diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2009-09-11 13:23:18 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2009-09-11 13:23:18 -0700 |
commit | 774a694f8cd08115d130a290d73c6d8563f26b1b (patch) | |
tree | 2b5f834ac7a149278d2a7e44d7afe69f40ef1431 /kernel | |
parent | 4f0ac854167846bd55cd81dbc9a36e03708aa01c (diff) | |
parent | e1f8450854d69f0291882804406ea1bab3ca44b4 (diff) |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (64 commits)
sched: Fix sched::sched_stat_wait tracepoint field
sched: Disable NEW_FAIR_SLEEPERS for now
sched: Keep kthreads at default priority
sched: Re-tune the scheduler latency defaults to decrease worst-case latencies
sched: Turn off child_runs_first
sched: Ensure that a child can't gain time over it's parent after fork()
sched: enable SD_WAKE_IDLE
sched: Deal with low-load in wake_affine()
sched: Remove short cut from select_task_rq_fair()
sched: Turn on SD_BALANCE_NEWIDLE
sched: Clean up topology.h
sched: Fix dynamic power-balancing crash
sched: Remove reciprocal for cpu_power
sched: Try to deal with low capacity, fix update_sd_power_savings_stats()
sched: Try to deal with low capacity
sched: Scale down cpu_power due to RT tasks
sched: Implement dynamic cpu_power
sched: Add smt_gain
sched: Update the cpu_power sum during load-balance
sched: Add SD_PREFER_SIBLING
...
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/kthread.c | 4 | ||||
-rw-r--r-- | kernel/sched.c | 1099 | ||||
-rw-r--r-- | kernel/sched_cpupri.c | 30 | ||||
-rw-r--r-- | kernel/sched_debug.c | 4 | ||||
-rw-r--r-- | kernel/sched_fair.c | 84 | ||||
-rw-r--r-- | kernel/sched_features.h | 2 | ||||
-rw-r--r-- | kernel/sched_rt.c | 62 | ||||
-rw-r--r-- | kernel/sysctl.c | 24 | ||||
-rw-r--r-- | kernel/workqueue.c | 2 |
9 files changed, 826 insertions, 485 deletions
diff --git a/kernel/kthread.c b/kernel/kthread.c index eb8751aa0418..5fe709982caa 100644 --- a/kernel/kthread.c +++ b/kernel/kthread.c @@ -16,8 +16,6 @@ #include <linux/mutex.h> #include <trace/events/sched.h> -#define KTHREAD_NICE_LEVEL (-5) - static DEFINE_SPINLOCK(kthread_create_lock); static LIST_HEAD(kthread_create_list); struct task_struct *kthreadd_task; @@ -145,7 +143,6 @@ struct task_struct *kthread_create(int (*threadfn)(void *data), * The kernel thread should not inherit these properties. */ sched_setscheduler_nocheck(create.result, SCHED_NORMAL, ¶m); - set_user_nice(create.result, KTHREAD_NICE_LEVEL); set_cpus_allowed_ptr(create.result, cpu_all_mask); } return create.result; @@ -221,7 +218,6 @@ int kthreadd(void *unused) /* Setup a clean context for our children to inherit. */ set_task_comm(tsk, "kthreadd"); ignore_signals(tsk); - set_user_nice(tsk, KTHREAD_NICE_LEVEL); set_cpus_allowed_ptr(tsk, cpu_all_mask); set_mems_allowed(node_possible_map); diff --git a/kernel/sched.c b/kernel/sched.c index 4066241ae9f4..e27a53685ed9 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -64,7 +64,6 @@ #include <linux/tsacct_kern.h> #include <linux/kprobes.h> #include <linux/delayacct.h> -#include <linux/reciprocal_div.h> #include <linux/unistd.h> #include <linux/pagemap.h> #include <linux/hrtimer.h> @@ -120,30 +119,8 @@ */ #define RUNTIME_INF ((u64)~0ULL) -#ifdef CONFIG_SMP - static void double_rq_lock(struct rq *rq1, struct rq *rq2); -/* - * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) - * Since cpu_power is a 'constant', we can use a reciprocal divide. - */ -static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) -{ - return reciprocal_divide(load, sg->reciprocal_cpu_power); -} - -/* - * Each time a sched group cpu_power is changed, - * we must compute its reciprocal value - */ -static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) -{ - sg->__cpu_power += val; - sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); -} -#endif - static inline int rt_policy(int policy) { if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) @@ -309,8 +286,8 @@ void set_tg_uid(struct user_struct *user) /* * Root task group. - * Every UID task group (including init_task_group aka UID-0) will - * be a child to this group. + * Every UID task group (including init_task_group aka UID-0) will + * be a child to this group. */ struct task_group root_task_group; @@ -318,7 +295,7 @@ struct task_group root_task_group; /* Default task group's sched entity on each cpu */ static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); /* Default task group's cfs_rq on each cpu */ -static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; +static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp; #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED @@ -616,6 +593,7 @@ struct rq { unsigned char idle_at_tick; /* For active balancing */ + int post_schedule; int active_balance; int push_cpu; /* cpu of this runqueue: */ @@ -626,6 +604,9 @@ struct rq { struct task_struct *migration_thread; struct list_head migration_queue; + + u64 rt_avg; + u64 age_stamp; #endif /* calc_load related fields */ @@ -693,6 +674,7 @@ static inline int cpu_of(struct rq *rq) #define this_rq() (&__get_cpu_var(runqueues)) #define task_rq(p) cpu_rq(task_cpu(p)) #define cpu_curr(cpu) (cpu_rq(cpu)->curr) +#define raw_rq() (&__raw_get_cpu_var(runqueues)) inline void update_rq_clock(struct rq *rq) { @@ -861,6 +843,14 @@ unsigned int sysctl_sched_shares_ratelimit = 250000; unsigned int sysctl_sched_shares_thresh = 4; /* + * period over which we average the RT time consumption, measured + * in ms. + * + * default: 1s + */ +const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; + +/* * period over which we measure -rt task cpu usage in us. * default: 1s */ @@ -1278,12 +1268,37 @@ void wake_up_idle_cpu(int cpu) } #endif /* CONFIG_NO_HZ */ +static u64 sched_avg_period(void) +{ + return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; +} + +static void sched_avg_update(struct rq *rq) +{ + s64 period = sched_avg_period(); + + while ((s64)(rq->clock - rq->age_stamp) > period) { + rq->age_stamp += period; + rq->rt_avg /= 2; + } +} + +static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) +{ + rq->rt_avg += rt_delta; + sched_avg_update(rq); +} + #else /* !CONFIG_SMP */ static void resched_task(struct task_struct *p) { assert_spin_locked(&task_rq(p)->lock); set_tsk_need_resched(p); } + +static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) +{ +} #endif /* CONFIG_SMP */ #if BITS_PER_LONG == 32 @@ -1513,28 +1528,35 @@ static unsigned long cpu_avg_load_per_task(int cpu) #ifdef CONFIG_FAIR_GROUP_SCHED +struct update_shares_data { + unsigned long rq_weight[NR_CPUS]; +}; + +static DEFINE_PER_CPU(struct update_shares_data, update_shares_data); + static void __set_se_shares(struct sched_entity *se, unsigned long shares); /* * Calculate and set the cpu's group shares. */ -static void -update_group_shares_cpu(struct task_group *tg, int cpu, - unsigned long sd_shares, unsigned long sd_rq_weight) +static void update_group_shares_cpu(struct task_group *tg, int cpu, + unsigned long sd_shares, + unsigned long sd_rq_weight, + struct update_shares_data *usd) { - unsigned long shares; - unsigned long rq_weight; + unsigned long shares, rq_weight; + int boost = 0; - if (!tg->se[cpu]) - return; - - rq_weight = tg->cfs_rq[cpu]->rq_weight; + rq_weight = usd->rq_weight[cpu]; + if (!rq_weight) { + boost = 1; + rq_weight = NICE_0_LOAD; + } /* - * \Sum shares * rq_weight - * shares = ----------------------- - * \Sum rq_weight - * + * \Sum_j shares_j * rq_weight_i + * shares_i = ----------------------------- + * \Sum_j rq_weight_j */ shares = (sd_shares * rq_weight) / sd_rq_weight; shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); @@ -1545,8 +1567,8 @@ update_group_shares_cpu(struct task_group *tg, int cpu, unsigned long flags; spin_lock_irqsave(&rq->lock, flags); - tg->cfs_rq[cpu]->shares = shares; - + tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; + tg->cfs_rq[cpu]->shares = boost ? 0 : shares; __set_se_shares(tg->se[cpu], shares); spin_unlock_irqrestore(&rq->lock, flags); } @@ -1559,22 +1581,30 @@ update_group_shares_cpu(struct task_group *tg, int cpu, */ static int tg_shares_up(struct task_group *tg, void *data) { - unsigned long weight, rq_weight = 0; - unsigned long shares = 0; + unsigned long weight, rq_weight = 0, shares = 0; + struct update_shares_data *usd; struct sched_domain *sd = data; + unsigned long flags; int i; + if (!tg->se[0]) + return 0; + + local_irq_save(flags); + usd = &__get_cpu_var(update_shares_data); + for_each_cpu(i, sched_domain_span(sd)) { + weight = tg->cfs_rq[i]->load.weight; + usd->rq_weight[i] = weight; + /* * If there are currently no tasks on the cpu pretend there * is one of average load so that when a new task gets to * run here it will not get delayed by group starvation. */ - weight = tg->cfs_rq[i]->load.weight; if (!weight) weight = NICE_0_LOAD; - tg->cfs_rq[i]->rq_weight = weight; rq_weight += weight; shares += tg->cfs_rq[i]->shares; } @@ -1586,7 +1616,9 @@ static int tg_shares_up(struct task_group *tg, void *data) shares = tg->shares; for_each_cpu(i, sched_domain_span(sd)) - update_group_shares_cpu(tg, i, shares, rq_weight); + update_group_shares_cpu(tg, i, shares, rq_weight, usd); + + local_irq_restore(flags); return 0; } @@ -1616,8 +1648,14 @@ static int tg_load_down(struct task_group *tg, void *data) static void update_shares(struct sched_domain *sd) { - u64 now = cpu_clock(raw_smp_processor_id()); - s64 elapsed = now - sd->last_update; + s64 elapsed; + u64 now; + + if (root_task_group_empty()) + return; + + now = cpu_clock(raw_smp_processor_id()); + elapsed = now - sd->last_update; if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { sd->last_update = now; @@ -1627,6 +1665,9 @@ static void update_shares(struct sched_domain *sd) static void update_shares_locked(struct rq *rq, struct sched_domain *sd) { + if (root_task_group_empty()) + return; + spin_unlock(&rq->lock); update_shares(sd); spin_lock(&rq->lock); @@ -1634,6 +1675,9 @@ static void update_shares_locked(struct rq *rq, struct sched_domain *sd) static void update_h_load(long cpu) { + if (root_task_group_empty()) + return; + walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); } @@ -2268,8 +2312,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) } /* Adjust by relative CPU power of the group */ - avg_load = sg_div_cpu_power(group, - avg_load * SCHED_LOAD_SCALE); + avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; if (local_group) { this_load = avg_load; @@ -2637,9 +2680,32 @@ void sched_fork(struct task_struct *p, int clone_flags) set_task_cpu(p, cpu); /* - * Make sure we do not leak PI boosting priority to the child: + * Make sure we do not leak PI boosting priority to the child. */ p->prio = current->normal_prio; + + /* + * Revert to default priority/policy on fork if requested. + */ + if (unlikely(p->sched_reset_on_fork)) { + if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) + p->policy = SCHED_NORMAL; + + if (p->normal_prio < DEFAULT_PRIO) + p->prio = DEFAULT_PRIO; + + if (PRIO_TO_NICE(p->static_prio) < 0) { + p->static_prio = NICE_TO_PRIO(0); + set_load_weight(p); + } + + /* + * We don't need the reset flag anymore after the fork. It has + * fulfilled its duty: + */ + p->sched_reset_on_fork = 0; + } + if (!rt_prio(p->prio)) p->sched_class = &fair_sched_class; @@ -2796,12 +2862,6 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) { struct mm_struct *mm = rq->prev_mm; long prev_state; -#ifdef CONFIG_SMP - int post_schedule = 0; - - if (current->sched_class->needs_post_schedule) - post_schedule = current->sched_class->needs_post_schedule(rq); -#endif rq->prev_mm = NULL; @@ -2820,10 +2880,6 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) finish_arch_switch(prev); perf_counter_task_sched_in(current, cpu_of(rq)); finish_lock_switch(rq, prev); -#ifdef CONFIG_SMP - if (post_schedule) - current->sched_class->post_schedule(rq); -#endif fire_sched_in_preempt_notifiers(current); if (mm) @@ -2838,6 +2894,42 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) } } +#ifdef CONFIG_SMP + +/* assumes rq->lock is held */ +static inline void pre_schedule(struct rq *rq, struct task_struct *prev) +{ + if (prev->sched_class->pre_schedule) + prev->sched_class->pre_schedule(rq, prev); +} + +/* rq->lock is NOT held, but preemption is disabled */ +static inline void post_schedule(struct rq *rq) +{ + if (rq->post_schedule) { + unsigned long flags; + + spin_lock_irqsave(&rq->lock, flags); + if (rq->curr->sched_class->post_schedule) + rq->curr->sched_class->post_schedule(rq); + spin_unlock_irqrestore(&rq->lock, flags); + + rq->post_schedule = 0; + } +} + +#else + +static inline void pre_schedule(struct rq *rq, struct task_struct *p) +{ +} + +static inline void post_schedule(struct rq *rq) +{ +} + +#endif + /** * schedule_tail - first thing a freshly forked thread must call. * @prev: the thread we just switched away from. @@ -2848,6 +2940,13 @@ asmlinkage void schedule_tail(struct task_struct *prev) struct rq *rq = this_rq(); finish_task_switch(rq, prev); + + /* + * FIXME: do we need to worry about rq being invalidated by the + * task_switch? + */ + post_schedule(rq); + #ifdef __ARCH_WANT_UNLOCKED_CTXSW /* In this case, finish_task_switch does not reenable preemption */ preempt_enable(); @@ -3379,9 +3478,10 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, { const