diff options
author | Ross Zwisler <ross.zwisler@linux.intel.com> | 2017-09-06 16:18:43 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-09-06 17:27:24 -0700 |
commit | 91d25ba8a6b0d810dc844cebeedc53029118ce3e (patch) | |
tree | c8cb66c28c7603cafab060bc57b55c0cef98c36e /fs/ext4/file.c | |
parent | e30331ff05f689f8f2faeb51664299c4d7841f15 (diff) |
dax: use common 4k zero page for dax mmap reads
When servicing mmap() reads from file holes the current DAX code
allocates a page cache page of all zeroes and places the struct page
pointer in the mapping->page_tree radix tree.
This has three major drawbacks:
1) It consumes memory unnecessarily. For every 4k page that is read via
a DAX mmap() over a hole, we allocate a new page cache page. This
means that if you read 1GiB worth of pages, you end up using 1GiB of
zeroed memory. This is easily visible by looking at the overall
memory consumption of the system or by looking at /proc/[pid]/smaps:
7f62e72b3000-7f63272b3000 rw-s 00000000 103:00 12 /root/dax/data
Size: 1048576 kB
Rss: 1048576 kB
Pss: 1048576 kB
Shared_Clean: 0 kB
Shared_Dirty: 0 kB
Private_Clean: 1048576 kB
Private_Dirty: 0 kB
Referenced: 1048576 kB
Anonymous: 0 kB
LazyFree: 0 kB
AnonHugePages: 0 kB
ShmemPmdMapped: 0 kB
Shared_Hugetlb: 0 kB
Private_Hugetlb: 0 kB
Swap: 0 kB
SwapPss: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
2) It is slower than using a common zero page because each page fault
has more work to do. Instead of just inserting a common zero page we
have to allocate a page cache page, zero it, and then insert it. Here
are the average latencies of dax_load_hole() as measured by ftrace on
a random test box:
Old method, using zeroed page cache pages: 3.4 us
New method, using the common 4k zero page: 0.8 us
This was the average latency over 1 GiB of sequential reads done by
this simple fio script:
[global]
size=1G
filename=/root/dax/data
fallocate=none
[io]
rw=read
ioengine=mmap
3) The fact that we had to check for both DAX exceptional entries and
for page cache pages in the radix tree made the DAX code more
complex.
Solve these issues by following the lead of the DAX PMD code and using a
common 4k zero page instead. As with the PMD code we will now insert a
DAX exceptional entry into the radix tree instead of a struct page
pointer which allows us to remove all the special casing in the DAX
code.
Note that we do still pretty aggressively check for regular pages in the
DAX radix tree, especially where we take action based on the bits set in
the page. If we ever find a regular page in our radix tree now that
most likely means that someone besides DAX is inserting pages (which has
happened lots of times in the past), and we want to find that out early
and fail loudly.
This solution also removes the extra memory consumption. Here is that
same /proc/[pid]/smaps after 1GiB of reading from a hole with the new
code:
7f2054a74000-7f2094a74000 rw-s 00000000 103:00 12 /root/dax/data
Size: 1048576 kB
Rss: 0 kB
Pss: 0 kB
Shared_Clean: 0 kB
Shared_Dirty: 0 kB
Private_Clean: 0 kB
Private_Dirty: 0 kB
Referenced: 0 kB
Anonymous: 0 kB
LazyFree: 0 kB
AnonHugePages: 0 kB
ShmemPmdMapped: 0 kB
Shared_Hugetlb: 0 kB
Private_Hugetlb: 0 kB
Swap: 0 kB
SwapPss: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
Overall system memory consumption is similarly improved.
Another major change is that we remove dax_pfn_mkwrite() from our fault
flow, and instead rely on the page fault itself to make the PTE dirty
and writeable. The following description from the patch adding the
vm_insert_mixed_mkwrite() call explains this a little more:
"To be able to use the common 4k zero page in DAX we need to have our
PTE fault path look more like our PMD fault path where a PTE entry
can be marked as dirty and writeable as it is first inserted rather
than waiting for a follow-up dax_pfn_mkwrite() =>
finish_mkwrite_fault() call.
Right now we can rely on having a dax_pfn_mkwrite() call because we
can distinguish between these two cases in do_wp_page():
case 1: 4k zero page => writable DAX storage
case 2: read-only DAX storage => writeable DAX storage
This distinction is made by via vm_normal_page(). vm_normal_page()
returns false for the common 4k zero page, though, just as it does
for DAX ptes. Instead of special casing the DAX + 4k zero page case
we will simplify our DAX PTE page fault sequence so that it matches
our DAX PMD sequence, and get rid of the dax_pfn_mkwrite() helper.
We will instead use dax_iomap_fault() to handle write-protection
faults.
This means that insert_pfn() needs to follow the lead of
insert_pfn_pmd() and allow us to pass in a 'mkwrite' flag. If
'mkwrite' is set insert_pfn() will do the work that was previously
done by wp_page_reuse() as part of the dax_pfn_mkwrite() call path"
Link: http://lkml.kernel.org/r/20170724170616.25810-4-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'fs/ext4/file.c')
-rw-r--r-- | fs/ext4/file.c | 32 |
1 files changed, 1 insertions, 31 deletions
diff --git a/fs/ext4/file.c b/fs/ext4/file.c index 0d7cf0cc9b87..f28ac999dfba 100644 --- a/fs/ext4/file.c +++ b/fs/ext4/file.c @@ -311,41 +311,11 @@ static int ext4_dax_fault(struct vm_fault *vmf) return ext4_dax_huge_fault(vmf, PE_SIZE_PTE); } -/* - * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault() - * handler we check for races agaist truncate. Note that since we cycle through - * i_mmap_sem, we are sure that also any hole punching that began before we - * were called is finished by now and so if it included part of the file we - * are working on, our pte will get unmapped and the check for pte_same() in - * wp_pfn_shared() fails. Thus fault gets retried and things work out as - * desired. - */ -static int ext4_dax_pfn_mkwrite(struct vm_fault *vmf) -{ - struct inode *inode = file_inode(vmf->vma->vm_file); - struct super_block *sb = inode->i_sb; - loff_t size; - int ret; - - sb_start_pagefault(sb); - file_update_time(vmf->vma->vm_file); - down_read(&EXT4_I(inode)->i_mmap_sem); - size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; - if (vmf->pgoff >= size) - ret = VM_FAULT_SIGBUS; - else - ret = dax_pfn_mkwrite(vmf); - up_read(&EXT4_I(inode)->i_mmap_sem); - sb_end_pagefault(sb); - - return ret; -} - static const struct vm_operations_struct ext4_dax_vm_ops = { .fault = ext4_dax_fault, .huge_fault = ext4_dax_huge_fault, .page_mkwrite = ext4_dax_fault, - .pfn_mkwrite = ext4_dax_pfn_mkwrite, + .pfn_mkwrite = ext4_dax_fault, }; #else #define ext4_dax_vm_ops ext4_file_vm_ops |