port, + struct esw_port_statistics_status *pPortStatistics) +{ + struct switch_t *fecp; + + if ((port < 0) || (port > 3)) { + printk(KERN_ERR "%s: do not support the port %d\n", + __func__, port); + return -1; + } + + fecp = fep->hwp; + + pPortStatistics->MCF_ESW_POQC = + fecp->port_statistics_status[port].MCF_ESW_POQC; + pPortStatistics->MCF_ESW_PMVID = + fecp->port_statistics_status[port].MCF_ESW_PMVID; + pPortStatistics->MCF_ESW_PMVTAG = + fecp->port_statistics_status[port].MCF_ESW_PMVTAG; + pPortStatistics->MCF_ESW_PBL = + fecp->port_statistics_status[port].MCF_ESW_PBL; +#ifdef DEBUG_PORT_STATISTICS + printk(KERN_ERR "%s : port[%d].MCF_ESW_POQC %x, MCF_ESW_PMVID %x," + " MCF_ESW_PMVTAG %x, MCF_ESW_PBL %x\n", + __func__, port, + fecp->port_statistics_status[port].MCF_ESW_POQC, + fecp->port_statistics_status[port].MCF_ESW_PMVID, + fecp->port_statistics_status[port].MCF_ESW_PMVTAG, + fecp->port_statistics_status[port].MCF_ESW_PBL); +#endif + return 0; +} + +int esw_get_output_queue_status( + struct switch_enet_private *fep, + struct esw_output_queue_status *pOutputQueue) +{ + struct switch_t *fecp; + + fecp = fep->hwp; + pOutputQueue->ESW_MMSR = fecp->ESW_MMSR; + pOutputQueue->ESW_LMT = fecp->ESW_LMT; + pOutputQueue->ESW_LFC = fecp->ESW_LFC; + pOutputQueue->ESW_IOSR = fecp->ESW_IOSR; + pOutputQueue->ESW_PCSR = fecp->ESW_PCSR; + pOutputQueue->ESW_QWT = fecp->ESW_QWT; + pOutputQueue->ESW_P0BCT = fecp->ESW_P0BCT; +#ifdef DEBUG_OUTPUT_QUEUE + printk(KERN_ERR "%s:ESW_MMSR %x, ESW_LMT %x, ESW_LFC %x, " + "ESW_IOSR %x, ESW_PCSR %x, ESW_QWT %x, ESW_P0BCT %x\n", + __func__, fecp->ESW_MMSR, + fecp->ESW_LMT, fecp->ESW_LFC, + fecp->ESW_IOSR, fecp->ESW_PCSR, + fecp->ESW_QWT, fecp->ESW_P0BCT); +#endif + return 0; +} + +/* The timer should create an interrupt every 4 seconds */ +static void l2switch_aging_timer(unsigned long data) +{ + struct switch_enet_private *fep; + + fep = (struct switch_enet_private *)data; + + /* spin_lock_irqsave(&host->lock, flags); */ + if (fep) { + TIMEINCREMENT(fep->currTime); + fep->timeChanged++; + } + + /* switch_enet_dump(fep); */ + + mod_timer(&fep->timer_aging, jiffies + LEARNING_AGING_TIMER); + /* spin_unlock_irqrestore(&host->lock, flags); */ +} + +/* ----------------------------------------------------------------------- */ +void esw_check_rxb_txb_interrupt(struct switch_enet_private *fep) +{ + struct switch_t *fecp; + fecp = fep->hwp; + + /* Enable Forced forwarding for port 1 */ + fecp->ESW_P0FFEN = MCF_ESW_P0FFEN_FEN | + MCF_ESW_P0FFEN_FD(1); + /* Disable learning for all ports */ + + writel(MCF_ESW_IMR_TXB | MCF_ESW_IMR_TXF + | MCF_ESW_IMR_LRN | MCF_ESW_IMR_RXB | MCF_ESW_IMR_RXF + , fecp + MCF_ESW_IMR); +} + +static void esw_basic_switching_test(struct switch_enet_private *fep) +{ + unsigned char mac_addr0[6] = {0x00, 0x04, 0x9F, 0x00, 0xB3, 0x49}; + unsigned char mac_addr1[6] = {0x00, 0x00, 0x45, 0x67, 0x89, 0xAB}; + unsigned char mac_addr2[6] = {0x00, 0x0B, 0xDB, 0xD0, 0x25, 0x9A}; + unsigned char mac_addr[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; + struct switch_t *fecp; + fecp = fep->hwp; + + fecp->ESW_DBCR = MCF_ESW_DBCR_P1; + + esw_update_atable_static(mac_addr, 7, 7, fep); + /* port0 MAC is forwared to port1 and port2 */ + esw_update_atable_static(mac_addr0, 7, 7, fep); + esw_update_atable_static(mac_addr1, 7, 7, fep); + /* port2 MAC is forwared to port0 and port1 */ + esw_update_atable_static(mac_addr2, 7, 7, fep); +} + +static void esw_test_main(struct switch_enet_private *fep) +{ + struct switch_t *fecp; + fecp = fep->hwp; + esw_basic_switching_test(fep); + /* test case 1 */ + /* + * fecp->ESW_IPSNP[0] = (MCF_ESW_IPSNP_PROTOCOL(0x01) | + * MCF_ESW_IPSNP_MODE(1) | + * MCF_ESW_IPSNP_EN); + * fecp->ESW_PSNP[0] = (MCF_ESW_PSNP_PORT_COMPARE(1080) | + * MCF_ESW_PSNP_CD | + * MCF_ESW_PSNP_MODE(1) | + * MCF_ESW_PSNP_EN); + */ + + /* test case 2 */ + fecp->ESW_BKLR = MCF_ESW_BKLR_LD0 | MCF_ESW_BKLR_LD1 | + MCF_ESW_BKLR_LD2; + /* + * MCF_ESW_IMR = MCF_ESW_IMR_TXB | MCF_ESW_IMR_TXF | + * MCF_ESW_IMR_LRN | MCF_ESW_IMR_RXB | MCF_ESW_IMR_RXF; + */ + + /* test case 3 */ + /* + * writel(0x70007, fecp + MCF_ESW_PER); + * fecp->ESW_DBCR = MCF_ESW_DBCR_P1; + * fecp->ESW_MCR = MCF_ESW_MCR_INGMAP | MCF_ESW_MCR_MEN | + * MCF_ESW_MCR_PORT(0); + * fecp->ESW_INGMAP = MCF_ESW_INGMAP_ING2; + * fecp->ESW_MCVAL = MCF_ESW_MCVAL_COUNT(0); + */ + + /* test case 4 */ + writel(0x70007, fecp + MCF_ESW_PER); + /* + * fecp->ESW_DBCR = MCF_ESW_DBCR_P1; + * fecp->ESW_MCR = MCF_ESW_MCR_INGSA | MCF_ESW_MCR_INGMAP | + * MCF_ESW_MCR_MEN | MCF_ESW_MCR_PORT(0); + * fecp->ESW_INGMAP = MCF_ESW_INGMAP_ING2; + * fecp->ESW_INGSAH = 0x00009A25; + * fecp->ESW_INGSAL = 0xD0DB0B00;\ + * fecp->ESW_MCVAL = MCF_ESW_MCVAL_COUNT(0); + */ + + /* test case 5 */ + fecp->ESW_DBCR = MCF_ESW_DBCR_P1;/* 0 P0 P2 */ +} + +static int +switch_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) +{ + struct switch_enet_private *fep; + struct switch_t *fecp; + struct cbd_t *bdp; + unsigned short status; + unsigned long flags; + + fep = netdev_priv(dev); + fecp = (struct switch_t *)fep->hwp; + + spin_lock_irqsave(&fep->hw_lock, flags); + /* Fill in a Tx ring entry */ + bdp = fep->cur_tx; + + status = bdp->cbd_sc; + + if (status & BD_ENET_TX_READY) { + /* + * Ooops. All transmit buffers are full. Bail out. + * This should not happen, since dev->tbusy should be set. + */ + printk(KERN_ERR "%s: tx queue full!.\n", dev->name); + spin_unlock_irqrestore(&fep->hw_lock, flags); + return NETDEV_TX_BUSY; + } + + /* Clear all of the status flags */ + status &= ~BD_ENET_TX_STATS; + + /* Set buffer length and buffer pointer */ + bdp->cbd_bufaddr = __pa(skb->data); + bdp->cbd_datlen = skb->len; + printk(KERN_ERR "%s: skb->len %u, dev->stats.tx_bytes %lx," + " bdp->cbd_bufaddr %lx skb->data %lx\n", + __func__, skb->len, dev->stats.tx_bytes, + bdp->cbd_bufaddr, (unsigned long)skb->data); + /* + * On some FEC implementations data must be aligned on + * 4-byte boundaries. Use bounce buffers to copy data + * and get it aligned. Ugh. + */ + if (bdp->cbd_bufaddr & FEC_ALIGNMENT) { + unsigned int index1; + index1 = bdp - fep->tx_bd_base; + printk(KERN_ERR "%s: bdp->cbd_bufaddr %lx\n", + __func__, bdp->cbd_bufaddr); + memcpy(fep->tx_bounce[index1], + (void *)skb->data, bdp->cbd_datlen); + bdp->cbd_bufaddr = __pa(fep->tx_bounce[index1]); + } + +#ifdef CONFIG_ARCH_MXS + swap_buffer((void *)bdp->cbd_bufaddr, skb->len); +#endif + /* Save skb pointer. */ + fep->tx_skbuff[fep->skb_cur] = skb; + + dev->stats.tx_bytes += skb->len; + fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; + + /* + * Push the data cache so the CPM does not get stale memory + * data. + */ + bdp->cbd_bufaddr = dma_map_single(&dev->dev, (void *)bdp->cbd_bufaddr, + FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE); + + /* + * Send it on its way. Tell FEC it's ready, interrupt when done, + * it's the last BD of the frame, and to put the CRC on the end. + */ + + status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR + | BD_ENET_TX_LAST | BD_ENET_TX_TC); + bdp->cbd_sc = status; +#ifdef MODELO_BUFFER + bdp->bdu = 0x00000000; + bdp->ebd_status = TX_BD_INT | TX_BD_TS; +#endif + dev->trans_start = jiffies; + + /* Trigger transmission start */ + fecp->fec_x_des_active = MCF_ESW_TDAR_X_DES_ACTIVE; + + /* If this was the last BD in the ring, + * start at the beginning again. + */ + if (status & BD_ENET_TX_WRAP) + bdp = fep->tx_bd_base; + else + bdp++; + + if (bdp == fep->dirty_tx) { + fep->tx_full = 1; + netif_stop_queue(dev); + printk(KERN_ERR "%s: net stop\n", __func__); + } + + fep->cur_tx = (struct cbd_t *)bdp; + + spin_unlock_irqrestore(&fep->hw_lock, flags); + + return 0; +} + +static void +switch_timeout(struct net_device *dev) +{ + struct switch_enet_private *fep = netdev_priv(dev); + + printk(KERN_INFO "%s: transmit timed out.\n", dev->name); + dev->stats.tx_errors++; + { + int i; + struct cbd_t *bdp; + + printk(KERN_INFO "Ring data dump: cur_tx %lx%s," + "dirty_tx %lx cur_rx: %lx\n", + (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "", + (unsigned long)fep->dirty_tx, + (unsigned long)fep->cur_rx); + + bdp = fep->tx_bd_base; + printk(KERN_INFO " tx: %u buffers\n", TX_RING_SIZE); + for (i = 0 ; i < TX_RING_SIZE; i++) { + printk(KERN_INFO " %08x: %04x %04x %08x\n", + (uint) bdp, + bdp->cbd_sc, + bdp->cbd_datlen, + (int) bdp->cbd_bufaddr); + bdp++; + } + + bdp = fep->rx_bd_base; + printk(KERN_INFO " rx: %lu buffers\n", + (unsigned long) RX_RING_SIZE); + for (i = 0 ; i < RX_RING_SIZE; i++) { + printk(KERN_INFO " %08x: %04x %04x %08x\n", + (uint) bdp, + bdp->cbd_sc, + bdp->cbd_datlen, + (int) bdp->cbd_bufaddr); + bdp++; + } + } + switch_restart(dev, fep->full_duplex); + netif_wake_queue(dev); +} + +/* + * The interrupt handler. + * This is called from the MPC core interrupt. + */ +static irqreturn_t +switch_enet_interrupt(int irq, void *dev_id) +{ + struct net_device *dev = dev_id; + struct switch_t *fecp; + uint int_events; + irqreturn_t ret = IRQ_NONE; + + fecp = (struct switch_t *)dev->base_addr; + + /* Get the interrupt events that caused us to be here */ + do { + int_events = fecp->switch_ievent; + fecp->switch_ievent = int_events; + /* switch_enet_dump(fep); */ + /* Handle receive event in its own function. */ + + /* Transmit OK, or non-fatal error. Update the buffer + * descriptors. FEC handles all errors, we just discover + * them as part of the transmit process. + */ + if (int_events & MCF_ESW_ISR_LRN) { + ret = IRQ_HANDLED; + printk(KERN_INFO "\n"); + } + + if (int_events & MCF_ESW_ISR_OD0) + ret = IRQ_HANDLED; + + if (int_events & MCF_ESW_ISR_OD1) + ret = IRQ_HANDLED; + + if (int_events & MCF_ESW_ISR_OD2) + ret = IRQ_HANDLED; + + if (int_events & MCF_ESW_ISR_RXB) + ret = IRQ_HANDLED; + + if (int_events & MCF_ESW_ISR_RXF) { + ret = IRQ_HANDLED; + switch_enet_rx(dev); + } + + if (int_events & MCF_ESW_ISR_TXB) + ret = IRQ_HANDLED; + + if (int_events & MCF_ESW_ISR_TXF) { + ret = IRQ_HANDLED; + switch_enet_tx(dev); + } + + } while (int_events); + + return ret; +} + + +static void +switch_enet_tx(struct net_device *dev) +{ + struct switch_enet_private *fep; + struct cbd_t *bdp; + unsigned short status; + struct sk_buff *skb; + + fep = netdev_priv(dev); + spin_lock(&fep->hw_lock); + bdp = fep->dirty_tx; + + while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) { + if (bdp == fep->cur_tx && fep->tx_full == 0) + break; + + skb = fep->tx_skbuff[fep->skb_dirty]; + /* Check for errors */ + if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | + BD_ENET_TX_RL | BD_ENET_TX_UN | + BD_ENET_TX_CSL)) { + dev->stats.tx_errors++; + if (status & BD_ENET_TX_HB) /* No heartbeat */ + dev->stats.tx_heartbeat_errors++; + if (status & BD_ENET_TX_LC) /* Late collision */ + dev->stats.tx_window_errors++; + if (status & BD_ENET_TX_RL) /* Retrans limit */ + dev->stats.tx_aborted_errors++; + if (status & BD_ENET_TX_UN) /* Underrun */ + dev->stats.tx_fifo_errors++; + if (status & BD_ENET_TX_CSL) /* Carrier lost */ + dev->stats.tx_carrier_errors++; + } else { + dev->stats.tx_packets++; + } + + if (status & BD_ENET_TX_READY) + printk(KERN_ERR "HEY! " + "Enet xmit interrupt and TX_READY.\n"); + /* + * Deferred means some collisions occurred during transmit, + * but we eventually sent the packet OK. + */ + if (status & BD_ENET_TX_DEF) + dev->stats.collisions++; + + /* Free the sk buffer associated with this last transmit */ + dev_kfree_skb_any(skb); + fep->tx_skbuff[fep->skb_dirty] = NULL; + fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; + + /* Update pointer to next buffer descriptor to be transmitted */ + if (status & BD_ENET_TX_WRAP) + bdp = fep->tx_bd_base; + else + bdp++; + + /* + * Since we have freed up a buffer, the ring is no longer + * full. + */ + if (fep->tx_full) { + fep->tx_full = 0; + printk(KERN_ERR "%s: tx full is zero\n", __func__); + if (netif_queue_stopped(dev)) + netif_wake_queue(dev); + } + } + fep->dirty_tx = (struct cbd_t *)bdp; + spin_unlock(&fep->hw_lock); +} + + +/* + * During a receive, the cur_rx points to the current incoming buffer. + * When we update through the ring, if the next incoming buffer has + * not been given to the system, we just set the empty indicator, + * effectively tossing the packet. + */ +static void +switch_enet_rx(struct net_device *dev) +{ + struct switch_enet_private *fep; + struct switch_t *fecp; + struct cbd_t *bdp; + unsigned short status; + struct sk_buff *skb; + ushort pkt_len; + __u8 *data; + +#ifdef CONFIG_M532x + flush_cache_all(); +#endif + + fep = netdev_priv(dev); + fecp = (struct switch_t *)fep->hwp; + + spin_lock(&fep->hw_lock); + /* + * First, grab all of the stats for the incoming packet. + * These get messed up if we get called due to a busy condition. + */ + bdp = fep->cur_rx; +#ifdef MODELO_BUFFER + printk(KERN_ERR "%s: cbd_sc %x cbd_datlen %x cbd_bufaddr %x " + "ebd_status %x bdu %x length_proto_type %x " + "payload_checksum %x\n", + __func__, bdp->cbd_sc, bdp->cbd_datlen, + bdp->cbd_bufaddr, bdp->ebd_status, bdp->bdu, + bdp->length_proto_type, bdp->payload_checksum); +#endif + +while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { + + /* + * Since we have allocated space to hold a complete frame, + * the last indicator should be set. + */ + if ((status & BD_ENET_RX_LAST) == 0) + printk(KERN_INFO "SWITCH ENET: rcv is not +last\n"); + + if (!fep->opened) + goto rx_processing_done; + + /* Check for errors. */ + if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | + BD_ENET_RX_CR | BD_ENET_RX_OV)) { + dev->stats.rx_errors++; + if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { + /* Frame too long or too short. */ + dev->stats.rx_length_errors++; + } + if (status & BD_ENET_RX_NO) /* Frame alignment */ + dev->stats.rx_frame_errors++; + if (status & BD_ENET_RX_CR) /* CRC Error */ + dev->stats.rx_crc_errors++; + if (status & BD_ENET_RX_OV) /* FIFO overrun */ + dev->stats.rx_fifo_errors++; + } + + /* + * Report late collisions as a frame error. + * On this error, the BD is closed, but we don't know what we + * have in the buffer. So, just drop this frame on the floor. + */ + if (status & BD_ENET_RX_CL) { + dev->stats.rx_errors++; + dev->stats.rx_frame_errors++; + goto rx_processing_done; + } + + /* Process the incoming frame */ + dev->stats.rx_packets++; + pkt_len = bdp->cbd_datlen; + dev->stats.rx_bytes += pkt_len; + data = (__u8 *)__va(bdp->cbd_bufaddr); + + /* + * This does 16 byte alignment, exactly what we need. + * The packet length includes FCS, but we don't want to + * include that when passing upstream as it messes up + * bridging applications. + */ + /* skb = dev_alloc_skb(pkt_len - 4); */ + skb = dev_alloc_skb(pkt_len); + + if (skb == NULL) { + printk(KERN_ERR "%s: Memory squeeze, " + "dropping packet.\n", dev->name); + dev->stats.rx_dropped++; + } else { + /* + * skb_put(skb, pkt_len -4); + * skb_copy_to_linear_data(skb, data, pkt_len - 4); + */ + skb_put(skb, pkt_len); /* Make room */ + skb_copy_to_linear_data(skb, data, pkt_len); + skb->protocol = eth_type_trans(skb, dev); + netif_rx(skb); + } +rx_processing_done: + + /* Clear the status flags for this buffer */ + status &= ~BD_ENET_RX_STATS; + + /* Mark the buffer empty */ + status |= BD_ENET_RX_EMPTY; + bdp->cbd_sc = status; + + /* Update BD pointer to next entry */ + if (status & BD_ENET_RX_WRAP) + bdp = fep->rx_bd_base; + else + bdp++; + + /* + * Doing this here will keep the FEC running while we process + * incoming frames. On a heavily loaded network, we should be + * able to keep up at the expense of system resources. + */ + /* fecp->fec_r_des_active = MCF_ESW_RDAR_R_DES_ACTIVE; */ + } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */ + fep->cur_rx = (struct cbd_t *)bdp; + +#if 0 + /* Doing this here will allow us to process all frames in the + * ring before the FEC is allowed to put more there. On a heavily + * loaded network, some frames may be lost. Unfortunately, this + * increases the interrupt overhead since we can potentially work + * our way back to the interrupt return only to come right back + * here. + */ + fecp->fec_r_des_active = 0; +#endif + + spin_unlock(&fep->hw_lock); +} + +#ifdef FEC_PHY +static int fec_mdio_transfer(struct mii_bus *bus, int phy_id, + int reg, int regval) +{ + struct net_device *dev = bus->priv; + unsigned long flags; + struct switch_enet_private *fep; + int tries = 100; + int retval = 0; + + fep = netdev_priv(dev); + spin_lock_irqsave(&fep->mii_lock, flags); + + regval |= phy_id << 23; + writel(regval, fep->enet_addr + MCF_FEC_MMFR0); + + /* wait for it to finish, this takes about 23 us on lite5200b */ + while (!(readl(fep->enet_addr + MCF_FEC_EIR0) & FEC_ENET_MII) + && --tries) + udelay(5); + + if (!tries) { + printk(KERN_ERR "%s timeout\n", __func__); + return -ETIMEDOUT; + } + + writel(FEC_ENET_MII, fep->enet_addr + MCF_FEC_EIR0); + retval = readl(fep->enet_addr + MCF_FEC_MMFR0); + spin_unlock_irqrestore(&fep->mii_lock, flags); + + return retval; +} + +/* + * Phy section + */ +static void switch_adjust_link(struct net_device *dev) +{ + struct switch_enet_private *fep = netdev_priv(dev); + struct phy_device *phy_dev = fep->phy_dev; + unsigned long flags; + int status_change = 0; + + phy_dev = g_phy_dev; + spin_lock_irqsave(&fep->hw_lock, flags); + + /* Prevent a state halted on mii error */ + if (fep->mii_timeout && phy_dev->state == PHY_HALTED) { + phy_dev->state = PHY_RESUMING; + goto spin_unlock; + } + + /* Duplex link change */ + if (phy_dev->link) { + if (fep->full_duplex != phy_dev->duplex) { + switch_restart(dev, phy_dev->duplex); + status_change = 1; + } + } + + /* Link on or off change */ + if (phy_dev->link != fep->link) { + fep->link = phy_dev->link; + if (phy_dev->link) + switch_restart(dev, phy_dev->duplex); + else + switch_stop(dev); + status_change = 1; + } + +spin_unlock: + spin_unlock_irqrestore(&fep->hw_lock, flags); + + if (status_change) + phy_print_status(phy_dev); +} + +/* + * NOTE: a MII transaction is during around 25 us, so polling it... + */ +static int fec_enet_mdio_poll(struct switch_enet_private *fep) + { + int timeout = FEC_MII_TIMEOUT; + unsigned int reg = 0; + + fep->mii_timeout = 0; + + /* wait for end of transfer */ + reg = readl(fep->hwp + FEC_IEVENT); + while (!