summaryrefslogtreecommitdiff
path: root/fs/namespace.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2012-08-01 10:26:23 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2012-08-01 10:26:23 -0700
commita0e881b7c189fa2bd76c024dbff91e79511c971d (patch)
tree0c801918565b08921d21aceee5b326f64d998f5f /fs/namespace.c
parenteff0d13f3823f35d70228cd151d2a2c89288ff32 (diff)
parentdbc6e0222d79e78925fe20733844a796a4b72cf9 (diff)
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull second vfs pile from Al Viro: "The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the deadlock reproduced by xfstests 068), symlink and hardlink restriction patches, plus assorted cleanups and fixes. Note that another fsfreeze deadlock (emergency thaw one) is *not* dealt with - the series by Fernando conflicts a lot with Jan's, breaks userland ABI (FIFREEZE semantics gets changed) and trades the deadlock for massive vfsmount leak; this is going to be handled next cycle. There probably will be another pull request, but that stuff won't be in it." Fix up trivial conflicts due to unrelated changes next to each other in drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c} * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits) delousing target_core_file a bit Documentation: Correct s_umount state for freeze_fs/unfreeze_fs fs: Remove old freezing mechanism ext2: Implement freezing btrfs: Convert to new freezing mechanism nilfs2: Convert to new freezing mechanism ntfs: Convert to new freezing mechanism fuse: Convert to new freezing mechanism gfs2: Convert to new freezing mechanism ocfs2: Convert to new freezing mechanism xfs: Convert to new freezing code ext4: Convert to new freezing mechanism fs: Protect write paths by sb_start_write - sb_end_write fs: Skip atime update on frozen filesystem fs: Add freezing handling to mnt_want_write() / mnt_drop_write() fs: Improve filesystem freezing handling switch the protection of percpu_counter list to spinlock nfsd: Push mnt_want_write() outside of i_mutex btrfs: Push mnt_want_write() outside of i_mutex fat: Push mnt_want_write() outside of i_mutex ...
Diffstat (limited to 'fs/namespace.c')
-rw-r--r--fs/namespace.c97
1 files changed, 77 insertions, 20 deletions
diff --git a/fs/namespace.c b/fs/namespace.c
index c53d3381b0d0..4d31f73e2561 100644
--- a/fs/namespace.c
+++ b/fs/namespace.c
@@ -283,24 +283,22 @@ static int mnt_is_readonly(struct vfsmount *mnt)
}
/*
- * Most r/o checks on a fs are for operations that take
- * discrete amounts of time, like a write() or unlink().
- * We must keep track of when those operations start
- * (for permission checks) and when they end, so that
- * we can determine when writes are able to occur to
- * a filesystem.
+ * Most r/o & frozen checks on a fs are for operations that take discrete
+ * amounts of time, like a write() or unlink(). We must keep track of when
+ * those operations start (for permission checks) and when they end, so that we
+ * can determine when writes are able to occur to a filesystem.
*/
/**
- * mnt_want_write - get write access to a mount
+ * __mnt_want_write - get write access to a mount without freeze protection
* @m: the mount on which to take a write
*
- * This tells the low-level filesystem that a write is
- * about to be performed to it, and makes sure that
- * writes are allowed before returning success. When
- * the write operation is finished, mnt_drop_write()
- * must be called. This is effectively a refcount.
+ * This tells the low-level filesystem that a write is about to be performed to
+ * it, and makes sure that writes are allowed (mnt it read-write) before
+ * returning success. This operation does not protect against filesystem being
+ * frozen. When the write operation is finished, __mnt_drop_write() must be
+ * called. This is effectively a refcount.
*/
-int mnt_want_write(struct vfsmount *m)
+int __mnt_want_write(struct vfsmount *m)
{
struct mount *mnt = real_mount(m);
int ret = 0;
@@ -326,6 +324,27 @@ int mnt_want_write(struct vfsmount *m)
ret = -EROFS;
}
preempt_enable();
+
+ return ret;
+}
+
+/**
+ * mnt_want_write - get write access to a mount
+ * @m: the mount on which to take a write
+ *
+ * This tells the low-level filesystem that a write is about to be performed to
+ * it, and makes sure that writes are allowed (mount is read-write, filesystem
+ * is not frozen) before returning success. When the write operation is
+ * finished, mnt_drop_write() must be called. This is effectively a refcount.
+ */
+int mnt_want_write(struct vfsmount *m)
+{
+ int ret;
+
+ sb_start_write(m->mnt_sb);
+ ret = __mnt_want_write(m);
+ if (ret)
+ sb_end_write(m->mnt_sb);
return ret;
}
EXPORT_SYMBOL_GPL(mnt_want_write);
@@ -355,38 +374,76 @@ int mnt_clone_write(struct vfsmount *mnt)
EXPORT_SYMBOL_GPL(mnt_clone_write);
/**
- * mnt_want_write_file - get write access to a file's mount
+ * __mnt_want_write_file - get write access to a file's mount
* @file: the file who's mount on which to take a write
*
- * This is like mnt_want_write, but it takes a file and can
+ * This is like __mnt_want_write, but it takes a file and can
* do some optimisations if the file is open for write already
*/
-int mnt_want_write_file(struct file *file)
+int __mnt_want_write_file(struct file *file)
{
struct inode *inode = file->f_dentry->d_inode;
+
if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
- return mnt_want_write(file->f_path.mnt);
+ return __mnt_want_write(file->f_path.mnt);
else
return mnt_clone_write(file->f_path.mnt);
}
+
+/**
+ * mnt_want_write_file - get write access to a file's mount
+ * @file: the file who's mount on which to take a write
+ *
+ * This is like mnt_want_write, but it takes a file and can
+ * do some optimisations if the file is open for write already
+ */
+int mnt_want_write_file(struct file *file)
+{
+ int ret;
+
+ sb_start_write(file->f_path.mnt->mnt_sb);
+ ret = __mnt_want_write_file(file);
+ if (ret)
+ sb_end_write(file->f_path.mnt->mnt_sb);
+ return ret;
+}
EXPORT_SYMBOL_GPL(mnt_want_write_file);
/**
- * mnt_drop_write - give up write access to a mount
+ * __mnt_drop_write - give up write access to a mount
* @mnt: the mount on which to give up write access
*
* Tells the low-level filesystem that we are done
* performing writes to it. Must be matched with
- * mnt_want_write() call above.
+ * __mnt_want_write() call above.
*/
-void mnt_drop_write(struct vfsmount *mnt)
+void __mnt_drop_write(struct vfsmount *mnt)
{
preempt_disable();
mnt_dec_writers(real_mount(mnt));
preempt_enable();
}
+
+/**
+ * mnt_drop_write - give up write access to a mount
+ * @mnt: the mount on which to give up write access
+ *
+ * Tells the low-level filesystem that we are done performing writes to it and
+ * also allows filesystem to be frozen again. Must be matched with
+ * mnt_want_write() call above.
+ */
+void mnt_drop_write(struct vfsmount *mnt)
+{
+ __mnt_drop_write(mnt);
+ sb_end_write(mnt->mnt_sb);
+}
EXPORT_SYMBOL_GPL(mnt_drop_write);
+void __mnt_drop_write_file(struct file *file)
+{
+ __mnt_drop_write(file->f_path.mnt);
+}
+
void mnt_drop_write_file(struct file *file)
{
mnt_drop_write(file->f_path.mnt);