struct sched_class *class; - for (class = sched_class_highest; class; class = class->next) + for_each_class(class) { if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) return 1; + } return 0; } @@ -3544,7 +3644,7 @@ static inline void update_sd_power_savings_stats(struct sched_group *group, * capacity but still has some space to pick up some load * from other group and save more power */ - if (sgs->sum_nr_running > sgs->group_capacity - 1) + if (sgs->sum_nr_running + 1 > sgs->group_capacity) return; if (sgs->sum_nr_running > sds->leader_nr_running || @@ -3611,6 +3711,77 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, } #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ +unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) +{ + unsigned long weight = cpumask_weight(sched_domain_span(sd)); + unsigned long smt_gain = sd->smt_gain; + + smt_gain /= weight; + + return smt_gain; +} + +unsigned long scale_rt_power(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + u64 total, available; + + sched_avg_update(rq); + + total = sched_avg_period() + (rq->clock - rq->age_stamp); + available = total - rq->rt_avg; + + if (unlikely((s64)total < SCHED_LOAD_SCALE)) + total = SCHED_LOAD_SCALE; + + total >>= SCHED_LOAD_SHIFT; + + return div_u64(available, total); +} + +static void update_cpu_power(struct sched_domain *sd, int cpu) +{ + unsigned long weight = cpumask_weight(sched_domain_span(sd)); + unsigned long power = SCHED_LOAD_SCALE; + struct sched_group *sdg = sd->groups; + + /* here we could scale based on cpufreq */ + + if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { + power *= arch_scale_smt_power(sd, cpu); + power >>= SCHED_LOAD_SHIFT; + } + + power *= scale_rt_power(cpu); + power >>= SCHED_LOAD_SHIFT; + + if (!power) + power = 1; + + sdg->cpu_power = power; +} + +static void update_group_power(struct sched_domain *sd, int cpu) +{ + struct sched_domain *child = sd->child; + struct sched_group *group, *sdg = sd->groups; + unsigned long power; + + if (!child) { + update_cpu_power(sd, cpu); + return; + } + + power = 0; + + group = child->groups; + do { + power += group->cpu_power; + group = group->next; + } while (group != child->groups); + + sdg->cpu_power = power; +} /** * update_sg_lb_stats - Update sched_group's statistics for load balancing. @@ -3624,7 +3795,8 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, * @balance: Should we balance. * @sgs: variable to hold the statistics for this group. */ -static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, +static inline void update_sg_lb_stats(struct sched_domain *sd, + struct sched_group *group, int this_cpu, enum cpu_idle_type idle, int load_idx, int *sd_idle, int local_group, const struct cpumask *cpus, int *balance, struct sg_lb_stats *sgs) @@ -3635,8 +3807,11 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, unsigned long sum_avg_load_per_task; unsigned long avg_load_per_task; - if (local_group) + if (local_group) { balance_cpu = group_first_cpu(group); + if (balance_cpu == this_cpu) + update_group_power(sd, this_cpu); + } /* Tally up the load of all CPUs in the group */ sum_avg_load_per_task = avg_load_per_task = 0; @@ -3685,8 +3860,7 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, } /* Adjust by relative CPU power of the group */ - sgs->avg_load = sg_div_cpu_power(group, - sgs->group_load * SCHED_LOAD_SCALE); + sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; /* @@ -3698,14 +3872,14 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, * normalized nr_running number somewhere that negates * the hierarchy? */ - avg_load_per_task = sg_div_cpu_power(group, - sum_avg_load_per_task * SCHED_LOAD_SCALE); + avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / + group->cpu_power; if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) sgs->group_imb = 1; - sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; - + sgs->group_capacity = + DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); } /** @@ -3723,9 +3897,13 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, const struct cpumask *cpus, int *balance, struct sd_lb_stats *sds) { + struct sched_domain *child = sd->child; struct sched_group *group = sd->groups; struct sg_lb_stats sgs; - int load_idx; + int load_idx, prefer_sibling = 0; + + if (child && child->flags & SD_PREFER_SIBLING) + prefer_sibling = 1; init_sd_power_savings_stats(sd, sds, idle); load_idx = get_sd_load_idx(sd, idle); @@ -3736,14 +3914,22 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(group)); memset(&sgs, 0, sizeof(sgs)); - update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, + update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, local_group, cpus, balance, &sgs); if (local_group && balance && !(*balance)) return; sds->total_load += sgs.group_load; - sds->total_pwr += group->__cpu_power; + sds->total_pwr += group->cpu_power; + + /* + * In case the child domain prefers tasks go to siblings + * first, lower the group capacity to one so that we'll try + * and move all the excess tasks away. + */ + if (prefer_sibling) + sgs.group_capacity = min(sgs.group_capacity, 1UL); if (local_group) { sds->this_load = sgs.avg_load; @@ -3763,7 +3949,6 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, update_sd_power_savings_stats(group, sds, local_group, &sgs); group = group->next; } while (group != sd->groups); - } /** @@ -3801,28 +3986,28 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds, * moving them. */ - pwr_now += sds->busiest->__cpu_power * + pwr_now += sds->busiest->cpu_power * min(sds->busiest_load_per_task, sds->max_load); - pwr_now += sds->this->__cpu_power * + pwr_now += sds->this->cpu_power * min(sds->this_load_per_task, sds->this_load); pwr_now /= SCHED_LOAD_SCALE; /* Amount of load we'd subtract */ - tmp = sg_div_cpu_power(sds->busiest, - sds->busiest_load_per_task * SCHED_LOAD_SCALE); + tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / + sds->busiest->cpu_power; if (sds->max_load > tmp) - pwr_move += sds->busiest->__cpu_power * + pwr_move += sds->busiest->cpu_power * min(sds->busiest_load_per_task, sds->max_load - tmp); /* Amount of load we'd add */ - if (sds->max_load * sds->busiest->__cpu_power < + if (sds->max_load * sds->busiest->cpu_power < sds->busiest_load_per_task * SCHED_LOAD_SCALE) - tmp = sg_div_cpu_power(sds->this, - sds->max_load * sds->busiest->__cpu_power); + tmp = (sds->max_load * sds->busiest->cpu_power) / + sds->this->cpu_power; else - tmp = sg_div_cpu_power(sds->this, - sds->busiest_load_per_task * SCHED_LOAD_SCALE); - pwr_move += sds->this->__cpu_power * + tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / + sds->this->cpu_power; + pwr_move += sds->this->cpu_power * min(sds->this_load_per_task, sds->this_load + tmp); pwr_move /= SCHED_LOAD_SCALE; @@ -3857,8 +4042,8 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, sds->max_load - sds->busiest_load_per_task); /* How much load to actually move to equalise the imbalance */ - *imbalance = min(max_pull * sds->busiest->__cpu_power, - (sds->avg_load - sds->this_load) * sds->this->__cpu_power) + *imbalance = min(max_pull * sds->busiest->cpu_power, + (sds->avg_load - sds->this_load) * sds->this->cpu_power) / SCHED_LOAD_SCALE; /* @@ -3976,6 +4161,26 @@ ret: return NULL; } +static struct sched_group *group_of(int cpu) +{ + struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); + + if (!sd) + return NULL; + + return sd->groups; +} + +static unsigned long power_of(int cpu) +{ + struct sched_group *group = group_of(cpu); + + if (!group) + return SCHED_LOAD_SCALE; + + return group->cpu_power; +} + /* * find_busiest_queue - find the busiest runqueue among the cpus in group. */ @@ -3988,15 +4193,18 @@ find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, int i; for_each_cpu(i, sched_group_cpus(group)) { + unsigned long power = power_of(i); + unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); unsigned long wl; if (!cpumask_test_cpu(i, cpus)) continue; rq = cpu_rq(i); - wl = weighted_cpuload(i); + wl = weighted_cpuload(i) * SCHED_LOAD_SCALE; + wl /= power; - if (rq->nr_running == 1 && wl > imbalance) + if (capacity && rq->nr_running == 1 && wl > imbalance) continue; if (wl > max_load) { @@ -5349,10 +5557,7 @@ need_resched_nonpreemptible: switch_count = &prev->nvcsw; } -#ifdef CONFIG_SMP - if (prev->sched_class->pre_schedule) - prev->sched_class->pre_schedule(rq, prev); -#endif + pre_schedule(rq, prev); if (unlikely(!rq->nr_running)) idle_balance(cpu, rq); @@ -5378,6 +5583,8 @@ need_resched_nonpreemptible: } else spin_unlock_irq(&rq->lock); + post_schedule(rq); + if (unlikely(reacquire_kernel_lock(current) < 0)) goto need_resched_nonpreemptible; @@ -6123,17 +6330,25 @@ static int __sched_setscheduler(struct task_struct *p, int policy, unsigned long flags; const struct sched_class *prev_class = p->sched_class; struct rq *rq; + int reset_on_fork; /* may grab non-irq protected spin_locks */ BUG_ON(in_interrupt()); recheck: /* double check policy once rq lock held */ - if (policy < 0) + if (policy < 0) { + reset_on_fork = p->sched_reset_on_fork; policy = oldpolicy = p->policy; - else if (policy != SCHED_FIFO && policy != SCHED_RR && - policy != SCHED_NORMAL && policy != SCHED_BATCH && - policy != SCHED_IDLE) - return -EINVAL; + } else { + reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); + policy &= ~SCHED_RESET_ON_FORK; + + if (policy != SCHED_FIFO && policy != SCHED_RR && + policy != SCHED_NORMAL && policy != SCHED_BATCH && + policy != SCHED_IDLE) + return -EINVAL; + } + /* * Valid priorities for SCHED_FIFO and SCHED_RR are * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, @@ -6177,6 +6392,10 @@ recheck: /* can't change other user's priorities */ if (!check_same_owner(p)) return -EPERM; + + /* Normal users shall not reset the sched_reset_on_fork flag */ + if (p->sched_reset_on_fork && !reset_on_fork) + return -EPERM; } if (user) { @@ -6220,6 +6439,8 @@ recheck: if (running) p->sched_class->put_prev_task(rq, p); + p->sched_reset_on_fork = reset_on_fork; + oldprio = p->prio; __setscheduler(rq, p, policy, param->sched_priority); @@ -6336,14 +6557,15 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) if (p) { retval = security_task_getscheduler(p); if (!retval) - retval = p->policy; + retval = p->policy + | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); } read_unlock(&tasklist_lock); return retval; } /** - * sys_sched_getscheduler - get the RT priority of a thread + * sys_sched_getparam - get the RT priority of a thread * @pid: the pid in question. * @param: structure containing the RT priority. */ @@ -6571,19 +6793,9 @@ static inline int should_resched(void) static void __cond_resched(void) { -#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP - __might_sleep(__FILE__, __LINE__); -#endif - /* - * The BKS might be reacquired before we have dropped - * PREEMPT_ACTIVE, which could trigger a second - * cond_resched() call. - */ - do { - add_preempt_count(PREEMPT_ACTIVE); - schedule(); - sub_preempt_count(PREEMPT_ACTIVE); - } while (need_resched()); + add_preempt_count(PREEMPT_ACTIVE); + schedule(); + sub_preempt_count(PREEMPT_ACTIVE); } int __sched _cond_resched(void) @@ -6597,14 +6809,14 @@ int __sched _cond_resched(void) EXPORT_SYMBOL(_cond_resched); /* - * cond_resched_lock() - if a reschedule is pending, drop the given lock, + * __cond_resched_lock() - if a reschedule is pending, drop the given lock, * call schedule, and on return reacquire the lock. * * This works OK both with and without CONFIG_PREEMPT. We do strange low-level * operations here to prevent schedule() from being called twice (once via * spin_unlock(), once by hand). */ -int cond_resched_lock(spinlock_t *lock) +int __cond_resched_lock(spinlock_t *lock) { int resched = should_resched(); int ret = 0; @@ -6622,9 +6834,9 @@ int cond_resched_lock(spinlock_t *lock) } return ret; } -EXPORT_SYMBOL(cond_resched_lock); +EXPORT_SYMBOL(__cond_resched_lock); -int __sched cond_resched_softirq(void) +int __sched __cond_resched_softirq(void) { BUG_ON(!in_softirq()); @@ -6636,7 +6848,7 @@ int __sched cond_resched_softirq(void) } return 0; } -EXPORT_SYMBOL(cond_resched_softirq); +EXPORT_SYMBOL(__cond_resched_softirq); /** * yield - yield the current processor to other threads. @@ -6660,11 +6872,13 @@ EXPORT_SYMBOL(yield); */ void __sched io_schedule(void) { - struct rq *rq = &__raw_get_cpu_var(runqueues); + struct rq *rq = raw_rq(); delayacct_blkio_start(); atomic_inc(&rq->nr_iowait); + current->in_iowait = 1; schedule(); + current->in_iowait = 0; atomic_dec(&rq->nr_iowait); delayacct_blkio_end(); } @@ -6672,12 +6886,14 @@ EXPORT_SYMBOL(io_schedule); long __sched io_schedule_timeout(long timeout) { - struct rq *rq = &__raw_get_cpu_var(runqueues); + struct rq *rq = raw_rq(); long ret; delayacct_blkio_start(); atomic_inc(&rq->nr_iowait); + current->in_iowait = 1; ret = schedule_timeout(timeout); + current->in_iowait = 0; atomic_dec(&rq->nr_iowait); delayacct_blkio_end(); return ret; @@ -6994,8 +7210,12 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { /* Need help from migration thread: drop lock and wait. */ + struct task_struct *mt = rq->migration_thread; + + get_task_struct(mt); task_rq_unlock(rq, &flags); wake_up_process(rq->migration_thread); + put_task_struct(mt); wait_for_completion(&req.done); tlb_migrate_finish(p->mm); return 