(reg & FEC_ENET_MII)) { + msleep(1); + if (timeout-- < 0) { + fep->mii_timeout = 1; + break; + } + } + + return 0; +} + +static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) +{ + struct switch_enet_private *fep = netdev_priv(bus->priv); + + + /* clear MII end of transfer bit */ + writel(FEC_ENET_MII, fep->enet_addr + FEC_IEVENT + / sizeof(unsigned long)); + + /* start a read op */ + writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | + FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | + FEC_MMFR_TA, fep->enet_addr + FEC_MII_DATA + / sizeof(unsigned long)); + + fec_enet_mdio_poll(fep); + + /* return value */ + return FEC_MMFR_DATA(readl(fep->enet_addr + FEC_MII_DATA + / sizeof(unsigned long))); +} + +static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, + u16 value) +{ + struct switch_enet_private *fep = netdev_priv(bus->priv); + + /* clear MII end of transfer bit */ + writel(FEC_ENET_MII, fep->enet_addr + FEC_IEVENT + / sizeof(unsigned long)); + + /* start a read op */ + writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | + FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | + FEC_MMFR_TA | FEC_MMFR_DATA(value), + fep->enet_addr + FEC_MII_DATA / sizeof(unsigned long)); + + fec_enet_mdio_poll(fep); + + return 0; +} + +static int fec_enet_mdio_reset(struct mii_bus *bus) +{ + return 0; +} + +static struct mii_bus *fec_enet_mii_init(struct net_device *dev) +{ + struct switch_enet_private *fep = netdev_priv(dev); + int err = -ENXIO, i; + + fep->mii_timeout = 0; + /* + * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) + */ + fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1; +#ifdef CONFIG_ARCH_MXS + /* Can't get phy(8720) ID when set to 2.5M on MX28, lower it */ + fep->phy_speed <<= 2; +#endif + writel(fep->phy_speed, fep->enet_addr + FEC_MII_SPEED + / sizeof(unsigned long)); + + fep->mii_bus = mdiobus_alloc(); + if (fep->mii_bus == NULL) { + err = -ENOMEM; + goto err_out; + } + + fep->mii_bus->name = "fec_enet_mii_bus"; + fep->mii_bus->read = fec_enet_mdio_read; + fep->mii_bus->write = fec_enet_mdio_write; + fep->mii_bus->reset = fec_enet_mdio_reset; + snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", fep->pdev->id); + fep->mii_bus->priv = dev; + + fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); + if (!fep->mii_bus->irq) { + err = -ENOMEM; + goto err_out_free_mdiobus; + } + + for (i = 0; i < PHY_MAX_ADDR; i++) + fep->mii_bus->irq[i] = PHY_POLL; + + if (mdiobus_register(fep->mii_bus)) { + printk(KERN_INFO "[%s][%d]err = %#x\n", + __func__, __LINE__, err); + goto err_out_free_mdio_irq; + } + + return fep->mii_bus; + +err_out_free_mdio_irq: + kfree(fep->mii_bus->irq); +err_out_free_mdiobus: + mdiobus_free(fep->mii_bus); +err_out: + return ERR_PTR(err); +} +#endif + +static int fec_enet_get_settings(struct net_device *dev, + struct ethtool_cmd *cmd) +{ + struct switch_enet_private *fep = netdev_priv(dev); + struct phy_device *phydev = fep->phy_dev; + + if (!phydev) + return -ENODEV; + + return phy_ethtool_gset(phydev, cmd); +} + +static int fec_enet_set_settings(struct net_device *dev, + struct ethtool_cmd *cmd) +{ + struct switch_enet_private *fep = netdev_priv(dev); + struct phy_device *phydev = fep->phy_dev; + + if (!phydev) + return -ENODEV; + + return phy_ethtool_sset(phydev, cmd); +} + +static void fec_enet_get_drvinfo(struct net_device *dev, + struct ethtool_drvinfo *info) +{ + struct switch_enet_private *fep = netdev_priv(dev); + + strcpy(info->driver, fep->pdev->dev.driver->name); + strcpy(info->version, "Revision: 1.0"); + strcpy(info->bus_info, dev_name(&dev->dev)); +} + +#ifdef FEC_PHY +static int fec_switch_init_phy(struct net_device *dev) +{ + struct switch_enet_private *priv = netdev_priv(dev); + struct phy_device *phydev = NULL; + int i; + + /* search for connect PHY device */ + for (i = 0; i < PHY_MAX_ADDR; i++) { + struct phy_device *const tmp_phydev = + priv->mdio_bus->phy_map[i]; + + if (!tmp_phydev) { +#ifdef FEC_DEBUG + printk(KERN_INFO "%s no PHY here at" + "mii_bus->phy_map[%d]\n", + __func__, i); +#endif + continue; /* no PHY here... */ + } + +#ifdef CONFIG_FEC_SHARED_PHY + if (priv->index == 0) + phydev = tmp_phydev; + else if (priv->index == 1) { + if (startnode == 1) { + phydev = tmp_phydev; + startnode = 0; + } else { + startnode++; + continue; + } + } else + printk(KERN_INFO "%s now we do not" + "support (%d) more than" + "2 phys shared " + "one mdio bus\n", + __func__, startnode); +#else + phydev = tmp_phydev; +#endif +#ifdef FEC_DEBUG + printk(KERN_INFO "%s find PHY here at" + "mii_bus->phy_map[%d]\n", + __func__, i); +#endif + break; /* found it */ + } + + /* now we are supposed to have a proper phydev, to attach to... */ + if (!phydev) { + printk(KERN_INFO "%s: Don't found any phy device at all\n", + dev->name); + return -ENODEV; + } + + priv->link = PHY_DOWN; + priv->old_link = PHY_DOWN; + priv->speed = 0; + priv->duplex = -1; + + phydev = phy_connect(dev, dev_name(&phydev->dev), + &switch_adjust_link, 0, PHY_INTERFACE_MODE_MII); + if (IS_ERR(phydev)) { + printk(KERN_ERR " %s phy_connect failed\n", __func__); + return PTR_ERR(phydev); + } + + printk(KERN_INFO "attached phy %i to driver %s\n", + phydev->addr, phydev->drv->name); + + priv->phydev = phydev; + g_phy_dev = phydev; + + return 0; +} +#endif + +static int +switch_enet_open(struct net_device *dev) +{ + struct switch_enet_private *fep = netdev_priv(dev); + /* I should reset the ring buffers here, but I don't yet know + * a simple way to do that. + */ + switch_set_mac_address(dev, NULL); + + fep->link = 0; +#ifdef FEC_PHY + clk_enable(fep->clk); + fec_switch_init_phy(dev); + phy_start(fep->phydev); +#endif + fep->old_link = 0; + if (fep->phydev) { + /* + * Set the initial link state to true. A lot of hardware + * based on this device does not implement a PHY interrupt, + * so we are never notified of link change. + */ + fep->link = 1; + } else { + fep->link = 1; + /* no phy, go full duplex, it's most likely a hub chip */ + switch_restart(dev, 1); + } + + /* + * if the fec is the fist open, we need to do nothing + * if the fec is not the fist open, we need to restart the FEC + */ + if (fep->sequence_done == 0) + switch_restart(dev, 1); + else + fep->sequence_done = 0; + + fep->currTime = 0; + /* enable timer for Learning Aging Function */ + /* add_timer(&fep->timer_aging); */ + + esw_test_main(fep); + + netif_start_queue(dev); + fep->opened = 1; + return 0; +} + +static int +switch_enet_close(struct net_device *dev) +{ + struct switch_enet_private *fep = netdev_priv(dev); + + fep->opened = 0; + netif_stop_queue(dev); + switch_stop(dev); +#ifdef FEC_PHY + phy_disconnect(fep->phydev); + phy_stop(fep->phydev); + phy_write(fep->phydev, MII_BMCR, BMCR_PDOWN); +#endif + return 0; +} + +/* + * Set or clear the multicast filter for this adaptor. + * Skeleton taken from sunlance driver. + * The CPM Ethernet implementation allows Multicast as well as individual + * MAC address filtering. Some of the drivers check to make sure it is + * a group multicast address, and discard those that are not. I guess I + * will do the same for now, but just remove the test if you want + * individual filtering as well (do the upper net layers want or support + * this kind of feature?). + */ + +/* bits in hash */ +#define HASH_BITS 6 +#define CRC32_POLY 0xEDB88320 + +static void set_multicast_list(struct net_device *dev) +{ + struct switch_enet_private *fep; + struct switch_t *ep; + struct dev_mc_list *dmi; + unsigned int i, j, bit, data, crc; + + fep = netdev_priv(dev); + ep = fep->hwp; + + if (dev->flags & IFF_PROMISC) { + /* ep->fec_r_cntrl |= 0x0008; */ + printk(KERN_INFO "%s IFF_PROMISC\n", __func__); + } else { + + /* ep->fec_r_cntrl &= ~0x0008; */ + + if (dev->flags & IFF_ALLMULTI) { + /* + * Catch all multicast addresses, so set the + * filter to all 1's. + */ + printk(KERN_INFO "%s IFF_ALLMULTI\n", __func__); + } else { + /* + * Clear filter and add the addresses + * in hash register + */ + /* + * ep->fec_grp_hash_table_high = 0; + * ep->fec_grp_hash_table_low = 0; + */ + + dmi = dev->mc_list; + + for (j = 0; j < dev->mc_count; + j++, dmi = dmi->next) { + /* Only support group multicast for now */ + if (!(dmi->dmi_addr[0] & 1)) + continue; + + /* calculate crc32 value of mac address */ + crc = 0xffffffff; + + for (i = 0; i < dmi->dmi_addrlen; i++) { + data = dmi->dmi_addr[i]; + for (bit = 0; bit < 8; bit++, + data >>= 1) { + crc = (crc >> 1) ^ + (((crc ^ data) & 1) ? + CRC32_POLY : 0); + } + } + + } + } + } +} + +/* Set a MAC change in hardware */ +static int +switch_set_mac_address(struct net_device *dev, void *addr) +{ + return 0; +} + +static struct ethtool_ops fec_enet_ethtool_ops = { + .get_settings = fec_enet_get_settings, + .set_settings = fec_enet_set_settings, + .get_drvinfo = fec_enet_get_drvinfo, + .get_link = ethtool_op_get_link, + }; +static const struct net_device_ops fec_netdev_ops = { + .ndo_open = switch_enet_open, + .ndo_stop = switch_enet_close, + .ndo_start_xmit = switch_enet_start_xmit, + .ndo_set_multicast_list = set_multicast_list, + .ndo_tx_timeout = switch_timeout, + .ndo_set_mac_address = switch_set_mac_address, +}; + +/* Initialize the FEC Ethernet */ +int __init switch_enet_init(struct net_device *dev, + int slot, struct platform_device *pdev) +{ + struct switch_enet_private *fep = netdev_priv(dev); + struct resource *r; + unsigned long mem_addr; + struct cbd_t *bdp; + struct cbd_t *cbd_base; + struct switch_t *fecp; + int i, j; + struct switch_platform_data *plat = pdev->dev.platform_data; + + /* Only allow us to be probed once. */ + if (slot >= SWITCH_MAX_PORTS) + return -ENXIO; + + /* Allocate memory for buffer descriptors */ + mem_addr = __get_free_page(GFP_DMA); + if (mem_addr == 0) { + printk(KERN_ERR "Switch: allocate descriptor memory failed?