summaryrefslogtreecommitdiff
path: root/kernel/rcutree_plugin.h
diff options
context:
space:
mode:
authorPaul E. McKenney <paulmck@linux.vnet.ibm.com>2010-04-01 17:37:01 -0700
committerPaul E. McKenney <paulmck@linux.vnet.ibm.com>2010-05-10 11:08:33 -0700
commit25502a6c13745f4650cc59322bd198194f55e796 (patch)
treed76cc659d3ea797c5da4630e219ac363d17c44a6 /kernel/rcutree_plugin.h
parent99652b54de1ee094236f7171485214071af4ef31 (diff)
rcu: refactor RCU's context-switch handling
The addition of preemptible RCU to treercu resulted in a bit of confusion and inefficiency surrounding the handling of context switches for RCU-sched and for RCU-preempt. For RCU-sched, a context switch is a quiescent state, pure and simple, just like it always has been. For RCU-preempt, a context switch is in no way a quiescent state, but special handling is required when a task blocks in an RCU read-side critical section. However, the callout from the scheduler and the outer loop in ksoftirqd still calls something named rcu_sched_qs(), whose name is no longer accurate. Furthermore, when rcu_check_callbacks() notes an RCU-sched quiescent state, it ends up unnecessarily (though harmlessly, aside from the performance hit) enqueuing the current task if it happens to be running in an RCU-preempt read-side critical section. This not only increases the maximum latency of scheduler_tick(), it also needlessly increases the overhead of the next outermost rcu_read_unlock() invocation. This patch addresses this situation by separating the notion of RCU's context-switch handling from that of RCU-sched's quiescent states. The context-switch handling is covered by rcu_note_context_switch() in general and by rcu_preempt_note_context_switch() for preemptible RCU. This permits rcu_sched_qs() to handle quiescent states and only quiescent states. It also reduces the maximum latency of scheduler_tick(), though probably by much less than a microsecond. Finally, it means that tasks within preemptible-RCU read-side critical sections avoid incurring the overhead of queuing unless there really is a context switch. Suggested-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org>
Diffstat (limited to 'kernel/rcutree_plugin.h')
-rw-r--r--kernel/rcutree_plugin.h11
1 files changed, 7 insertions, 4 deletions
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h
index 687c4e90722e..f9bc83a047da 100644
--- a/kernel/rcutree_plugin.h
+++ b/kernel/rcutree_plugin.h
@@ -75,13 +75,19 @@ EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
* that this just means that the task currently running on the CPU is
* not in a quiescent state. There might be any number of tasks blocked
* while in an RCU read-side critical section.
+ *
+ * Unlike the other rcu_*_qs() functions, callers to this function
+ * must disable irqs in order to protect the assignment to
+ * ->rcu_read_unlock_special.
*/
static void rcu_preempt_qs(int cpu)
{
struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
+
rdp->passed_quiesc_completed = rdp->gpnum - 1;
barrier();
rdp->passed_quiesc = 1;
+ current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
}
/*
@@ -144,9 +150,8 @@ static void rcu_preempt_note_context_switch(int cpu)
* grace period, then the fact that the task has been enqueued
* means that we continue to block the current grace period.
*/
- rcu_preempt_qs(cpu);
local_irq_save(flags);
- t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
+ rcu_preempt_qs(cpu);
local_irq_restore(flags);
}
@@ -236,7 +241,6 @@ static void rcu_read_unlock_special(struct task_struct *t)
*/
special = t->rcu_read_unlock_special;
if (special & RCU_READ_UNLOCK_NEED_QS) {
- t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
rcu_preempt_qs(smp_processor_id());
}
@@ -473,7 +477,6 @@ static void rcu_preempt_check_callbacks(int cpu)
struct task_struct *t = current;
if (t->rcu_read_lock_nesting == 0) {
- t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
rcu_preempt_qs(cpu);
return;
}