0; @@ -7642,7 +7862,7 @@ static int __init migration_init(void) migration_call(&migration_notifier, CPU_ONLINE, cpu); register_cpu_notifier(&migration_notifier); - return err; + return 0; } early_initcall(migration_init); #endif @@ -7689,7 +7909,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, break; } - if (!group->__cpu_power) { + if (!group->cpu_power) { printk(KERN_CONT "\n"); printk(KERN_ERR "ERROR: domain->cpu_power not " "set\n"); @@ -7713,9 +7933,9 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); printk(KERN_CONT " %s", str); - if (group->__cpu_power != SCHED_LOAD_SCALE) { - printk(KERN_CONT " (__cpu_power = %d)", - group->__cpu_power); + if (group->cpu_power != SCHED_LOAD_SCALE) { + printk(KERN_CONT " (cpu_power = %d)", + group->cpu_power); } group = group->next; @@ -7858,7 +8078,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd) rq->rd = rd; cpumask_set_cpu(rq->cpu, rd->span); - if (cpumask_test_cpu(rq->cpu, cpu_online_mask)) + if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) set_rq_online(rq); spin_unlock_irqrestore(&rq->lock, flags); @@ -8000,7 +8220,7 @@ init_sched_build_groups(const struct cpumask *span, continue; cpumask_clear(sched_group_cpus(sg)); - sg->__cpu_power = 0; + sg->cpu_power = 0; for_each_cpu(j, span) { if (group_fn(j, cpu_map, NULL, tmpmask) != group) @@ -8108,6 +8328,39 @@ struct static_sched_domain { DECLARE_BITMAP(span, CONFIG_NR_CPUS); }; +struct s_data { +#ifdef CONFIG_NUMA + int sd_allnodes; + cpumask_var_t domainspan; + cpumask_var_t covered; + cpumask_var_t notcovered; +#endif + cpumask_var_t nodemask; + cpumask_var_t this_sibling_map; + cpumask_var_t this_core_map; + cpumask_var_t send_covered; + cpumask_var_t tmpmask; + struct sched_group **sched_group_nodes; + struct root_domain *rd; +}; + +enum s_alloc { + sa_sched_groups = 0, + sa_rootdomain, + sa_tmpmask, + sa_send_covered, + sa_this_core_map, + sa_this_sibling_map, + sa_nodemask, + sa_sched_group_nodes, +#ifdef CONFIG_NUMA + sa_notcovered, + sa_covered, + sa_domainspan, +#endif + sa_none, +}; + /* * SMT sched-domains: */ @@ -8225,11 +8478,76 @@ static void init_numa_sched_groups_power(struct sched_group *group_head) continue; } - sg_inc_cpu_power(sg, sd->groups->__cpu_power); + sg->cpu_power += sd->groups->cpu_power; } sg = sg->next; } while (sg != group_head); } + +static int build_numa_sched_groups(struct s_data *d, + const struct cpumask *cpu_map, int num) +{ + struct sched_domain *sd; + struct sched_group *sg, *prev; + int n, j; + + cpumask_clear(d->covered); + cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map); + if (cpumask_empty(d->nodemask)) { + d->sched_group_nodes[num] = NULL; + goto out; + } + + sched_domain_node_span(num, d->domainspan); + cpumask_and(d->domainspan, d->domainspan, cpu_map); + + sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), + GFP_KERNEL, num); + if (!sg) { + printk(KERN_WARNING "Can not alloc domain group for node %d\n", + num); + return -ENOMEM; + } + d->sched_group_nodes[num] = sg; + + for_each_cpu(j, d->nodemask) { + sd = &per_cpu(node_domains, j).sd; + sd->groups = sg; + } + + sg->cpu_power = 0; + cpumask_copy(sched_group_cpus(sg), d->nodemask); + sg->next = sg; + cpumask_or(d->covered, d->covered, d->nodemask); + + prev = sg; + for (j = 0; j < nr_node_ids; j++) { + n = (num + j) % nr_node_ids; + cpumask_complement(d->notcovered, d->covered); + cpumask_and(d->tmpmask, d->notcovered, cpu_map); + cpumask_and(d->tmpmask, d->tmpmask, d->domainspan); + if (cpumask_empty(d->tmpmask)) + break; + cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n)); + if (cpumask_empty(d->tmpmask)) + continue; + sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), + GFP_KERNEL, num); + if (!sg) { + printk(KERN_WARNING + "Can not alloc domain group for node %d\n", j); + return -ENOMEM; + } + sg->cpu_power = 0; + cpumask_copy(sched_group_cpus(sg), d->tmpmask); + sg->next = prev->next; + cpumask_or(d->covered, d->covered, d->tmpmask); + prev->next = sg; + prev = sg; + } +out: + return 0; +} #endif /* CONFIG_NUMA */ #ifdef CONFIG_NUMA @@ -8283,15 +8601,13 @@ static void free_sched_groups(const struct cpumask *cpu_map, * there are asymmetries in the topology. If there are asymmetries, group * having more cpu_power will pickup more load compared to the group having * less cpu_power. - * - * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents - * the maximum number of tasks a group can handle in the presence of other idle - * or lightly loaded groups in the same sched domain. */ static void init_sched_groups_power(int cpu, struct sched_domain *sd) { struct sched_domain *child; struct sched_group *group; + long power; + int weight; WARN_ON(!sd || !sd->groups); @@ -8300,28 +8616,32 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd) child = sd->child; - sd->groups->__cpu_power = 0; + sd->groups->cpu_power = 0; - /* - * For perf policy, if the groups in child domain share resources - * (for example cores sharing some portions of the cache hierarchy - * or SMT), then set this domain groups cpu_power such that each group - * can handle only one task, when there are other idle groups in the - * same sched domain. - */ - if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && - (child->flags & - (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { - sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); + if (!child) { + power = SCHED_LOAD_SCALE; + weight = cpumask_weight(sched_domain_span(sd)); + /* + * SMT siblings share the power of a single core. + * Usually multiple threads get a better yield out of + * that one core than a single thread would have, + * reflect that in sd->smt_gain. + */ + if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { + power *= sd->smt_gain; + power /= weight; + power >>= SCHED_LOAD_SHIFT; + } + sd->groups->cpu_power += power; return; } /* - * add cpu_power of each child group to this groups cpu_power + * Add cpu_power of each child group to this groups cpu_power. */ group = child->groups; do { - sg_inc_cpu_power(sd->groups, group->__cpu_power); + sd->groups->cpu_power += group->cpu_power; group = group->next; } while (group != child->groups); } @@ -8395,280 +8715,285 @@ static void set_domain_attribute(struct sched_domain *sd, } } -/* - * Build sched domains for a given set of cpus and attach the sched domains - * to the individual cpus - */ -static int __build_sched_domains(const struct cpumask *cpu_map, - struct sched_domain_attr *attr) -{ - int i, err = -ENOMEM; - struct root_domain *rd; - cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered, - tmpmask; +static