\n"); + return -ENOMEM; + } + + spin_lock_init(&fep->hw_lock); + spin_lock_init(&fep->mii_lock); + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!r) + return -ENXIO; + + r = request_mem_region(r->start, resource_size(r), pdev->name); + if (!r) + return -EBUSY; + + fep->enet_addr = ioremap(r->start, resource_size(r)); + + dev->irq = platform_get_irq(pdev, 0); + + /* + * Create an Ethernet device instance. + * The switch lookup address memory start 0x800FC000 + */ + fecp = (struct switch_t *)(fep->enet_addr + ENET_SWI_PHYS_ADDR_OFFSET + / sizeof(unsigned long)); + plat->switch_hw[1] = (unsigned long)fecp + MCF_ESW_LOOKUP_MEM_OFFSET; + + fep->index = slot; + fep->hwp = fecp; + fep->hwentry = (struct eswAddrTable_t *)plat->switch_hw[1]; + fep->netdev = dev; +#ifdef CONFIG_FEC_SHARED_PHY + fep->phy_hwp = (struct switch_t *) plat->switch_hw[slot & ~1]; +#else + fep->phy_hwp = fecp; +#endif + + fep->clk = clk_get(&pdev->dev, "fec_clk"); + if (IS_ERR(fep->clk)) + return PTR_ERR(fep->clk); + clk_enable(fep->clk); + + + /* PHY reset should be done during clock on */ + if (plat) { + fep->phy_interface = plat->fec_enet->phy; + if (plat->fec_enet->init && plat->fec_enet->init()) + return -EIO; + } else + fep->phy_interface = PHY_INTERFACE_MODE_MII; + + /* + * SWITCH CONFIGURATION + */ + fecp->ESW_MODE = MCF_ESW_MODE_SW_RST; + udelay(10); + + /* enable switch*/ + fecp->ESW_MODE = MCF_ESW_MODE_STATRST; + fecp->ESW_MODE = MCF_ESW_MODE_SW_EN; + + /* Enable transmit/receive on all ports */ + fecp->ESW_PER = 0xffffffff; + /* Management port configuration, + * make port 0 as management port + */ + fecp->ESW_BMPC = 0; + + /* clear all switch irq */ + fecp->switch_ievent = 0xffffffff; + fecp->switch_imask = 0; + udelay(10); + + plat->request_intrs = switch_request_intrs; + plat->set_mii = switch_set_mii; + plat->get_mac = switch_get_mac; + plat->enable_phy_intr = switch_enable_phy_intr; + plat->disable_phy_intr = switch_disable_phy_intr; + plat->phy_ack_intr = switch_phy_ack_intr; + plat->localhw_setup = switch_localhw_setup; + plat->uncache = switch_uncache; + plat->platform_flush_cache = switch_platform_flush_cache; + + /* + * Set the Ethernet address. If using multiple Enets on the 8xx, + * this needs some work to get unique addresses. + * + * This is our default MAC address unless the user changes + * it via eth_mac_addr (our dev->set_mac_addr handler). + */ + if (plat && plat->get_mac) + plat->get_mac(dev); + + cbd_base = (struct cbd_t *)mem_addr; + if (cbd_base == 0) { + printk(KERN_ERR "Switch: allocate memory failed?\n"); + return -ENOMEM; + } + if (plat && plat->uncache) + plat->uncache(mem_addr); + + /* Set receive and transmit descriptor base */ + fep->rx_bd_base = cbd_base; + fep->tx_bd_base = cbd_base + RX_RING_SIZE; + + fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; + fep->cur_rx = fep->rx_bd_base; + + fep->skb_cur = fep->skb_dirty = 0; + + /* Initialize the receive buffer descriptors */ + bdp = fep->rx_bd_base; + for (i = 0; i < SWITCH_ENET_RX_PAGES; i++) { + + /* Allocate a page */ + mem_addr = __get_free_page(GFP_DMA); + if (mem_addr == 0) { + printk(KERN_ERR "Switch: allocate memory failed?\n"); + return -ENOMEM; + } + + if (plat && plat->uncache) + plat->uncache(mem_addr); + + /* Initialize the BD for every fragment in the page */ + for (j = 0; j < SWITCH_ENET_RX_FRPPG; j++) { + bdp->cbd_sc = BD_ENET_RX_EMPTY; + bdp->cbd_bufaddr = __pa(mem_addr); +#ifdef MODELO_BUFFER + bdp->bdu = 0x00000000; + bdp->ebd_status = RX_BD_INT; +#endif + mem_addr += SWITCH_ENET_RX_FRSIZE; + bdp++; + } + } + + /* Set the last buffer to wrap */ + bdp--; + bdp->cbd_sc |= BD_SC_WRAP; + + /* ...and the same for transmmit */ + bdp = fep->tx_bd_base; + for (i = 0, j = SWITCH_ENET_TX_FRPPG; i < TX_RING_SIZE; i++) { + if (j >= SWITCH_ENET_TX_FRPPG) { + mem_addr = __get_free_page(GFP_DMA); + j = 1; + } else { + mem_addr += SWITCH_ENET_TX_FRSIZE; + j++; + } + fep->tx_bounce[i] = (unsigned char *) mem_addr; + + /* Initialize the BD for every fragment in the page */ + bdp->cbd_sc = 0; + bdp->cbd_bufaddr = 0; + bdp++; + } + + /* Set the last buffer to wrap */ + bdp--; + bdp->cbd_sc |= BD_SC_WRAP; + + /* Set receive and transmit descriptor base */ + fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); + fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); + + /* + * Install our interrupt handlers. This varies depending on + * the architecture. + */ + if (plat && plat->request_intrs) + plat->request_intrs(dev, switch_enet_interrupt, dev); + + /* + * fecp->fec_grp_hash_table_high = 0; + * fecp->fec_grp_hash_table_low = 0; + */ + fecp->fec_r_buff_size = RX_BUFFER_SIZE; + /* fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; */ + fecp->fec_r_des_active = MCF_ESW_RDAR_R_DES_ACTIVE; + /* + * if (plat->hash_table == 0) { + * fecp->fec_hash_table_high = 0; + * fecp->fec_hash_table_low = 0; + * } + */ + + dev->base_addr = (unsigned long)fecp; + + /* The FEC Ethernet specific entries in the device structure. */ + dev->netdev_ops = &fec_netdev_ops; + dev->ethtool_ops = &fec_enet_ethtool_ops; + + /* setup MII interface */ + if (plat && plat->set_mii) + plat->set_mii(dev); + + /* Clear and enable interrupts */ + fecp->switch_ievent = 0xffffffff; + fecp->switch_imask = MCF_ESW_IMR_RXB | MCF_ESW_IMR_TXB | + MCF_ESW_IMR_RXF | MCF_ESW_IMR_TXF; + esw_clear_atable(fep); + +#ifndef CONFIG_FEC_SHARED_PHY + fep->phy_addr = 0; +#else + fep->phy_addr = fep->index; +#endif + + fep->sequence_done = 1; + return 0; +} + +/* + * This function is called to start or restart the FEC during a link + * change. This only happens when switching between half and full + * duplex. + */ +static void +switch_restart(struct net_device *dev, int duplex) +{ + struct switch_enet_private *fep; + struct cbd_t *bdp; + struct switch_t *fecp; + int i; + struct switch_platform_data *plat; + + fep = netdev_priv(dev); + fecp = fep->hwp; + plat = fep->pdev->dev.platform_data; + /* + * Whack a reset. We should wait for this. + */ + /* fecp->fec_ecntrl = 1; */ + fecp->ESW_MODE = MCF_ESW_MODE_SW_RST; + udelay(10); + fecp->ESW_MODE = MCF_ESW_MODE_STATRST; + fecp->ESW_MODE = MCF_ESW_MODE_SW_EN; + + /* Enable transmit/receive on all ports */ + fecp->ESW_PER = 0xffffffff; + /* + * Management port configuration, + * make port 0 as management port + */ + fecp->ESW_BMPC = 0; + + /* Clear any outstanding interrupt */ + fecp->switch_ievent = 0xffffffff; + /*if (plat && plat->enable_phy_intr) + * plat->enable_phy_intr(); + */ + + /* Set station address */ + switch_set_mac_address(dev, NULL); + + /* Reset all multicast */ + /* + * fecp->fec_grp_hash_table_high = 0; + *fecp->fec_grp_hash_table_low = 0; + */ + + /* Set maximum receive buffer size */ + fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; + + if (plat && plat->localhw_setup) + plat->localhw_setup(); + /* Set receive and transmit descriptor base */ + fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); + fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); + + fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; + fep->cur_rx = fep->rx_bd_base; + + /* Reset SKB transmit buffers */ + fep->skb_cur = fep->skb_dirty = 0; + for (i = 0; i <= TX_RING_MOD_MASK; i++) { + if (fep->tx_skbuff[i] != NULL) { + dev_kfree_skb_any(fep->tx_skbuff[i]); + fep->tx_skbuff[i] = NULL; + } + } + + /* Initialize the receive buffer descriptors */ + bdp = fep->rx_bd_base; + for (i = 0; i < RX_RING_SIZE; i++) { + + /* Initialize the BD for every fragment in the page */ + bdp->cbd_sc = BD_ENET_RX_EMPTY; +#ifdef MODELO_BUFFER + bdp->bdu = 0x00000000; + bdp->ebd_status = RX_BD_INT; +#endif + bdp++; + } + + /* Set the last buffer to wrap */ + bdp--; + bdp->cbd_sc |= BD_SC_WRAP; + + /* ...and the same for transmmit */ + bdp = fep->tx_bd_base; + for (i = 0; i < TX_RING_SIZE; i++) { + + /* Initialize the BD for every fragment in the page */ + bdp->cbd_sc = 0; + bdp->cbd_bufaddr = 0; + bdp++; + } + + /* Set the last buffer to wrap */ + bdp--; + bdp->cbd_sc |= BD_SC_WRAP; + + fep->full_duplex = duplex; + + /* And last, enable the transmit and receive processing */ + fecp->fec_r_buff_size = RX_BUFFER_SIZE; + /* fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; */ + fecp->fec_r_des_active = MCF_ESW_RDAR_R_DES_ACTIVE; + + /* Enable interrupts we wish to service */ + fecp->switch_ievent = 0xffffffff; + fecp->switch_imask = MCF_ESW_IMR_RXF | MCF_ESW_IMR_TXF | + MCF_ESW_IMR_RXB | MCF_ESW_IMR_TXB; + +#ifdef SWITCH_DEBUG + printk(KERN_INFO "%s: switch hw init over." + "isr %x mask %x rx_addr %x %x tx_addr %x %x." + "fec_r_buff_size %x\n", __func__, + fecp->switch_ievent, fecp->switch_imask, fecp->fec_r_des_start, + &fecp->fec_r_des_start, fecp->fec_x_des_start, + &fecp->fec_x_des_start, fecp->fec_r_buff_size); + printk(KERN_INFO "%s: fecp->ESW_DBCR %x, fecp->ESW_P0FFEN %x fecp->ESW_BKLR %x\n", + __func__, fecp->ESW_DBCR, fecp->ESW_P0FFEN, fecp->ESW_BKLR); + + printk(KERN_INFO "fecp->portstats[0].MCF_ESW_POQC %x," + "fecp->portstats[0].MCF_ESW_PMVID %x," + "fecp->portstats[0].MCF_ESW_PMVTAG %x," + "fecp->portstats[0].MCF_ESW_PBL %x\n", + fecp->port_statistics_status[0].MCF_ESW_POQC, + fecp->port_statistics_status[0].MCF_ESW_PMVID, + fecp->port_statistics_status[0].MCF_ESW_PMVTAG, + fecp->port_statistics_status[0].MCF_ESW_PBL); + + printk(KERN_INFO "fecp->portstats[1].MCF_ESW_POQC %x," + "fecp->portstats[1].MCF_ESW_PMVID %x," + "fecp->portstats[1].MCF_ESW_PMVTAG %x," + "fecp->portstats[1].MCF_ESW_PBL %x\n", + fecp->port_statistics_status[1].MCF_ESW_POQC, + fecp->port_statistics_status[1].MCF_ESW_PMVID, + fecp->port_statistics_status[1].MCF_ESW_PMVTAG, + fecp->port_statistics_status[1].MCF_ESW_PBL); + + printk(KERN_INFO "fecp->portstats[2].MCF_ESW_POQC %x," + "fecp->portstats[2].MCF_ESW_PMVID %x," + "fecp->portstats[2].MCF_ESW_PMVTAG %x," + "fecp->portstats[2].MCF_ESW_PBL %x\n", + fecp->port_statistics_status[2].MCF_ESW_POQC, + fecp->port_statistics_status[2].MCF_ESW_PMVID, + fecp->port_statistics_status[2].MCF_ESW_PMVTAG, + fecp->port_statistics_status[2].MCF_ESW_PBL); +#endif +} + +static