diff options
author | Thomas Garnier <thgarnie@google.com> | 2016-05-19 17:10:37 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2016-05-19 19:12:14 -0700 |
commit | c7ce4f60ac199fb3521c5fcd64da21cee801ec2b (patch) | |
tree | 1fe6cb7f40f9907181c9ada69ff5348dfc5fbec4 /init | |
parent | 81ae6d03952c1bfb96e1a716809bd65e7cd14360 (diff) |
mm: SLAB freelist randomization
Provides an optional config (CONFIG_SLAB_FREELIST_RANDOM) to randomize
the SLAB freelist. The list is randomized during initialization of a
new set of pages. The order on different freelist sizes is pre-computed
at boot for performance. Each kmem_cache has its own randomized
freelist. Before pre-computed lists are available freelists are
generated dynamically. This security feature reduces the predictability
of the kernel SLAB allocator against heap overflows rendering attacks
much less stable.
For example this attack against SLUB (also applicable against SLAB)
would be affected:
https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
Also, since v4.6 the freelist was moved at the end of the SLAB. It
means a controllable heap is opened to new attacks not yet publicly
discussed. A kernel heap overflow can be transformed to multiple
use-after-free. This feature makes this type of attack harder too.
To generate entropy, we use get_random_bytes_arch because 0 bits of
entropy is available in the boot stage. In the worse case this function
will fallback to the get_random_bytes sub API. We also generate a shift
random number to shift pre-computed freelist for each new set of pages.
The config option name is not specific to the SLAB as this approach will
be extended to other allocators like SLUB.
Performance results highlighted no major changes:
Hackbench (running 90 10 times):
Before average: 0.0698
After average: 0.0663 (-5.01%)
slab_test 1 run on boot. Difference only seen on the 2048 size test
being the worse case scenario covered by freelist randomization. New
slab pages are constantly being created on the 10000 allocations.
Variance should be mainly due to getting new pages every few
allocations.
Before:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles
10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles
10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles
10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles
10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles
10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles
10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles
10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles
10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles
10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles
10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles
10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 121 cycles
10000 times kmalloc(16)/kfree -> 121 cycles
10000 times kmalloc(32)/kfree -> 121 cycles
10000 times kmalloc(64)/kfree -> 121 cycles
10000 times kmalloc(128)/kfree -> 121 cycles
10000 times kmalloc(256)/kfree -> 119 cycles
10000 times kmalloc(512)/kfree -> 119 cycles
10000 times kmalloc(1024)/kfree -> 119 cycles
10000 times kmalloc(2048)/kfree -> 119 cycles
10000 times kmalloc(4096)/kfree -> 121 cycles
10000 times kmalloc(8192)/kfree -> 119 cycles
10000 times kmalloc(16384)/kfree -> 119 cycles
After:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles
10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles
10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles
10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles
10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles
10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles
10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles
10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles
10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles
10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles
10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles
10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 121 cycles
10000 times kmalloc(16)/kfree -> 121 cycles
10000 times kmalloc(32)/kfree -> 123 cycles
10000 times kmalloc(64)/kfree -> 142 cycles
10000 times kmalloc(128)/kfree -> 121 cycles
10000 times kmalloc(256)/kfree -> 119 cycles
10000 times kmalloc(512)/kfree -> 119 cycles
10000 times kmalloc(1024)/kfree -> 119 cycles
10000 times kmalloc(2048)/kfree -> 119 cycles
10000 times kmalloc(4096)/kfree -> 119 cycles
10000 times kmalloc(8192)/kfree -> 119 cycles
10000 times kmalloc(16384)/kfree -> 119 cycles
[akpm@linux-foundation.org: propagate gfp_t into cache_random_seq_create()]
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'init')
-rw-r--r-- | init/Kconfig | 9 |
1 files changed, 9 insertions, 0 deletions
diff --git a/init/Kconfig b/init/Kconfig index 0dfd09d54c65..79a91a2c0444 100644 --- a/init/Kconfig +++ b/init/Kconfig @@ -1742,6 +1742,15 @@ config SLOB endchoice +config SLAB_FREELIST_RANDOM + default n + depends on SLAB + bool "SLAB freelist randomization" + help + Randomizes the freelist order used on creating new SLABs. This + security feature reduces the predictability of the kernel slab + allocator against heap overflows. + config SLUB_CPU_PARTIAL default y depends on SLUB && SMP |