summaryrefslogtreecommitdiff
path: root/fs/btrfs/locking.c
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2009-03-17 16:21:20 +0100
committerIngo Molnar <mingo@elte.hu>2009-03-17 16:21:20 +0100
commit47239561e39bceefecc3cd67f71fcf86a198a8ff (patch)
tree9823d0973494ea8acabb744bc3aba42b610fb434 /fs/btrfs/locking.c
parented681a91ab805341675d166a9592551093c0a2d9 (diff)
parent5bee17f18b595937e6beafeee5197868a3f74a06 (diff)
Merge branch 'linus' into core/printk
Diffstat (limited to 'fs/btrfs/locking.c')
-rw-r--r--fs/btrfs/locking.c207
1 files changed, 173 insertions, 34 deletions
diff --git a/fs/btrfs/locking.c b/fs/btrfs/locking.c
index 39bae7761db6..47b0a88c12a2 100644
--- a/fs/btrfs/locking.c
+++ b/fs/btrfs/locking.c
@@ -25,64 +25,203 @@
#include "extent_io.h"
#include "locking.h"
+static inline void spin_nested(struct extent_buffer *eb)
+{
+ spin_lock(&eb->lock);
+}
+
/*
- * locks the per buffer mutex in an extent buffer. This uses adaptive locks
- * and the spin is not tuned very extensively. The spinning does make a big
- * difference in almost every workload, but spinning for the right amount of
- * time needs some help.
- *
- * In general, we want to spin as long as the lock holder is doing btree
- * searches, and we should give up if they are in more expensive code.
+ * Setting a lock to blocking will drop the spinlock and set the
+ * flag that forces other procs who want the lock to wait. After
+ * this you can safely schedule with the lock held.
*/
+void btrfs_set_lock_blocking(struct extent_buffer *eb)
+{
+ if (!test_bit(EXTENT_BUFFER_BLOCKING, &eb->bflags)) {
+ set_bit(EXTENT_BUFFER_BLOCKING, &eb->bflags);
+ spin_unlock(&eb->lock);
+ }
+ /* exit with the spin lock released and the bit set */
+}
-int btrfs_tree_lock(struct extent_buffer *eb)
+/*
+ * clearing the blocking flag will take the spinlock again.
+ * After this you can't safely schedule
+ */
+void btrfs_clear_lock_blocking(struct extent_buffer *eb)
{
- int i;
+ if (test_bit(EXTENT_BUFFER_BLOCKING, &eb->bflags)) {
+ spin_nested(eb);
+ clear_bit(EXTENT_BUFFER_BLOCKING, &eb->bflags);
+ smp_mb__after_clear_bit();
+ }
+ /* exit with the spin lock held */
+}
- if (mutex_trylock(&eb->mutex))
- return 0;
+/*
+ * unfortunately, many of the places that currently set a lock to blocking
+ * don't end up blocking for every long, and often they don't block
+ * at all. For a dbench 50 run, if we don't spin one the blocking bit
+ * at all, the context switch rate can jump up to 400,000/sec or more.
+ *
+ * So, we're still stuck with this crummy spin on the blocking bit,
+ * at least until the most common causes of the short blocks
+ * can be dealt with.
+ */
+static int btrfs_spin_on_block(struct extent_buffer *eb)
+{
+ int i;
for (i = 0; i < 512; i++) {
cpu_relax();
- if (mutex_trylock(&eb->mutex))
- return 0;
+ if (!test_bit(EXTENT_BUFFER_BLOCKING, &eb->bflags))
+ return 1;
+ if (need_resched())
+ break;
}
- cpu_relax();
- mutex_lock_nested(&eb->mutex, BTRFS_MAX_LEVEL - btrfs_header_level(eb));
return 0;
}
-int btrfs_try_tree_lock(struct extent_buffer *eb)
+/*
+ * This is somewhat different from trylock. It will take the
+ * spinlock but if it finds the lock is set to blocking, it will
+ * return without the lock held.
+ *
+ * returns 1 if it was able to take the lock and zero otherwise
+ *
+ * After this call, scheduling is not safe without first calling
+ * btrfs_set_lock_blocking()
+ */
+int btrfs_try_spin_lock(struct extent_buffer *eb)
{
- return mutex_trylock(&eb->mutex);
+ int i;
+
+ spin_nested(eb);
+ if (!test_bit(EXTENT_BUFFER_BLOCKING, &eb->bflags))
+ return 1;
+ spin_unlock(&eb->lock);
+
+ /* spin for a bit on the BLOCKING flag */
+ for (i = 0; i < 2; i++) {
+ if (!btrfs_spin_on_block(eb))
+ break;
+
+ spin_nested(eb);
+ if (!test_bit(EXTENT_BUFFER_BLOCKING, &eb->bflags))
+ return 1;
+ spin_unlock(&eb->lock);
+ }
+ return 0;
}
-int btrfs_tree_unlock(struct extent_buffer *eb)
+/*
+ * the autoremove wake function will return 0 if it tried to wake up
+ * a process that was already awake, which means that process won't
+ * count as an exclusive wakeup. The waitq code will continue waking
+ * procs until it finds one that was actually sleeping.