void +switch_stop(struct net_device *dev) +{ + struct switch_t *fecp; + struct switch_enet_private *fep; + struct switch_platform_data *plat; + +#ifdef SWITCH_DEBUG + printk(KERN_ERR "%s\n", __func__); +#endif + fep = netdev_priv(dev); + fecp = fep->hwp; + plat = fep->pdev->dev.platform_data; + /* We cannot expect a graceful transmit stop without link !!! */ + if (fep->link) + udelay(10); + + /* Whack a reset. We should wait for this */ + udelay(10); +} + +#ifdef FEC_PHY +static int fec_mdio_register(struct net_device *dev, + int slot) +{ + int err = 0; + struct switch_enet_private *fep = netdev_priv(dev); + + fep->mdio_bus = mdiobus_alloc(); + if (!fep->mdio_bus) { + printk(KERN_ERR "ethernet switch mdiobus_alloc fail\n"); + return -ENOMEM; + } + + if (slot == 0) { + fep->mdio_bus->name = "FEC switch MII 0 Bus"; + strcpy(fep->mdio_bus->id, "0"); + } else if (slot == 1) { + fep->mdio_bus->name = "FEC switch MII 1 Bus"; + strcpy(fep->mdio_bus->id, "1"); + } else { + printk(KERN_ERR "Now Fec switch can not" + "support more than 2 mii bus\n"); + } + + fep->mdio_bus->read = &fec_enet_mdio_read; + fep->mdio_bus->write = &fec_enet_mdio_write; + fep->mdio_bus->priv = dev; + err = mdiobus_register(fep->mdio_bus); + if (err) { + mdiobus_free(fep->mdio_bus); + printk(KERN_ERR "%s: ethernet mdiobus_register fail\n", + dev->name); + return -EIO; + } + + printk(KERN_INFO "mdiobus_register %s ok\n", + fep->mdio_bus->name); + return err; +} +#endif + +static int __init eth_switch_probe(struct platform_device *pdev) +{ + struct net_device *dev; + int i, err; + struct switch_enet_private *fep; + struct switch_platform_private *chip; + + printk(KERN_INFO "Ethernet Switch Version 1.0\n"); + chip = kzalloc(sizeof(struct switch_platform_private) + + sizeof(struct switch_enet_private *) * SWITCH_MAX_PORTS, + GFP_KERNEL); + if (!chip) { + err = -ENOMEM; + printk(KERN_ERR "%s: kzalloc fail %x\n", __func__, + (unsigned int)chip); + return err; + } + + chip->pdev = pdev; + chip->num_slots = SWITCH_MAX_PORTS; + platform_set_drvdata(pdev, chip); + + for (i = 0; (i < chip->num_slots); i++) { + dev = alloc_etherdev(sizeof(struct switch_enet_private)); + if (!dev) { + printk(KERN_ERR "%s: ethernet switch\ + alloc_etherdev fail\n", + dev->name); + return -ENOMEM; + } + + fep = netdev_priv(dev); + fep->pdev = pdev; + printk(KERN_ERR "%s: ethernet switch port %d init\n", + __func__, i); + err = switch_enet_init(dev, i, pdev); + if (err) { + free_netdev(dev); + platform_set_drvdata(pdev, NULL); + kfree(chip); + continue; + } + + chip->fep_host[i] = fep; + /* disable mdio */ +#ifdef FEC_PHY +#ifdef CONFIG_FEC_SHARED_PHY + if (i == 0) + err = fec_mdio_register(dev, 0); + else { + fep->mdio_bus = chip->fep_host[0]->mdio_bus; + printk(KERN_INFO "FEC%d SHARED the %s ok\n", + i, fep->mdio_bus->name); + } +#else + err = fec_mdio_register(dev, i); +#endif + if (err) { + printk(KERN_ERR "%s: ethernet switch fec_mdio_register\n", + dev->name); + free_netdev(dev); + platform_set_drvdata(pdev, NULL); + kfree(chip); + return -ENOMEM; + } +#endif + /* setup timer for Learning Aging function */ + /* + * setup_timer(&fep->timer_aging, + * l2switch_aging_timer, (unsigned long)fep); + */ + init_timer(&fep->timer_aging); + fep->timer_aging.function = l2switch_aging_timer; + fep->timer_aging.data = (unsigned long) fep; + fep->timer_aging.expires = jiffies + LEARNING_AGING_TIMER; + + /* register network device */ + if (register_netdev(dev) != 0) { + free_netdev(dev); + platform_set_drvdata(pdev, NULL); + kfree(chip); + printk(KERN_ERR "%s: ethernet switch register_netdev fail\n", + dev->name); + return -EIO; + } + printk(KERN_INFO "%s: ethernet switch %pM\n", + dev->name, dev->dev_addr); + } + + return 0; +} + +static int eth_switch_remove(struct platform_device *pdev) +{ + int i; + struct net_device *dev; + struct switch_enet_private *fep; + struct switch_platform_private *chip; + + chip = platform_get_drvdata(pdev); + if (chip) { + for (i = 0; i < chip->num_slots; i++) { + fep = chip->fep_host[i]; + dev = fep->netdev; + fep->sequence_done = 1; + unregister_netdev(dev); + free_netdev(dev); + + del_timer_sync(&fep->timer_aging); + } + + platform_set_drvdata(pdev, NULL); + kfree(chip); + + } else + printk(KERN_ERR "%s: can not get the " + "switch_platform_private %x\n", __func__, + (unsigned int)chip); + + return 0; +} + +static struct platform_driver eth_switch_driver = { + .probe = eth_switch_probe, + .remove = eth_switch_remove, + .driver = { + .name = "mxs-l2switch", + .owner = THIS_MODULE, + }, +}; + +static int __init fec_l2switch_init(void) +{ + return platform_driver_register(ð_switch_driver);; +} + +static void __exit fec_l2_switch_exit(void) +{ + platform_driver_unregister(ð_switch_driver); +} + +module_init(fec_l2switch_init); +module_exit(fec_l2_switch_exit); +MODULE_LICENSE("GPL"); diff --git a/drivers/net/fec_switch.h b/drivers/net/fec_switch.h new file mode 100644 index 000000000000..e1e8a4cbe55b --- /dev/null +++ b/drivers/net/fec_switch.h @@ -0,0 +1,989 @@ +/****************************************************************************/ + +/* + * mcfswitch -- L2 Switch Controller for Modelo ColdFire SoC + * processors. + * + * Copyright (C) 2010 Freescale Semiconductor,Inc.All rights reserved. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or (at + * your option) any later version. + * + */ + +/****************************************************************************/ +#ifndef SWITCH_H +#define SWITCH_H +/****************************************************************************/ +/* The Switch stores dest/src/type, data, and checksum for receive packets. + */ +#define PKT_MAXBUF_SIZE 1518 +#define PKT_MINBUF_SIZE 64 +#define PKT_MAXBLR_SIZE 1520 + +/* + * The 5441x RX control register also contains maximum frame + * size bits. + */ +#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) + +/* + * Some hardware gets it MAC address out of local flash memory. + * if this is non-zero then assume it is the address to get MAC from. + */ +#define FEC_FLASHMAC 0 + +/* The number of Tx and Rx buffers. These are allocated from the page + * pool. The code may assume these are power of two, so it it best + * to keep them that size. + * We don't need to allocate pages for the transmitter. We just use + * the skbuffer directly. + */ +#ifdef CONFIG_SWITCH_DMA_USE_SRAM +#define SWITCH_ENET_RX_PAGES 6 +#else +#define SWITCH_ENET_RX_PAGES 8 +#endif + +#define SWITCH_ENET_RX_FRSIZE 2048 +#define SWITCH_ENET_RX_FRPPG (PAGE_SIZE / SWITCH_ENET_RX_FRSIZE) +#define RX_RING_SIZE (SWITCH_ENET_RX_FRPPG * SWITCH_ENET_RX_PAGES) +#define SWITCH_ENET_TX_FRSIZE 2048 +#define SWITCH_ENET_TX_FRPPG (PAGE_SIZE / SWITCH_ENET_TX_FRSIZE) + +#ifdef CONFIG_SWITCH_DMA_USE_SRAM +#define TX_RING_SIZE 8 /* Must be power of two */ +#define TX_RING_MOD_MASK 7 /* for this to work */ +#else +#define TX_RING_SIZE 16 /* Must be power of two */ +#define TX_RING_MOD_MASK 15 /* for this to work */ +#endif + +#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE) +#error "L2SWITCH: descriptor ring size constants too large" +#endif +/*-----------------------------------------------------------------------*/ +struct esw_output_queue_status { + unsigned long ESW_MMSR; + unsigned long ESW_LMT; + unsigned long ESW_LFC; + unsigned long ESW_PCSR; + unsigned long ESW_IOSR; + unsigned long ESW_QWT; + unsigned long esw_reserved; + unsigned long ESW_P0BCT; +}; +struct esw_statistics_status { + /* + * Total number of incoming frames processed + * but discarded in switch + */ + unsigned long ESW_DISCN; + /*Sum of bytes of frames counted in ESW_DISCN*/ + unsigned long ESW_DISCB; + /* + * Total number of incoming frames processed + * but not discarded in switch + */ + unsigned long ESW_NDISCN; + /*Sum of bytes of frames counted in ESW_NDISCN*/ + unsigned long ESW_NDISCB; +}; + +struct esw_port_statistics_status { + /*outgoing frames discarded due to transmit queue congestion*/ + unsigned long MCF_ESW_POQC; + /*incoming frames discarded due to VLAN domain mismatch*/ + unsigned long MCF_ESW_PMVID; + /*incoming frames discarded due to untagged discard*/ + unsigned long MCF_ESW_PMVTAG; + /*incoming frames discarded due port is in blocking state*/ + unsigned long MCF_ESW_PBL; +}; + +struct switch_t { + unsigned long ESW_REVISION; + unsigned long ESW_SCRATCH; + unsigned long ESW_PER; + unsigned long reserved0[1]; + unsigned long ESW_VLANV; + unsigned long ESW_DBCR; + unsigned long ESW_DMCR; + unsigned long ESW_BKLR; + unsigned long ESW_BMPC; + unsigned long ESW_MODE; + unsigned long ESW_VIMSEL; + unsigned long ESW_VOMSEL; + unsigned long ESW_VIMEN; + unsigned long ESW_VID;/*0x34*/ + /*from 0x38 0x3C*/ + unsigned long esw_reserved0[2]; + unsigned long ESW_MCR;/*0x40*/ + unsigned long ESW_EGMAP; + unsigned long ESW_INGMAP; + unsigned long ESW_INGSAL; + unsigned long ESW_INGSAH; + unsigned long ESW_INGDAL; + unsigned long ESW_INGDAH; + unsigned long ESW_ENGSAL; + unsigned long ESW_ENGSAH; + unsigned long ESW_ENGDAL; + unsigned long ESW_ENGDAH; + unsigned long ESW_MCVAL;/*0x6C*/ + /*from 0x70--0x7C*/ + unsigned long esw_reserved1[4]; + unsigned long ESW_MMSR;/*0x80*/ + unsigned long ESW_LMT; + unsigned long ESW_LFC; + unsigned long ESW_PCSR; + unsigned long ESW_IOSR; + unsigned long ESW_QWT;/*0x94*/ + unsigned long esw_reserved2[1];/*0x98*/ + unsigned long ESW_P0BCT;/*0x9C*/ + /*from 0xA0-0xB8*/ + unsigned long esw_reserved3[7]; + unsigned long ESW_P0FFEN;/*0xBC*/ + unsigned long ESW_PSNP[8]; + unsigned long ESW_IPSNP[8]; + unsigned