summaryrefslogtreecommitdiff
path: root/fs/ubifs
diff options
context:
space:
mode:
authorArtem Bityutskiy <Artem.Bityutskiy@nokia.com>2011-05-26 08:58:19 +0300
committerArtem Bityutskiy <Artem.Bityutskiy@nokia.com>2011-06-01 12:29:06 +0300
commitda8b94ea61c5d80aae0cc7b7541f1e0fa7459391 (patch)
tree5d0b7c64b7f5afd9c9b2c528ed08e7d8a0d97859 /fs/ubifs
parentefcfde54ca68091b164f9aec544c7233a9760aff (diff)
UBIFS: fix recovery broken by the previous recovery fix
Unfortunately, the recovery fix d1606a59b6be4ea392eabd40d1250aa1eeb19efb (UBIFS: fix extremely rare mount failure) broke recovery. This commit make UBIFS drop the last min. I/O unit in all journal heads, but this is needed only for the GC head. And this does not work for non-GC heads. For example, if suppose we have min. I/O units A and B, and A contains a valid node X, which was fsynced, and then a group of nodes Y which spans the rest of A and B. In this case we'll drop not only Y, but also X, which is obviously incorrect. This patch fixes the issue and additionally makes recovery to drop last min. I/O unit only for the GC head, and leave things as they have been for ages for the other heads - this is safer. Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Diffstat (limited to 'fs/ubifs')
-rw-r--r--fs/ubifs/recovery.c152
1 files changed, 87 insertions, 65 deletions
diff --git a/fs/ubifs/recovery.c b/fs/ubifs/recovery.c
index 6adb5328a016..783d8e0beb76 100644
--- a/fs/ubifs/recovery.c
+++ b/fs/ubifs/recovery.c
@@ -564,19 +564,15 @@ static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
}
/**
- * drop_last_node - drop the last node or group of nodes.
+ * drop_last_group - drop the last group of nodes.
* @sleb: scanned LEB information
* @offs: offset of dropped nodes is returned here
- * @grouped: non-zero if whole group of nodes have to be dropped
*
* This is a helper function for 'ubifs_recover_leb()' which drops the last
- * node of the scanned LEB or the last group of nodes if @grouped is not zero.
- * This function returns %1 if a node was dropped and %0 otherwise.
+ * group of nodes of the scanned LEB.
*/
-static int drop_last_node(struct ubifs_scan_leb *sleb, int *offs, int grouped)
+static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
{
- int dropped = 0;
-
while (!list_empty(&sleb->nodes)) {
struct ubifs_scan_node *snod;
struct ubifs_ch *ch;
@@ -585,17 +581,40 @@ static int drop_last_node(struct ubifs_scan_leb *sleb, int *offs, int grouped)
list);
ch = snod->node;
if (ch->group_type != UBIFS_IN_NODE_GROUP)
- return dropped;
- dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
+ break;
+
+ dbg_rcvry("dropping grouped node at %d:%d",
+ sleb->lnum, snod->offs);
+ *offs = snod->offs;
+ list_del(&snod->list);
+ kfree(snod);
+ sleb->nodes_cnt -= 1;
+ }
+}
+
+/**
+ * drop_last_node - drop the last node.
+ * @sleb: scanned LEB information
+ * @offs: offset of dropped nodes is returned here
+ * @grouped: non-zero if whole group of nodes have to be dropped
+ *
+ * This is a helper function for 'ubifs_recover_leb()' which drops the last
+ * node of the scanned LEB.
+ */
+static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
+{
+ struct ubifs_scan_node *snod;
+
+ if (!list_empty(&sleb->nodes)) {
+ snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
+ list);
+
+ dbg_rcvry("dropping last node at %d:%d", sleb->lnum, snod->offs);
*offs = snod->offs;
list_del(&snod->list);
kfree(snod);
sleb->nodes_cnt -= 1;
- dropped = 1;
- if (!grouped)
- break;
}
- return dropped;
}
/**
@@ -697,59 +716,62 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
* If nodes are grouped, always drop the incomplete group at
* the end.
*/
- drop_last_node(sleb, &offs, 1);
+ drop_last_group(sleb, &offs);
- /*
- * While we are in the middle of the same min. I/O unit keep dropping
- * nodes. So basically, what we want is to make sure that the last min.
- * I/O unit where we saw the corruption is dropped completely with all
- * the uncorrupted nodes which may possibly sit there.