+ *
+ * For btrfs, this isn't quite what we want. We want a single proc
+ * to be notified that the lock is ready for taking. If that proc
+ * already happen to be awake, great, it will loop around and try for
+ * the lock.
+ *
+ * So, btrfs_wake_function always returns 1, even when the proc that we
+ * tried to wake up was already awake.
+ */
+static int btrfs_wake_function(wait_queue_t *wait, unsigned mode,
+ int sync, void *key)
{
- mutex_unlock(&eb->mutex);
- return 0;
+ autoremove_wake_function(wait, mode, sync, key);
+ return 1;
}
-int btrfs_tree_locked(struct extent_buffer *eb)
+/*
+ * returns with the extent buffer spinlocked.
+ *
+ * This will spin and/or wait as required to take the lock, and then
+ * return with the spinlock held.
+ *
+ * After this call, scheduling is not safe without first calling
+ * btrfs_set_lock_blocking()
+ */
+int btrfs_tree_lock(struct extent_buffer *eb)
{
- return mutex_is_locked(&eb->mutex);
+ DEFINE_WAIT(wait);
+ wait.func = btrfs_wake_function;
+
+ while(1) {
+ spin_nested(eb);
+
+ /* nobody is blocking, exit with the spinlock held */
+ if (!test_bit(EXTENT_BUFFER_BLOCKING, &eb->bflags))
+ return 0;
+
+ /*
+ * we have the spinlock, but the real owner is blocking.
+ * wait for them
+ */
+ spin_unlock(&eb->lock);
+
+ /*
+ * spin for a bit, and if the blocking flag goes away,
+ * loop around
+ */
+ if (btrfs_spin_on_block(eb))
+ continue;
+
+ prepare_to_wait_exclusive(&eb->lock_wq, &wait,
+ TASK_UNINTERRUPTIBLE);
+
+ if (test_bit(EXTENT_BUFFER_BLOCKING, &eb->bflags))
+ schedule();
+
+ finish_wait(&eb->lock_wq, &wait);
+ }
+ return 0;
}
/*
- * btrfs_search_slot uses this to decide if it should drop its locks
- * before doing something expensive like allocating free blocks for cow.
+ * Very quick trylock, this does not spin or schedule. It returns
+ * 1 with the spinlock held if it was able to take the lock, or it
+ * returns zero if it was unable to take the lock.
+ *
+ * After this call, scheduling is not safe without first calling
+ * btrfs_set_lock_blocking()
*/
-int btrfs_path_lock_waiting(struct btrfs_path *path, int level)
+int btrfs_try_tree_lock(struct extent_buffer *eb)
{
- int i;
- struct extent_buffer *eb;
- for (i = level; i <= level + 1 && i < BTRFS_MAX_LEVEL; i++) {
- eb = path->nodes[i];
- if (!eb)
- break;
- smp_mb();
- if (!list_empty(&eb->mutex.wait_list))
- return 1;
+ if (spin_trylock(&eb->lock)) {
+ if (test_bit(EXTENT_BUFFER_BLOCKING, &eb->bflags)) {
+ /*
+ * we've got the spinlock, but the real owner is
+ * blocking. Drop the spinlock and return failure
+ */
+ spin_unlock(&eb->lock);
+ return 0;
+ }
+ return 1;
}
+ /* someone else has the spinlock giveup */
return 0;
}
+int btrfs_tree_unlock(struct extent_buffer *eb)
+{
+ /*
+ * if we were a blocking owner, we don't have the spinlock held
+ * just clear the bit and look for waiters
+ */
+ if (test_and_clear_bit(EXTENT_BUFFER_BLOCKING, &eb->bflags))
+ smp_mb__after_clear_bit();
+ else
+ spin_unlock(&eb->lock);
+
+ if (waitqueue_active(&eb->lock_wq))
+ wake_up(&eb->lock_wq);
+ return 0;
+}
+
+void btrfs_assert_tree_locked(struct extent_buffer *eb)
+{
+ if (!test_bit(EXTENT_BUFFER_BLOCKING, &eb->bflags))
+ assert_spin_locked(&eb->lock);
+}