summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_inode.c
diff options
context:
space:
mode:
authorBrian Foster <bfoster@redhat.com>2015-05-29 09:26:03 +1000
committerDave Chinner <david@fromorbit.com>2015-05-29 09:26:03 +1000
commit09b566041344fcfa9ae3c1b010f364137173894a (patch)
tree52ddfd42a56d6fb171e6034937fbd327ed99ca58 /fs/xfs/xfs_inode.c
parent10ae3dc7f221f9080af5f7f5de54925d6bd248d7 (diff)
xfs: skip unallocated regions of inode chunks in xfs_ifree_cluster()
xfs_ifree_cluster() is called to mark all in-memory inodes and inode buffers as stale. This occurs after we've removed the inobt records and dropped any references of inobt data. xfs_ifree_cluster() uses the starting inode number to walk the namespace of inodes expected for a single chunk a cluster buffer at a time. The cluster buffer disk addresses are calculated by decoding the sequential inode numbers expected from the chunk. The problem with this approach is that if the inode chunk being removed is a sparse chunk, not all of the buffer addresses that are calculated as part of this sequence may be inode clusters. Attempting to acquire the buffer based on expected inode characterstics (i.e., cluster length) can lead to errors and is generally incorrect. We already use a couple variables to carry requisite state from xfs_difree() to xfs_ifree_cluster(). Rather than add a third, define a new internal structure to carry the existing parameters through these functions. Add an alloc field that represents the physical allocation bitmap of inodes in the chunk being removed. Modify xfs_ifree_cluster() to check each inode against the bitmap and skip the clusters that were never allocated as real inodes on disk. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
Diffstat (limited to 'fs/xfs/xfs_inode.c')
-rw-r--r--fs/xfs/xfs_inode.c28
1 files changed, 20 insertions, 8 deletions
diff --git a/fs/xfs/xfs_inode.c b/fs/xfs/xfs_inode.c
index d6ebc85192b7..11a8c28c47bd 100644
--- a/fs/xfs/xfs_inode.c
+++ b/fs/xfs/xfs_inode.c
@@ -2239,9 +2239,9 @@ xfs_iunlink_remove(
*/
STATIC int
xfs_ifree_cluster(
- xfs_inode_t *free_ip,
- xfs_trans_t *tp,
- xfs_ino_t inum)
+ xfs_inode_t *free_ip,
+ xfs_trans_t *tp,
+ struct xfs_icluster *xic)
{
xfs_mount_t *mp = free_ip->i_mount;
int blks_per_cluster;
@@ -2254,13 +2254,26 @@ xfs_ifree_cluster(
xfs_inode_log_item_t *iip;
xfs_log_item_t *lip;
struct xfs_perag *pag;
+ xfs_ino_t inum;
+ inum = xic->first_ino;
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
blks_per_cluster = xfs_icluster_size_fsb(mp);
inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
nbufs = mp->m_ialloc_blks / blks_per_cluster;
for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
+ /*
+ * The allocation bitmap tells us which inodes of the chunk were
+ * physically allocated. Skip the cluster if an inode falls into
+ * a sparse region.
+ */
+ if ((xic->alloc & XFS_INOBT_MASK(inum - xic->first_ino)) == 0) {
+ ASSERT(((inum - xic->first_ino) %
+ inodes_per_cluster) == 0);
+ continue;
+ }
+
blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
XFS_INO_TO_AGBNO(mp, inum));
@@ -2418,8 +2431,7 @@ xfs_ifree(
xfs_bmap_free_t *flist)
{
int error;
- int delete;
- xfs_ino_t first_ino;
+ struct xfs_icluster xic = { 0 };
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
ASSERT(ip->i_d.di_nlink == 0);
@@ -2435,7 +2447,7 @@ xfs_ifree(
if (error)
return error;
- error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
+ error = xfs_difree(tp, ip->i_ino, flist, &xic);
if (error)
return error;
@@ -2452,8 +2464,8 @@ xfs_ifree(
ip->i_d.di_gen++;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
- if (delete)
- error = xfs_ifree_cluster(ip, tp, first_ino);
+ if (xic.deleted)
+ error = xfs_ifree_cluster(ip, tp, &xic);
return error;
}