long ESW_PVRES[3]; + /*from 0x10C-0x13C*/ + unsigned long esw_reserved4[13]; + unsigned long ESW_IPRES;/*0x140*/ + /*from 0x144-0x17C*/ + unsigned long esw_reserved5[15]; + unsigned long ESW_PRES[3]; + /*from 0x18C-0x1FC*/ + unsigned long esw_reserved6[29]; + unsigned long ESW_PID[3]; + /*from 0x20C-0x27C*/ + unsigned long esw_reserved7[29]; + unsigned long ESW_VRES[32]; + unsigned long ESW_DISCN;/*0x300*/ + unsigned long ESW_DISCB; + unsigned long ESW_NDISCN; + unsigned long ESW_NDISCB;/*0xFC0DC30C*/ + struct esw_port_statistics_status port_statistics_status[3]; + /*from 0x340-0x400*/ + unsigned long esw_reserved8[48]; + + /*0xFC0DC400---0xFC0DC418*/ + /*unsigned long MCF_ESW_ISR;*/ + unsigned long switch_ievent; /* Interrupt event reg */ + /*unsigned long MCF_ESW_IMR;*/ + unsigned long switch_imask; /* Interrupt mask reg */ + /*unsigned long MCF_ESW_RDSR;*/ + unsigned long fec_r_des_start; /* Receive descriptor ring */ + /*unsigned long MCF_ESW_TDSR;*/ + unsigned long fec_x_des_start; /* Transmit descriptor ring */ + /*unsigned long MCF_ESW_MRBR;*/ + unsigned long fec_r_buff_size; /* Maximum receive buff size */ + /*unsigned long MCF_ESW_RDAR;*/ + unsigned long fec_r_des_active; /* Receive descriptor reg */ + /*unsigned long MCF_ESW_TDAR;*/ + unsigned long fec_x_des_active; /* Transmit descriptor reg */ + /*from 0x420-0x4FC*/ + unsigned long esw_reserved9[57]; + + /*0xFC0DC500---0xFC0DC508*/ + unsigned long ESW_LREC0; + unsigned long ESW_LREC1; + unsigned long ESW_LSR; +}; + +struct AddrTable64bEntry { + unsigned int lo; /* lower 32 bits */ + unsigned int hi; /* upper 32 bits */ +}; + +struct eswAddrTable_t { + struct AddrTable64bEntry eswTable64bEntry[2048]; +}; + +#define MCF_ESW_LOOKUP_MEM_OFFSET 0x4000 +#define ENET_SWI_PHYS_ADDR_OFFSET 0x8000 +#define MCF_ESW_PER (0x08 / sizeof(unsigned long)) +#define MCF_ESW_DBCR (0x14 / sizeof(unsigned long)) +#define MCF_ESW_IMR (0x404 / sizeof(unsigned long)) + +#define MCF_FEC_BASE_ADDR (fep->enet_addr) +#define MCF_FEC_EIR0 (0x04 / sizeof(unsigned long)) +#define MCF_FEC_EIR1 (0x4004 / sizeof(unsigned long)) +#define MCF_FEC_EIMR0 (0x08 / sizeof(unsigned long)) +#define MCF_FEC_EIMR1 (0x4008 / sizeof(unsigned long)) +#define MCF_FEC_MMFR0 (0x40 / sizeof(unsigned long)) +#define MCF_FEC_MMFR1 (0x4040 / sizeof(unsigned long)) +#define MCF_FEC_MSCR0 (0x44 / sizeof(unsigned long)) +#define MCF_FEC_MSCR1 (0x4044 / sizeof(unsigned long)) + +#define MCF_FEC_RCR0 (0x84 / sizeof(unsigned long)) +#define MCF_FEC_RCR1 (0x4084 / sizeof(unsigned long)) +#define MCF_FEC_TCR0 (0xC4 / sizeof(unsigned long)) +#define MCF_FEC_TCR1 (0x40C4 / sizeof(unsigned long)) +#define MCF_FEC_ECR0 (0x24 / sizeof(unsigned long)) +#define MCF_FEC_ECR1 (0x4024 / sizeof(unsigned long)) + +#define MCF_FEC_RCR_PROM (0x00000008) +#define MCF_FEC_RCR_RMII_MODE (0x00000100) +#define MCF_FEC_RCR_MAX_FL(x) (((x)&0x00003FFF)<<16) +#define MCF_FEC_RCR_CRC_FWD (0x00004000) + +#define MCF_FEC_TCR_FDEN (0x00000004) + +#define MCF_FEC_ECR_ETHER_EN (0x00000002) +#define MCF_FEC_ECR_ENA_1588 (0x00000010) + +/*-------------ioctl command ---------------------------------------*/ +#define ESW_SET_LEARNING_CONF 0x9101 +#define ESW_GET_LEARNING_CONF 0x9201 +#define ESW_SET_BLOCKING_CONF 0x9102 +#define ESW_GET_BLOCKING_CONF 0x9202 +#define ESW_SET_MULTICAST_CONF 0x9103 +#define ESW_GET_MULTICAST_CONF 0x9203 +#define ESW_SET_BROADCAST_CONF 0x9104 +#define ESW_GET_BROADCAST_CONF 0x9204 +#define ESW_SET_PORTENABLE_CONF 0x9105 +#define ESW_GET_PORTENABLE_CONF 0x9205 +#define ESW_SET_IP_SNOOP_CONF 0x9106 +#define ESW_GET_IP_SNOOP_CONF 0x9206 +#define ESW_SET_PORT_SNOOP_CONF 0x9107 +#define ESW_GET_PORT_SNOOP_CONF 0x9207 +#define ESW_SET_PORT_MIRROR_CONF 0x9108 +#define ESW_GET_PORT_MIRROR_CONF 0x9208 +#define ESW_SET_PIRORITY_VLAN 0x9109 +#define ESW_GET_PIRORITY_VLAN 0x9209 +#define ESW_SET_PIRORITY_IP 0x910A +#define ESW_GET_PIRORITY_IP 0x920A +#define ESW_SET_PIRORITY_MAC 0x910B +#define ESW_GET_PIRORITY_MAC 0x920B +#define ESW_SET_PIRORITY_DEFAULT 0x910C +#define ESW_GET_PIRORITY_DEFAULT 0x920C + +#define ESW_GET_STATISTICS_STATUS 0x9221 +#define ESW_GET_PORT0_STATISTICS_STATUS 0x9222 +#define ESW_GET_PORT1_STATISTICS_STATUS 0x9223 +#define ESW_GET_PORT2_STATISTICS_STATUS 0x9224 +#define ESW_GET_OUTPUT_QUEUE_STATUS 0x9225 + +struct eswIoctlPortConfig { + int port; + int enable; +}; + +struct eswIoctlPortEnableConfig { + int port; + int tx_enable; + int rx_enable; +}; + +struct eswIoctlIpsnoopConfig { + int num; + int mode; + unsigned long ip_header_protocol; +}; + +struct eswIoctlPortsnoopConfig { + int num; + int mode; + int compare_port; + int compare_num; +}; + +struct eswIoctlPortMirrorConfig { + int mirror_port; + int port; + unsigned char *src_mac; + unsigned char *des_mac; + int egress_en; + int ingress_en; + int egress_mac_src_en; + int egress_mac_des_en; + int ingress_mac_src_en; + int ingress_mac_des_en; +}; + +struct eswIoctlPriorityVlanConfig { + int port; + int func_enable; + int vlan_pri_table_num; + int vlan_pri_table_value; +}; + +struct eswIoctlPriorityIPConfig { + int port; + int func_enable; + int ipv4_en; + int ip_priority_num; + int ip_priority_value; +}; + +struct eswIoctlPriorityMacConfig { + int port; +}; + +struct eswIoctlPriorityDefaultConfig{ + int port; + unsigned char priority_value; +}; +/*=============================================================*/ +#define LEARNING_AGING_TIMER (10 * HZ) +/* + * Info received from Hardware Learning FIFO, + * holding MAC address and corresponding Hash Value and + * port number where the frame was received (disassembled). + */ +struct eswPortInfo { + /* MAC lower 32 bits (first byte is 7:0). */ + unsigned int maclo; + /* MAC upper 16 bits (47:32). */ + unsigned int machi; + /* the hash value for this MAC address. */ + unsigned int hash; + /* the port number this MAC address is associated with. */ + unsigned int port; +}; + +/* + * Hardware Look up Address Table 64-bit element. + */ +struct eswTable64bitEntry { + unsigned int lo; /* lower 32 bits */ + unsigned int hi; /* upper 32 bits */ +}; + +/* + * Disassembled element stored in Address Table. + */ +struct eswAddrTableDynamicEntry { + /* MAC lower 32 bits (first byte is 7:0). */ + unsigned int maclo; + /* MAC upper 16 bits (47:32). */ + unsigned int machi; + /* timestamp of this entry */ + unsigned int timestamp; + /* the port number this MAC address is associated with */ + unsigned int port; +}; + +struct eswAddrTableStaticEntry { + /* MAC lower 32 bits (first byte is 7:0). */ + unsigned int maclo; + /* MAC upper 16 bits (47:32). */ + unsigned int machi; + /* priority of this entry */ + unsigned int priority; + /* the port bitmask this MAC address is associated with */ + unsigned int portbitmask; +}; +/* + * Define the buffer descriptor structure. + */ +struct cbd_t { + unsigned short cbd_sc; /* Control and status info */ + unsigned short cbd_datlen; /* Data length */ + unsigned long cbd_bufaddr; /* Buffer address */ +#ifdef MODELO_BUFFER + unsigned long ebd_status; + unsigned short length_proto_type; + unsigned short payload_checksum; + unsigned long bdu; + unsigned long timestamp; + unsigned long reserverd_word1; + unsigned long reserverd_word2; +#endif +}; + +/* Forward declarations of some structures to support different PHYs + */ +struct phy_cmd_t { + uint mii_data; + void (*funct)(uint mii_reg, struct net_device *dev); +}; + +struct phy_info_t { + uint id; + char *name; + + const struct phy_cmd_t *config; + const struct phy_cmd_t *startup; + const struct phy_cmd_t *ack_int; + const struct phy_cmd_t *shutdown; +}; + +/* The switch buffer descriptors track the ring buffers. The rx_bd_base and + * tx_bd_base always point to the base of the buffer descriptors. The + * cur_rx and cur_tx point to the currently available buffer. + * The dirty_tx tracks the current buffer that is being sent by the + * controller. The cur_tx and dirty_tx are equal under both completely + * empty and completely full conditions. The empty/ready indicator in + * the buffer descriptor determines the actual condition. + */ +struct switch_enet_private { + /* Hardware registers of the switch device */ + struct switch_t *hwp; + struct eswAddrTable_t *hwentry; + unsigned long *enet_addr; + + struct net_device *netdev; + struct platform_device *pdev; + struct clk *clk; + /* The saved address of a sent-in-place packet/buffer, for skfree(). */ + unsigned char *tx_bounce[TX_RING_SIZE]; + struct sk_buff *tx_skbuff[TX_RING_SIZE]; + ushort skb_cur; + ushort skb_dirty; + + /* CPM dual port RAM relative addresses. + */ + struct cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ + struct cbd_t *tx_bd_base; + struct cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ + struct cbd_t *dirty_tx; /* The ring entries to be free()ed. */ + uint tx_full; + /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */ + spinlock_t hw_lock; + + /* hold while accessing the mii_list_t() elements */ + spinlock_t mii_lock; + struct mii_bus *mdio_bus; + struct phy_device *phydev; + phy_interface_t phy_interface; + + uint phy_id; + uint phy_id_done; + uint phy_status; + struct phy_info_t const *phy; + struct work_struct phy_task; + struct switch_t *phy_hwp; + + uint sequence_done; + uint mii_phy_task_queued; + + uint phy_addr; + + int opened; + int old_link; + int duplex; + int speed; + int msg_enable; + + /* --------------Statistics--------------------------- */ + /* when a new element deleted a element with in + * a block due to lack of space */ + int atBlockOverflows; + /* Peak number of valid entries in the address table */ + int atMaxEntries; + /* current number of valid entries in the address table */ + int atCurrEntries; + /* maximum entries within a block found + * (updated within ageing)*/ + int atMaxEntriesPerBlock; + + /* -------------------ageing function------------------ */ + /* maximum age allowed for an entry */ + int ageMax; + /* last LUT entry to block that was + * inspected by the Ageing task*/ + int ageLutIdx; + /* last element within block inspected by the Ageing task */ + int ageBlockElemIdx; + /* complete table has been processed by ageing process */ + int ageCompleted; + /* delay setting */ + int ageDelay; + /* current delay Counter */ + int ageDelayCnt; + + /* ----------------timer related---------------------------- */ + /* current time (for timestamping) */ + int currTime; + /* flag set by timer when currTime changed + * and cleared by serving function*/ + int timeChanged; + + /**/ + /* Timer for Aging */ + struct timer_list timer_aging; + /* Phylib and MDIO interface */ + struct mii_bus *mii_bus; + struct phy_device *phy_dev; + int mii_timeout; + uint phy_speed; + int index; + int link; + int full_duplex; +}; + +struct switch_platform_private { + struct platform_device *pdev; + + unsigned long quirks; + int num_slots; /* Slots on controller */ + struct switch_enet_private *fep_host[0]; /* Pointers to hosts */ +}; + +/******************************************************************************/ +#define FEC_IEVENT 0x004 /* Interrupt event reg */ +#define FEC_IMASK 0x008 /* Interrupt mask reg */ +#define FEC_R_DES_ACTIVE 0x010 /* Receive descriptor reg */ +#define FEC_X_DES_ACTIVE 0x014 /* Transmit descriptor reg */ +#define FEC_ECNTRL 0x024 /* Ethernet control reg */ +#define FEC_MII_DATA 0x040 /* MII manage frame reg */ +#define FEC_MII_SPEED 0x044 /* MII speed control reg */ +#define FEC_MIB_CTRLSTAT 0x064 /* MIB control/status reg */ +#define FEC_R_CNTRL 0x084 /* Receive control reg */ +#define FEC_X_CNTRL 0x0c4 /* Transmit Control reg */ +#define FEC_ADDR_LOW 0x0e4 /* Low 32bits MAC address */ +#define FEC_ADDR_HIGH 0x0e8 /* High 16bits MAC address */ +#define FEC_OPD 0x0ec /* Opcode + Pause duration */ +#define FEC_HASH_TABLE_HIGH 0x118 /* High 32bits hash table */ +#define FEC_HASH_TABLE_LOW 0x11c /* Low 32bits hash table */ +#define FEC_GRP_HASH_TABLE_HIGH 0x120 /* High 32bits hash table */ +#define FEC_GRP_HASH_TABLE_LOW 0x124 /* Low 32bits hash table */ +#define FEC_X_WMRK 0x144 /* FIFO transmit water mark */ +#define FEC_R_BOUND 0x14c /* FIFO receive bound reg */ +#define FEC_R_FSTART 0x150 /* FIFO receive start reg */ +#define FEC_R_DES_START 0x180 /* Receive descriptor ring */ +#define FEC_X_DES_START 0x184 /* Transmit descriptor ring */ +#define FEC_R_BUFF_SIZE 0x188 /* Maximum receive buff size */ +#define FEC_MIIGSK_CFGR 0x300 /* MIIGSK config register */ +#define FEC_MIIGSK_ENR 0x308 /* MIIGSK enable register */ + +/* Recieve is empty */ +#define BD_SC_EMPTY ((unsigned short)0x8000) +/* Transmit is ready */ +#define BD_SC_READY ((unsigned short)0x8000) +/* Last buffer descriptor */ +#define BD_SC_WRAP ((unsigned short)0x2000) +/* Interrupt on change */ +#define BD_SC_INTRPT ((unsigned short)0x1000) +/* Continous mode */ +#define BD_SC_CM ((unsigned short)0x0200) +/* Rec'd too many idles */ +#define BD_SC_ID ((unsigned short)0x0100) +/* xmt preamble */ +#define BD_SC_P ((unsigned short)0x0100) +/* Break received */ +#define BD_SC_BR ((unsigned short)0x0020) +/* Framing error */ +#define BD_SC_FR ((unsigned short)0x0010) +/* Parity error */ +#define BD_SC_PR ((unsigned short)0x0008) +/* Overrun */ +#define BD_SC_OV ((unsigned short)0x0002) +#define BD_SC_CD ((unsigned short)0x0001) + +/* Buffer descriptor control/status used by Ethernet receive. +*/ +#define BD_ENET_RX_EMPTY ((unsigned short)0x8000) +#define BD_ENET_RX_WRAP ((unsigned short)0x2000) +#define BD_ENET_RX_INTR ((unsigned short)0x1000) +#define BD_ENET_RX_LAST ((unsigned short)0x0800) +#define BD_ENET_RX_FIRST ((unsigned short)0x0400) +#define BD_ENET_RX_MISS ((unsigned short)0x0100) +#define BD_ENET_RX_LG ((unsigned short)0x0020) +#define BD_ENET_RX_NO ((unsigned short)0x0010) +#define BD_ENET_RX_SH ((unsigned short)0x0008) +#define BD_ENET_RX_CR ((unsigned short)0x0004) +#define BD_ENET_RX_OV ((unsigned short)0x0002) +#define BD_ENET_RX_CL ((unsigned short)0x0001) +/* All status bits */ +#define BD_ENET_RX_STATS ((unsigned short)0x013f) + +/* Buffer descriptor control/status used by Ethernet transmit. +*/ +#define BD_ENET_TX_READY ((unsigned short)0x8000) +#define BD_ENET_TX_PAD ((unsigned short)0x4000) +#define BD_ENET_TX_WRAP ((unsigned short)0x2000) +#define BD_ENET_TX_INTR ((unsigned short)0x1000) +#define BD_ENET_TX_LAST ((unsigned short)0x0800) +#define BD_ENET_TX_TC ((unsigned short)0x0400) +#define BD_ENET_TX_DEF ((unsigned short)0x0200) +#define BD_ENET_TX_HB ((unsigned short)0x0100) +#define BD_ENET_TX_LC ((unsigned short)0x0080) +#define BD_ENET_TX_RL ((unsigned short)0x0040) +#define BD_ENET_TX_RCMASK ((unsigned short)0x003c) +#define BD_ENET_TX_UN ((unsigned short)0x0002) +#define BD_ENET_TX_CSL ((unsigned short)0x0001) +/* All status bits */ +#define BD_ENET_TX_STATS ((unsigned short)0x03ff) + +/*Copy from validation code */ +#define RX_BUFFER_SIZE 256 +#define TX_BUFFER_SIZE 256 +#define NUM_RXBDS 20 +#define NUM_TXBDS 20 + +#define TX_BD_R 0x8000 +#define TX_BD_TO1 0x4000 +#define TX_BD_W 0x2000 +#define TX_BD_TO2 0x1000 +#define TX_BD_L 0x0800 +#define TX_BD_TC 0x0400 + +#define TX_BD_INT 0x40000000 +#define TX_BD_TS 0x20000000 +#define TX_BD_PINS 0x10000000 +#define TX_BD_IINS 0x08000000 +#define TX_BD_TXE 0x00008000 +#define TX_BD_UE 0x00002000 +#define TX_BD_EE 0x00001000 +#define TX_BD_FE 0x00000800 +#define TX_BD_LCE 0x00000400 +#define TX_BD_OE 0x00000200 +#define TX_BD_TSE 0x00000100 +#define TX_BD_BDU 0x80000000 + +#define RX_BD_E 0x8000 +#define RX_BD_R01 0x4000 +#define RX_BD_W 0x2000 +#define RX_BD_R02 0x1000 +#define RX_BD_L 0x0800 +#define RX_BD_M 0x0100 +#define RX_BD_BC 0x0080 +#define RX_BD_MC 0x0040 +#define RX_BD_LG 0x0020 +#define RX_BD_NO 0x0010 +#define RX_BD_CR 0x0004 +#define RX_BD_OV 0x0002 +#define RX_BD_TR 0x0001 + +#define RX_BD_ME 0x80000000 +#define RX_BD_PE 0x04000000 +#define RX_BD_CE 0x02000000 +#define RX_BD_UC 0x01000000 +#define RX_BD_INT 0x00800000 +#define RX_BD_ICE 0x00000020 +#define RX_BD_PCR 0x00000010 +#define RX_BD_VLAN 0x00000004 +#define RX_BD_IPV6 0x00000002 +#define RX_BD_FRAG 0x00000001 +#define RX_BD_BDU 0x80000000 +/****************************************************************************/ + +/* Address Table size in bytes(2048 64bit entry ) */ +#define ESW_ATABLE_MEM_SIZE (2048*8) +/* How many 64-bit elements fit in the address table */ +#define ESW_ATABLE_MEM_NUM_ENTRIES (2048) +/* Address Table Maximum number of entries in each Slot */ +#define ATABLE_ENTRY_PER_SLOT 8 +/* log2(ATABLE_ENTRY_PER_SLOT)*/ +#define ATABLE_ENTRY_PER_SLOT_bits 3 +/* entry size in byte */ +#define ATABLE_ENTRY_SIZE 8 +/* slot size in byte */ +#define ATABLE_SLOT_SIZE (ATABLE_ENTRY_PER_SLOT * ATABLE_ENTRY_SIZE) +/* width of timestamp variable (bits) within address table entry */ +#define AT_DENTRY_TIMESTAMP_WIDTH 10 +/* number of bits for port number storage */ +#define AT_DENTRY_PORT_WIDTH 4 +/* number of bits for port bitmask number storage */ +#define AT_SENTRY_PORT_WIDTH 11 +/* address table static entry port bitmask start address bit */ +#define AT_SENTRY_PORTMASK_shift 21 +/* address table static entry priority start address bit */ +#define AT_SENTRY_PRIO_shift 18 +/* address table dynamic entry port start address bit */ +#define AT_DENTRY_PORT_shift 28 +/* address table dynamic entry timestamp start address bit */ +#define AT_DENTRY_TIME_shift 18 +/* address table entry record type start address bit */ +#define AT_ENTRY_TYPE_shift 17 +/* address table entry record type bit: 1 static, 0 dynamic */ +#define AT_ENTRY_TYPE_STATIC 1 +#define AT_ENTRY_TYPE_DYNAMIC 0 +/* address table entry record valid start address bit */ +#define AT_ENTRY_VALID_shift 16 +#define AT_ENTRY_RECORD_VALID 1 + + +/* return block corresponding to the 8 bit hash value calculated */ +#define GET_BLOCK_PTR(hash) (hash << 3) +#define AT_EXTRACT_TIMESTAMP(x) \ + ((x >> AT_DENTRY_TIME_shift) & ((1 << AT_DENTRY_TIMESTAMP_WIDTH)-1)) +#define AT_EXTRACT_PORT(x) \ + ((x >> AT_DENTRY_PORT_shift) & ((1 << AT_DENTRY_PORT_WIDTH)-1)) +#define TIMEDELTA(newtime, oldtime) \ + ((newtime - oldtime) & \ + ((1 << AT_DENTRY_TIMESTAMP_WIDTH)-1)) +/* increment time value respecting modulo. */ +#define TIMEINCREMENT(time) \ + ((time) = ((time)+1) & ((1 << AT_DENTRY_TIMESTAMP_WIDTH)-1)) +/* ------------------------------------------------------------------------- */ +/* Bit definitions and macros for MCF_ESW_REVISION */ +#define MCF_ESW_REVISION_CORE_REVISION(x) (((x)&0x0000FFFF)<<0) +#define MCF_ESW_REVISION_CUSTOMER_REVISION(x) (((x)&0x0000FFFF)<<16) + +/* Bit definitions and macros for MCF_ESW_PER */ +#define MCF_ESW_PER_TE0 (0x00000001) +#define MCF_ESW_PER_TE1 (0x00000002) +#define MCF_ESW_PER_TE2 (0x00000004) +#define MCF_ESW_PER_RE0 (0x00010000) +#define MCF_ESW_PER_RE1 (0x00020000) +#define MCF_ESW_PER_RE2 (0x00040000) + +/* Bit definitions and macros for MCF_ESW_VLANV */ +#define MCF_ESW_VLANV_VV0 (0x00000001) +#define MCF_ESW_VLANV_VV1 (0x00000002) +#define MCF_ESW_VLANV_VV2 (0x00000004) +#define MCF_ESW_VLANV_DU0 (0x00010000) +#define MCF_ESW_VLANV_DU1 (0x00020000) +#define MCF_ESW_VLANV_DU2 (0x00040000) + +/* Bit definitions and macros for MCF_ESW_DBCR */ +#define MCF_ESW_DBCR_P0 (0x00000001) +#define MCF_ESW_DBCR_P1 (0x00000002) +#define MCF_ESW_DBCR_P2 (0x00000004) + +/* Bit definitions and macros for MCF_ESW_DMCR */ +#define MCF_ESW_DMCR_P0 (0x00000001) +#define MCF_ESW_DMCR_P1 (0x00000002) +#define MCF_ESW_DMCR_P2 (0x00000004) + +/* Bit definitions and macros for MCF_ESW_BKLR */ +#define MCF_ESW_BKLR_BE0 (0x00000001) +#define MCF_ESW_BKLR_BE1 (0x00000002) +#define MCF_ESW_BKLR_BE2 (0x00000004) +#define MCF_ESW_BKLR_LD0 (0x00010000) +#define MCF_ESW_BKLR_LD1 (0x00020000) +#define MCF_ESW_BKLR_LD2 (0x00040000) + +/* Bit definitions and macros for MCF_ESW_BMPC */ +#define MCF_ESW_BMPC_PORT(x) (((x)&0x0000000F)<<0) +#define MCF_ESW_BMPC_MSG_TX (0x00000020) +#define MCF_ESW_BMPC_EN (0x00000040) +#define MCF_ESW_BMPC_DIS (0x00000080) +#define MCF_ESW_BMPC_PRIORITY(x) (((x)&0x00000007)<<13) +#define MCF_ESW_BMPC_PORTMASK(x) (((x)&0x00000007)<<16) + +/* Bit definitions and macros for MCF_ESW_MODE */ +#define MCF_ESW_MODE_SW_RST (0x00000001) +#define MCF_ESW_MODE_SW_EN (0x00000002) +#define MCF_ESW_MODE_STOP (0x00000080) +#define MCF_ESW_MODE_CRC_TRAN (0x00000100) +#define MCF_ESW_MODE_P0CT (0x00000200) +#define MCF_ESW_MODE_STATRST (0x80000000) + +/* Bit definitions and macros for MCF_ESW_VIMSEL */ +#define MCF_ESW_VIMSEL_IM0(x) (((x)&0x00000003)<<0) +#define MCF_ESW_VIMSEL_IM1(x) (((x)&0x00000003)<<2) +#define MCF_ESW_VIMSEL_IM2(x) (((x)&0x00000003)<<4) + +/* Bit definitions and macros for MCF_ESW_VOMSEL */ +#define MCF_ESW_VOMSEL_OM0(x) (((x)&0x00000003)<<0) +#define MCF_ESW_VOMSEL_OM1(x) (((x)&0x00000003)<<2) +#define MCF_ESW_VOMSEL_OM2(x) (((x)&0x00000003)<<4) + +/* Bit definitions and macros for MCF_ESW_VIMEN */ +#define MCF_ESW_VIMEN_EN0 (0x00000001) +#define MCF_ESW_VIMEN_EN1 (0x00000002) +#define MCF_ESW_VIMEN_EN2 (0x00000004) + +/* Bit definitions and macros for MCF_ESW_VID */ +#define MCF_ESW_VID_TAG(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_MCR */ +#define MCF_ESW_MCR_PORT(x) (((x)&0x0000000F)<<0) +#define MCF_ESW_MCR_MEN (0x00000010) +#define MCF_ESW_MCR_INGMAP (0x00000020) +#define MCF_ESW_MCR_EGMAP (0x00000040) +#define MCF_ESW_MCR_INGSA (0x00000080) +#define MCF_ESW_MCR_INGDA (0x00000100) +#define MCF_ESW_MCR_EGSA (0x00000200) +#define MCF_ESW_MCR_EGDA (0x00000400) + +/* Bit definitions and macros for MCF_ESW_EGMAP */ +#define MCF_ESW_EGMAP_EG0 (0x00000001) +#define MCF_ESW_EGMAP_EG1 (0x00000002) +#define MCF_ESW_EGMAP_EG2 (0x00000004) + +/* Bit definitions and macros for MCF_ESW_INGMAP */ +#define MCF_ESW_INGMAP_ING0 (0x00000001) +#define MCF_ESW_INGMAP_ING1 (0x00000002) +#define MCF_ESW_INGMAP_ING2 (0x00000004) + +/* Bit definitions and macros for MCF_ESW_INGSAL */ +#define MCF_ESW_INGSAL_ADDLOW(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_INGSAH */ +#define MCF_ESW_INGSAH_ADDHIGH(x) (((x)&0x0000FFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_INGDAL */ +#define MCF_ESW_INGDAL_ADDLOW(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_INGDAH */ +#define MCF_ESW_INGDAH_ADDHIGH(x) (((x)&0x0000FFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_ENGSAL */ +#define MCF_ESW_ENGSAL_ADDLOW(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_ENGSAH */ +#define MCF_ESW_ENGSAH_ADDHIGH(x) (((x)&0x0000FFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_ENGDAL */ +#define MCF_ESW_ENGDAL_ADDLOW(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_ENGDAH */ +#define MCF_ESW_ENGDAH_ADDHIGH(x) (((x)&0x0000FFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_MCVAL */ +#define MCF_ESW_MCVAL_COUNT(x) (((x)&0x000000FF)<<0) + +/* Bit definitions and macros for MCF_ESW_MMSR */ +#define MCF_ESW_MMSR_BUSY (0x00000001) +#define MCF_ESW_MMSR_NOCELL (0x00000002) +#define MCF_ESW_MMSR_MEMFULL (0x00000004) +#define MCF_ESW_MMSR_MFLATCH (0x00000008) +#define MCF_ESW_MMSR_DQ_GRNT (0x00000040) +#define MCF_ESW_MMSR_CELLS_AVAIL(x) (((x)&0x000000FF)<<16) + +/* Bit definitions and macros for MCF_ESW_LMT */ +#define MCF_ESW_LMT_THRESH(x) (((x)&0x000000FF)<<0) + +/* Bit definitions and macros for MCF_ESW_LFC */ +#define MCF_ESW_LFC_COUNT(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_PCSR */ +#define MCF_ESW_PCSR_PC0 (0x00000001) +#define MCF_ESW_PCSR_PC1 (0x00000002) +#define MCF_ESW_PCSR_PC2 (0x00000004) + +/* Bit definitions and macros for MCF_ESW_IOSR */ +#define MCF_ESW_IOSR_OR0 (0x00000001) +#define MCF_ESW_IOSR_OR1 (0x00000002) +#define MCF_ESW_IOSR_OR2 (0x00000004) + +/* Bit definitions and macros for MCF_ESW_QWT */ +#define MCF_ESW_QWT_Q0WT(x) (((x)&0x0000001F)<<0) +#define MCF_ESW_QWT_Q1WT(x) (((x)&0x0000001F)<<8) +#define MCF_ESW_QWT_Q2WT(x) (((x)&0x0000001F)<<16) +#define MCF_ESW_QWT_Q3WT(x) (((x)&0x0000001F)<<24) + +/* Bit definitions and macros for MCF_ESW_P0BCT */ +#define MCF_ESW_P0BCT_THRESH(x) (((x)&0x000000FF)<<0) + +/* Bit definitions and macros for MCF_ESW_P0FFEN */ +#define MCF_ESW_P0FFEN_FEN (0x00000001) +#define MCF_ESW_P0FFEN_FD(x) (((x)&0x00000003)<<2) + +/* Bit definitions and macros for MCF_ESW_PSNP */ +#define MCF_ESW_PSNP_EN (0x00000001) +#define MCF_ESW_PSNP_MODE(x) (((x)&0x00000003)<<1) +#define MCF_ESW_PSNP_CD (0x00000008) +#define MCF_ESW_PSNP_CS (0x00000010) +#define MCF_ESW_PSNP_PORT_COMPARE(x) (((x)&0x0000FFFF)<<16) + +/* Bit definitions and macros for MCF_ESW_IPSNP */ +#define MCF_ESW_IPSNP_EN (0x00000001) +#define MCF_ESW_IPSNP_MODE(x) (((x)&0x00000003)<<1) +#define MCF_ESW_IPSNP_PROTOCOL(x) (((x)&0x000000FF)<<8) + +/* Bit definitions and macros for MCF_ESW_PVRES */ +#define MCF_ESW_PVRES_PRI0(x) (((x)&0x00000007)<<0) +#define MCF_ESW_PVRES_PRI1(x) (((x)&0x00000007)<<3) +#define MCF_ESW_PVRES_PRI2(x) (((x)&0x00000007)<<6) +#define MCF_ESW_PVRES_PRI3(x) (((x)&0x00000007)<<9) +#define MCF_ESW_PVRES_PRI4(x) (((x)&0x00000007)<<12) +#define MCF_ESW_PVRES_PRI5(x) (((x)&0x00000007)<<15) +#define MCF_ESW_PVRES_PRI6(x) (((x)&0x00000007)<<18) +#define MCF_ESW_PVRES_PRI7(x) (((x)&0x00000007)<<21) + +/* Bit definitions and macros for MCF_ESW_IPRES */ +#define MCF_ESW_IPRES_ADDRESS(x) (((x)&0x000000FF)<<0) +#define MCF_ESW_IPRES_IPV4SEL (0x00000100) +#define MCF_ESW_IPRES_PRI0(x) (((x)&0x00000003)<<9) +#define MCF_ESW_IPRES_PRI1(x) (((x)&0x00000003)<<11) +#define MCF_ESW_IPRES_PRI2(x) (((x)&0x00000003)<<13) +#define MCF_ESW_IPRES_READ (0x80000000) + +/* Bit definitions and macros for MCF_ESW_PRES */ +#define MCF_ESW_PRES_VLAN (0x00000001) +#define MCF_ESW_PRES_IP (0x00000002) +#define MCF_ESW_PRES_MAC (0x00000004) +#define MCF_ESW_PRES_DFLT_PRI(x) (((x)&0x00000007)<<4) + +/* Bit definitions and macros for MCF_ESW_PID */ +#define MCF_ESW_PID_VLANID(x) (((x)&0x0000FFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_VRES */ +#define MCF_ESW_VRES_P0 (0x00000001) +#define MCF_ESW_VRES_P1 (0x00000002) +#define MCF_ESW_VRES_P2 (0x00000004) +#define MCF_ESW_VRES_VLANID(x) (((x)&0x00000FFF)<<3) + +/* Bit definitions and macros for MCF_ESW_DISCN */ +#define MCF_ESW_DISCN_COUNT(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_DISCB */ +#define MCF_ESW_DISCB_COUNT(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_NDISCN */ +#define MCF_ESW_NDISCN_COUNT(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_NDISCB */ +#define MCF_ESW_NDISCB_COUNT(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_POQC */ +#define MCF_ESW_POQC_COUNT(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_PMVID */ +#define MCF_ESW_PMVID_COUNT(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_PMVTAG */ +#define MCF_ESW_PMVTAG_COUNT(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_PBL */ +#define MCF_ESW_PBL_COUNT(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_ISR */ +#define MCF_ESW_ISR_EBERR (0x00000001) +#define MCF_ESW_ISR_RXB (0x00000002) +#define MCF_ESW_ISR_RXF (0x00000004) +#define MCF_ESW_ISR_TXB (0x00000008) +#define MCF_ESW_ISR_TXF (0x00000010) +#define MCF_ESW_ISR_QM (0x00000020) +#define MCF_ESW_ISR_OD0 (0x00000040) +#define MCF_ESW_ISR_OD1 (0x00000080) +#define MCF_ESW_ISR_OD2 (0x00000100) +#define MCF_ESW_ISR_LRN (0x00000200) + +/* Bit definitions and macros for MCF_ESW_IMR */ +#define MCF_ESW_IMR_EBERR (0x00000001) +#define MCF_ESW_IMR_RXB (0x00000002) +#define MCF_ESW_IMR_RXF (0x00000004) +#define MCF_ESW_IMR_TXB (0x00000008) +#define MCF_ESW_IMR_TXF (0x00000010) +#define MCF_ESW_IMR_QM (0x00000020) +#define MCF_ESW_IMR_OD0 (0x00000040) +#define MCF_ESW_IMR_OD1 (0x00000080) +#define MCF_ESW_IMR_OD2 (0x00000100) +#define MCF_ESW_IMR_LRN (0x00000200) + +/* Bit definitions and macros for MCF_ESW_RDSR */ +#define MCF_ESW_RDSR_ADDRESS(x) (((x)&0x3FFFFFFF)<<2) + +/* Bit definitions and macros for MCF_ESW_TDSR */ +#define MCF_ESW_TDSR_ADDRESS(x) (((x)&0x3FFFFFFF)<<2) + +/* Bit definitions and macros for MCF_ESW_MRBR */ +#define MCF_ESW_MRBR_SIZE(x) (((x)&0x000003FF)<<4) + +/* Bit definitions and macros for MCF_ESW_RDAR */ +#define MCF_ESW_RDAR_R_DES_ACTIVE (0x01000000) + +/* Bit definitions and macros for MCF_ESW_TDAR */ +#define MCF_ESW_TDAR_X_DES_ACTIVE (0x01000000) + +/* Bit definitions and macros for MCF_ESW_LREC0 */ +#define MCF_ESW_LREC0_MACADDR0(x) (((x)&0xFFFFFFFF)<<0) + +/* Bit definitions and macros for MCF_ESW_LREC1 */ +#define MCF_ESW_LREC1_MACADDR1(x) (((x)&0x0000FFFF)<<0) +#define MCF_ESW_LREC1_HASH(x) (((x)&0x000000FF)<<16) +#define MCF_ESW_LREC1_SWPORT(x) (((x)&0x00000003)<<24) + +/* Bit definitions and macros for MCF_ESW_LSR */ +#define MCF_ESW_LSR_DA (0x00000001) + +#endif /* SWITCH_H */ |