- *
- * In other words, let's name the min. I/O unit where the corruption
- * starts B, and the previous min. I/O unit A. The below code tries to
- * deal with a situation when half of B contains valid nodes or the end
- * of a valid node, and the second half of B contains corrupted data or
- * garbage. This means that UBIFS had been writing to B just before the
- * power cut happened. I do not know how realistic is this scenario
- * that half of the min. I/O unit had been written successfully and the
- * other half not, but this is possible in our 'failure mode emulation'
- * infrastructure at least.
- *
- * So what is the problem, why we need to drop those nodes? Whey can't
- * we just clean-up the second half of B by putting a padding node
- * there? We can, and this works fine with one exception which was
- * reproduced with power cut emulation testing and happens extremely
- * rarely. The description follows, but it is worth noting that that is
- * only about the GC head, so we could do this trick only if the bud
- * belongs to the GC head, but it does not seem to be worth an
- * additional "if" statement.
- *
- * So, imagine the file-system is full, we run GC which is moving valid
- * nodes from LEB X to LEB Y (obviously, LEB Y is the current GC head
- * LEB). The @c->gc_lnum is -1, which means that GC will retain LEB X
- * and will try to continue. Imagine that LEB X is currently the
- * dirtiest LEB, and the amount of used space in LEB Y is exactly the
- * same as amount of free space in LEB X.
- *
- * And a power cut happens when nodes are moved from LEB X to LEB Y. We
- * are here trying to recover LEB Y which is the GC head LEB. We find
- * the min. I/O unit B as described above. Then we clean-up LEB Y by
- * padding min. I/O unit. And later 'ubifs_rcvry_gc_commit()' function
- * fails, because it cannot find a dirty LEB which could be GC'd into
- * LEB Y! Even LEB X does not match because the amount of valid nodes
- * there does not fit the free space in LEB Y any more! And this is
- * because of the padding node which we added to LEB Y. The
- * user-visible effect of this which I once observed and analysed is
- * that we cannot mount the file-system with -ENOSPC error.
- *
- * So obviously, to make sure that situation does not happen we should
- * free min. I/O unit B in LEB Y completely and the last used min. I/O
- * unit in LEB Y should be A. This is basically what the below code
- * tries to do.
- */
- while (min_io_unit == round_down(offs, c->min_io_size) &&
- min_io_unit != offs &&
- drop_last_node(sleb, &offs, grouped));
+ if (jhead == GCHD) {
+ /*
+ * If this LEB belongs to the GC head then while we are in the
+ * middle of the same min. I/O unit keep dropping nodes. So
+ * basically, what we want is to make sure that the last min.
+ * I/O unit where we saw the corruption is dropped completely
+ * with all the uncorrupted nodes which may possibly sit there.
+ *
+ * In other words, let's name the min. I/O unit where the
+ * corruption starts B, and the previous min. I/O unit A. The
+ * below code tries to deal with a situation when half of B
+ * contains valid nodes or the end of a valid node, and the
+ * second half of B contains corrupted data or garbage. This
+ * means that UBIFS had been writing to B just before the power
+ * cut happened. I do not know how realistic is this scenario
+ * that half of the min. I/O unit had been written successfully
+ * and the other half not, but this is possible in our 'failure
+ * mode emulation' infrastructure at least.
+ *
+ * So what is the problem, why we need to drop those nodes? Why
+ * can't we just clean-up the second half of B by putting a
+ * padding node there? We can, and this works fine with one
+ * exception which was reproduced with power cut emulation
+ * testing and happens extremely rarely.
+ *
+ * Imagine the file-system is full, we run GC which starts
+ * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
+ * the current GC head LEB). The @c->gc_lnum is -1, which means
+ * that GC will retain LEB X and will try to continue. Imagine
+ * that LEB X is currently the dirtiest LEB, and the amount of
+ * used space in LEB Y is exactly the same as amount of free
+ * space in LEB X.
+ *
+ * And a power cut happens when nodes are moved from LEB X to
+ * LEB Y. We are here trying to recover LEB Y which is the GC
+ * head LEB. We find the min. I/O unit B as described above.
+ * Then we clean-up LEB Y by padding min. I/O unit. And later
+ * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
+ * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
+ * does not match because the amount of valid nodes there does
+ * not fit the free space in LEB Y any more! And this is
+ * because of the padding node which we added to LEB Y. The
+ * user-visible effect of this which I once observed and
+ * analysed is that we cannot mount the file-system with
+ * -ENOSPC error.
+ *
+ * So obviously, to make sure that situation does not happen we
+ * should free min. I/O unit B in LEB Y completely and the last
+ * used min. I/O unit in LEB Y should be A. This is basically
+ * what the below code tries to do.
+ */
+ while (offs > min_io_unit)
+ drop_last_node(sleb, &offs);
+ }
buf = sbuf + offs;
len = c->leb_size - offs;