summaryrefslogtreecommitdiff
path: root/include/linux/cpumask.h
diff options
context:
space:
mode:
authorPaul Turner <pjt@google.com>2020-03-10 18:01:13 -0700
committerPeter Zijlstra <peterz@infradead.org>2020-03-20 13:06:18 +0100
commit46a87b3851f0d6eb05e6d83d5c5a30df0eca8f76 (patch)
treeb98cf01a4a12e708f063c07788f7a3a7b41a93f2 /include/linux/cpumask.h
parentfe61468b2cbc2b7ce5f8d3bf32ae5001d4c434e9 (diff)
sched/core: Distribute tasks within affinity masks
Currently, when updating the affinity of tasks via either cpusets.cpus, or, sched_setaffinity(); tasks not currently running within the newly specified mask will be arbitrarily assigned to the first CPU within the mask. This (particularly in the case that we are restricting masks) can result in many tasks being assigned to the first CPUs of their new masks. This: 1) Can induce scheduling delays while the load-balancer has a chance to spread them between their new CPUs. 2) Can antogonize a poor load-balancer behavior where it has a difficult time recognizing that a cross-socket imbalance has been forced by an affinity mask. This change adds a new cpumask interface to allow iterated calls to distribute within the intersection of the provided masks. The cases that this mainly affects are: - modifying cpuset.cpus - when tasks join a cpuset - when modifying a task's affinity via sched_setaffinity(2) Signed-off-by: Paul Turner <pjt@google.com> Signed-off-by: Josh Don <joshdon@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Qais Yousef <qais.yousef@arm.com> Tested-by: Qais Yousef <qais.yousef@arm.com> Link: https://lkml.kernel.org/r/20200311010113.136465-1-joshdon@google.com
Diffstat (limited to 'include/linux/cpumask.h')
-rw-r--r--include/linux/cpumask.h7
1 files changed, 7 insertions, 0 deletions
diff --git a/include/linux/cpumask.h b/include/linux/cpumask.h
index d5cc88514aee..f0d895d6ac39 100644
--- a/include/linux/cpumask.h
+++ b/include/linux/cpumask.h
@@ -194,6 +194,11 @@ static inline unsigned int cpumask_local_spread(unsigned int i, int node)
return 0;
}
+static inline int cpumask_any_and_distribute(const struct cpumask *src1p,
+ const struct cpumask *src2p) {
+ return cpumask_next_and(-1, src1p, src2p);
+}
+
#define for_each_cpu(cpu, mask) \
for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
#define for_each_cpu_not(cpu, mask) \
@@ -245,6 +250,8 @@ static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
int cpumask_next_and(int n, const struct cpumask *, const struct cpumask *);
int cpumask_any_but(const struct cpumask *mask, unsigned int cpu);
unsigned int cpumask_local_spread(unsigned int i, int node);
+int cpumask_any_and_distribute(const struct cpumask *src1p,
+ const struct cpumask *src2p);
/**
* for_each_cpu - iterate over every cpu in a mask