void __free_domain_allocs(struct s_data *d, enum s_alloc what, + const struct cpumask *cpu_map) +{ + switch (what) { + case sa_sched_groups: + free_sched_groups(cpu_map, d->tmpmask); /* fall through */ + d->sched_group_nodes = NULL; + case sa_rootdomain: + free_rootdomain(d->rd); /* fall through */ + case sa_tmpmask: + free_cpumask_var(d->tmpmask); /* fall through */ + case sa_send_covered: + free_cpumask_var(d->send_covered); /* fall through */ + case sa_this_core_map: + free_cpumask_var(d->this_core_map); /* fall through */ + case sa_this_sibling_map: + free_cpumask_var(d->this_sibling_map); /* fall through */ + case sa_nodemask: + free_cpumask_var(d->nodemask); /* fall through */ + case sa_sched_group_nodes: #ifdef CONFIG_NUMA - cpumask_var_t domainspan, covered, notcovered; - struct sched_group **sched_group_nodes = NULL; - int sd_allnodes = 0; - - if (!alloc_cpumask_var(&domainspan, GFP_KERNEL)) - goto out; - if (!alloc_cpumask_var(&covered, GFP_KERNEL)) - goto free_domainspan; - if (!alloc_cpumask_var(¬covered, GFP_KERNEL)) - goto free_covered; -#endif - - if (!alloc_cpumask_var(&nodemask, GFP_KERNEL)) - goto free_notcovered; - if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL)) - goto free_nodemask; - if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL)) - goto free_this_sibling_map; - if (!alloc_cpumask_var(&send_covered, GFP_KERNEL)) - goto free_this_core_map; - if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) - goto free_send_covered; + kfree(d->sched_group_nodes); /* fall through */ + case sa_notcovered: + free_cpumask_var(d->notcovered); /* fall through */ + case sa_covered: + free_cpumask_var(d->covered); /* fall through */ + case sa_domainspan: + free_cpumask_var(d->domainspan); /* fall through */ +#endif + case sa_none: + break; + } +} +static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, + const struct cpumask *cpu_map) +{ #ifdef CONFIG_NUMA - /* - * Allocate the per-node list of sched groups - */ - sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), - GFP_KERNEL); - if (!sched_group_nodes) { + if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL)) + return sa_none; + if (!alloc_cpumask_var(&d->covered, GFP_KERNEL)) + return sa_domainspan; + if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL)) + return sa_covered; + /* Allocate the per-node list of sched groups */ + d->sched_group_nodes = kcalloc(nr_node_ids, + sizeof(struct sched_group *), GFP_KERNEL); + if (!d->sched_group_nodes) { printk(KERN_WARNING "Can not alloc sched group node list\n"); - goto free_tmpmask; - } -#endif - - rd = alloc_rootdomain(); - if (!rd) { + return sa_notcovered; + } + sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes; +#endif + if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL)) + return sa_sched_group_nodes; + if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL)) + return sa_nodemask; + if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL)) + return sa_this_sibling_map; + if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL)) + return sa_this_core_map; + if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL)) + return sa_send_covered; + d->rd = alloc_rootdomain(); + if (!d->rd) { printk(KERN_WARNING "Cannot alloc root domain\n"); - goto free_sched_groups; + return sa_tmpmask; } + return sa_rootdomain; +} +static struct sched_domain *__build_numa_sched_domains(struct s_data *d, + const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i) +{ + struct sched_domain *sd = NULL; #ifdef CONFIG_NUMA - sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes; -#endif - - /* - * Set up domains for cpus specified by the cpu_map. - */ - for_each_cpu(i, cpu_map) { - struct sched_domain *sd = NULL, *p; + struct sched_domain *parent; - cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map); - -#ifdef CONFIG_NUMA - if (cpumask_weight(cpu_map) > - SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) { - sd = &per_cpu(allnodes_domains, i).sd; - SD_INIT(sd, ALLNODES); - set_domain_attribute(sd, attr); - cpumask_copy(sched_domain_span(sd), cpu_map); - cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); - p = sd; - sd_allnodes = 1; - } else - p = NULL; - - sd = &per_cpu(node_domains, i).sd; - SD_INIT(sd, NODE); + d->sd_allnodes = 0; + if (cpumask_weight(cpu_map) > + SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) { + sd = &per_cpu(allnodes_domains, i).sd; + SD_INIT(sd, ALLNODES); set_domain_attribute(sd, attr); - sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); - sd->parent = p; - if (p) - p->child = sd; - cpumask_and(sched_domain_span(sd), - sched_domain_span(sd), cpu_map); + cpumask_copy(sched_domain_span(sd), cpu_map); + cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask); + d->sd_allnodes = 1; + } + parent = sd; + + sd = &per_cpu(node_domains, i).sd; + SD_INIT(sd, NODE); + set_domain_attribute(sd, attr); + sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); + sd->parent = parent; + if (parent) + parent->child = sd; + cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map); #endif + return sd; +} - p = sd; - sd = &per_cpu(phys_domains, i).sd; - SD_INIT(sd, CPU); - set_domain_attribute(sd, attr); - cpumask_copy(sched_domain_span(sd), nodemask); - sd->parent = p; - if (p) - p->child = sd; - cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); +static struct sched_domain *__build_cpu_sched_domain(struct s_data *d, + const struct cpumask *cpu_map, struct sched_domain_attr *attr, + struct sched_domain *parent, int i) +{ + struct sched_domain *sd; + sd = &per_cpu(phys_domains, i).sd; + SD_INIT(sd, CPU); + set_domain_attribute(sd, attr); + cpumask_copy(sched_domain_span(sd), d->nodemask); + sd->parent = parent; + if (parent) + parent->child = sd; + cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask); + return sd; +} +static struct sched_domain *__build_mc_sched_domain(struct s_data *d, + const struct cpumask *cpu_map, struct sched_domain_attr *attr, + struct sched_domain *parent, int i) +{ + struct sched_domain *sd = parent; #ifdef CONFIG_SCHED_MC - p = sd; - sd = &per_cpu(core_domains, i).sd; - SD_INIT(sd, MC); - set_domain_attribute(sd, attr); - cpumask_and(sched_domain_span(sd), cpu_map, - cpu_coregroup_mask(i)); - sd->parent = p; - p->child = sd; - cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); + sd = &per_cpu(core_domains, i).sd; + SD_INIT(sd, MC); + set_domain_attribute(sd, attr); + cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i)); + sd->parent = parent; + parent->child = sd; + cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask); #endif + return sd; +} +static struct sched_domain *__build_smt_sched_domain(struct s_data *d, + const struct cpumask *cpu_map, struct sched_domain_attr *attr, + struct sched_domain *parent, int i) +{ + struct sched_domain *sd = parent; #ifdef CONFIG_SCHED_SMT - p = sd; - sd = &per_cpu(cpu_domains, i).sd; - SD_INIT(sd, SIBLING); - set_domain_attribute(sd, attr); - cpumask_and(sched_domain_span(sd), - topology_thread_cpumask(i), cpu_map); - sd->parent = p; - p->child = sd; - cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); + sd = &per_cpu(cpu_domains, i).sd; + SD_INIT(sd, SIBLING); + set_domain_attribute(sd, attr); + cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i)); + sd->parent = parent; + parent->child = sd; + cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask); #endif - } + return sd; +} +static void build_sched_groups(struct s_data *d, enum sched_domain_level l, + const struct cpumask *cpu_map, int cpu) +{ + switch (l) { #ifdef CONFIG_SCHED_SMT - /* Set up CPU (sibling) groups */ - for_each_cpu(i, cpu_map) { - cpumask_and(this_sibling_map, - topology_thread_cpumask(i), cpu_map); - if (i != cpumask_first(this_sibling_map)) - continue; - - init_sched_build_groups(this_sibling_map, cpu_map, - &cpu_to_cpu_group, - send_covered, tmpmask); - } + case SD_LV_SIBLING: /* set up CPU (sibling) groups */ + cpumask_and(d->this_sibling_map, cpu_map, + topology_thread_cpumask(cpu)); + if (cpu == cpumask_first(d->this_sibling_map)) + init_sched_build_groups(d->this_sibling_map, cpu_map, + &cpu_to_cpu_group, + d->send_covered, d->tmpmask); + break; #endif - #ifdef CONFIG_SCHED_MC - /* Set up multi-core groups */ - for_each_cpu(i, cpu_map) { - cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map); - if (i != cpumask_first(this_core_map)) - continue; - - init_sched_build_groups(this_core_map, cpu_map, - &cpu_to_core_group, - send_covered, tmpmask); - } + case SD_LV_MC: /* set up multi-core groups */ + cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu)); + if (cpu == cpumask_first(d->this_core_map)) + init_sched_build_groups(d->this_core_map, cpu_map, + &cpu_to_core_group, + d->send_covered, d->tmpmask); + break; #endif - - /* Set up physical groups */ - for (i = 0; i < nr_node_ids; i++) { - cpumask_and(nodemask, cpumask_of_node(i), cpu_map); - if (cpumask_empty(nodemask)) - continue; - - init_sched_build_groups(nodemask, cpu_map, - &cpu_to_phys_group, - send_covered, tmpmask); - } - + case SD_LV_CPU: /* set up physical groups */ + cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map); + if (!cpumask_empty(d->nodemask)) + init_sched_build_groups(d->nodemask, cpu_map, + &cpu_to_phys_group, + d->send_covered, d->tmpmask); + break; #ifdef CONFIG_NUMA - /* Set up node groups */ - if (sd_allnodes) { - init_sched_build_groups(cpu_map, cpu_map, - &cpu_to_allnodes_group, - send_covered, tmpmask); + case SD_LV_ALLNODES: + init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, + d->send_covered, d->tmpmask); + break; +#endif + default: + break; } +} - for (i = 0; i < nr_node_ids; i++) { - /* Set up node groups */ - struct sched_group *sg, *prev; - int j; - - cpumask_clear(covered); - cpumask_and(nodemask, cpumask_of_node(i), cpu_map); - if (cpumask_empty(nodemask)) { - sched_group_nodes[i] = NULL; - continue; - } +/* + * Build sched domains for a given set of cpus and attach the sched domains + * to the individual cpus + */ +static int __build_sched_domains(const struct cpumask *cpu_map, + struct sched_domain_attr *attr) +{ + enum s_alloc alloc_state = sa_none; + struct s_data d; + struct sched_domain *sd; + int i; +#ifdef CONFIG_NUMA + d.sd_allnodes = 0; +#endif - sched_domain_node_span(i, domainspan); - cpumask_and(domainspan, domainspan, cpu_map); + alloc_state = __visit_domain_allocation_hell(&d, cpu_map); + if (alloc_state != sa_rootdomain) + goto error; + alloc_state = sa_sched_groups; - sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), - GFP_KERNEL, i); - if (!sg) { - printk(KERN_WARNING "Can not alloc domain group for " - "node %d\n", i); - goto error; - } - sched_group_nodes[i] = sg; - for_each_cpu(j, nodemask) { - struct sched_domain *sd; + /* + * Set up domains for cpus specified by the cpu_map. + */ + for_each_cpu(i, cpu_map) { + cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)), + cpu_map); - sd = &per_cpu(node_domains, j).sd; - sd->groups = sg; - } - sg->__cpu_power = 0; - cpumask_copy(sched_group_cpus(sg), nodemask); - sg->next = sg; - cpumask_or(covered, covered, nodemask); - prev = sg; + sd = __build_numa_sched_domains(&d, cpu_map, attr, i); + sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i); + sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i); + sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i); + } - for (j = 0; j < nr_node_ids; j++) { - int n = (i + j) % nr_node_ids; + for_each_cpu(i, cpu_map) { + build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i); + build_sched_groups(&d, SD_LV_MC, cpu_map, i); + } - cpumask_complement(notcovered, covered); - cpumask_and(tmpmask, notcovered, cpu_map); - cpumask_and(tmpmask, tmpmask, domainspan); - if (cpumask_empty(tmpmask)) - break; + /* Set up physical groups */ + for (i = 0; i < nr_node_ids; i++) + build_sched_groups(&d, SD_LV_CPU, cpu_map, i); - cpumask_and(tmpmask, tmpmask, cpumask_of_node(n)); - if (cpumask_empty(tmpmask)) - continue; +#ifdef CONFIG_NUMA + /* Set up node groups */ + if (d.sd_allnodes) + build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0); - sg = kmalloc_node(sizeof(struct sched_group) + - cpumask_size(), - GFP_KERNEL, i); - if (!sg) { - printk(KERN_WARNING - "Can not alloc domain group for node %d\n", j); - goto error; - } - sg->__cpu_power = 0; - cpumask_copy(sched_group_cpus(sg), tmpmask); - sg->next = prev->next; - cpumask_or(covered, covered, tmpmask); - prev->next = sg; - prev = sg; - } - } + for (i = 0; i < nr_node_ids; i++) + if (build_numa_sched_groups(&d, cpu_map, i)) + goto error; #endif /* Calculate CPU power for physical packages and nodes */ #ifdef CONFIG_SCHED_SMT for_each_cpu(i, cpu_map) { - struct sched_domain *sd = &per_cpu(cpu_domains, i).sd; - + sd = &per_cpu(cpu_domains, i).sd; init_sched_groups_power(i, sd); } #endif #ifdef CONFIG_SCHED_MC for_each_cpu(i, cpu_map) { - struct sched_domain *sd = &per_cpu(core_domains, i).sd; - + sd = &per_cpu(core_domains, i).sd; init_sched_groups_power(i, sd); } #endif for_each_cpu(i, cpu_map) { - struct sched_domain *sd = &per_cpu(phys_domains, i).sd; - + sd = &per_cpu(phys_domains, i).sd; init_sched_groups_power(i, sd); } #ifdef CONFIG_NUMA for (i = 0; i < nr_node_ids; i++) - init_numa_sched_groups_power(sched_group_nodes[i]); + init_numa_sched_groups_power(d.sched_group_nodes[i]); - if (sd_allnodes) { + if (d.sd_allnodes) { struct sched_group *sg; cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, - tmpmask); + d.tmpmask); init_numa_sched_groups_power(sg); } #endif /* Attach the domains */ for_each_cpu(i, cpu_map) { - struct sched_domain *sd; #ifdef CONFIG_SCHED_SMT sd = &per_cpu(cpu_domains, i).sd; #elif defined(CONFIG_SCHED_MC) @@ -8676,44 +9001,16 @@ static int __build_sched_domains(const struct cpumask *cpu_map, #else sd = &per_cpu(phys_domains, i).sd; #endif - cpu_attach_domain(sd, rd, i); + cpu_attach_domain(sd, d.rd, i); } - err = 0; - -free_tmpmask: - free_cpumask_var(tmpmask); -free_send_covered: - free_cpumask_var(send_covered); -free_this_core_map: - free_cpumask_var(this_core_map); -free_this_sibling_map: - free_cpumask_var(this_sibling_map); -free_nodemask: - free_cpumask_var(nodemask); -free_notcovered: -#ifdef CONFIG_NUMA - free_cpumask_var(notcovered); -free_covered: - free_cpumask_var(covered); -free_domainspan: - free_cpumask_var(domainspan); -out: -#endif - return err; - -free_sched_groups: -#ifdef CONFIG_NUMA - kfree(sched_group_nodes); -#endif - goto free_tmpmask; + d.sched_group_nodes = NULL; /* don't free this we still need it */ + __free_domain_allocs(&d, sa_tmpmask, cpu_map); + return 0; -#ifdef CONFIG_NUMA error: - free_sched_groups(cpu_map, tmpmask); - free_rootdomain(rd); - goto free_tmpmask; -#endif + __free_domain_allocs(&d, alloc_state, cpu_map); + return -ENOMEM; } static int build_sched_domains(const struct cpumask *cpu_map) @@ -9321,11 +9618,11 @@ void __init sched_init(void) * system cpu resource, based on the weight assigned to root * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished * by letting tasks of init_task_group sit in a separate cfs_rq - * (init_cfs_rq) and having one entity represent this group of + * (init_tg_cfs_rq) and having one entity represent this group of * tasks in rq->cfs (i.e init_task_group->se[] != NULL). */ init_tg_cfs_entry(&init_task_group, - &per_cpu(init_cfs_rq, i), + &per_cpu(init_tg_cfs_rq, i), &per_cpu(init_sched_entity, i), i, 1, root_task_group.se[i]); @@ -9351,6 +9648,7 @@ void __init sched_init(void) #ifdef CONFIG_SMP rq->sd = NULL; rq->rd = NULL; + rq->post_schedule = 0; rq->active_balance = 0; rq->next_balance = jiffies; rq->push_cpu = 0; @@ -9415,13 +9713,20 @@ void __init sched_init(void) } #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP -void __might_sleep(char *file, int line) +static inline int preempt_count_equals(int preempt_offset) +{ + int nested = preempt_count() & ~PREEMPT_ACTIVE; + + return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); +} + +void __might_sleep(char *file, int line, int preempt_offset) { #ifdef in_atomic static unsigned long prev_jiffy; /* ratelimiting */ - if ((!in_atomic() && !irqs_disabled()) || - system_state != SYSTEM_RUNNING || oops_in_progress) + if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || + system_state != SYSTEM_RUNNING || oops_in_progress) return; if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) return; diff --git a/kernel/sched_cpupri.c b/kernel/sched_cpupri.c index d014efbf947a..0f052fc674d5 100644 --- a/kernel/sched_cpupri.c +++ b/kernel/sched_cpupri.c @@ -127,21 +127,11 @@ void cpupri_set(struct cpupri *cp, int cpu, int newpri) /* * If the cpu was currently mapped to a different value, we - * first need to unmap the old value + * need to map it to the new value then remove the old value. + * Note, we must add the new value first, otherwise we risk the + * cpu being cleared from pri_active, and this cpu could be + * missed for a push or pull. */ - if (likely(oldpri != CPUPRI_INVALID)) { - struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; - - spin_lock_irqsave(&vec->lock, flags); - - vec->count--; - if (!vec->count) - clear_bit(oldpri, cp->pri_active); - cpumask_clear_cpu(cpu, vec->mask); - - spin_unlock_irqrestore(&vec->lock, flags); - } - if (likely(newpri != CPUPRI_INVALID)) { struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; @@ -154,6 +144,18 @@ void cpupri_set(struct cpupri *cp, int cpu, int newpri) spin_unlock_irqrestore(&vec->lock, flags); } + if (likely(oldpri != CPUPRI_INVALID)) { + struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; + + spin_lock_irqsave(&vec->lock, flags); + + vec->count--; + if (!vec->count) + clear_bit(oldpri, cp->pri_active); + cpumask_clear_cpu(cpu, vec->mask); + + spin_unlock_irqrestore(&vec->lock, flags); + } *currpri = newpri; } diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 70c7e0b79946..5ddbd0891267 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c @@ -409,6 +409,8 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) PN(se.wait_max); PN(se.wait_sum); P(se.wait_count); + PN(se.iowait_sum); + P(se.iowait_count); P(sched_info.bkl_count); P(se.nr_migrations); P(se.nr_migrations_cold); @@ -479,6 +481,8 @@ void proc_sched_set_task(struct task_struct *p) p->se.wait_max = 0; p->se.wait_sum = 0; p->se.wait_count = 0; + p->se.iowait_sum = 0; + p->se.iowait_count = 0; p->se.sleep_max = 0; p->se.sum_sleep_runtime = 0; p->se.block_max = 0; diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 652e8bdef9aa..aa7f84121016 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c @@ -24,7 +24,7 @@ /* * Targeted preemption latency for CPU-bound tasks: - * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds) + * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds) * * NOTE: this latency value is not the same as the concept of * 'timeslice length' - timeslices in CFS are of variable length @@ -34,13 +34,13 @@ * (to see the precise effective timeslice length of your workload, * run vmstat and monitor the context-switches (cs) field) */ -unsigned int sysctl_sched_latency = 20000000ULL; +unsigned int sysctl_sched_latency = 5000000ULL; /* * Minimal preemption granularity for CPU-bound tasks: - * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds) + * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) */ -unsigned int sysctl_sched_min_granularity = 4000000ULL; +unsigned int sysctl_sched_min_granularity = 1000000ULL; /* * is kept at sysctl_sched_latency / sysctl_sched_min_granularity @@ -48,10 +48,10 @@ unsigned int sysctl_sched_min_granularity = 4000000ULL; static unsigned int sched_nr_latency = 5; /* - * After fork, child runs first. (default) If set to 0 then + * After fork, child runs first. If set to 0 (default) then * parent will (try to) run first. */ -const_debug unsigned int sysctl_sched_child_runs_first = 1; +unsigned int sysctl_sched_child_runs_first __read_mostly; /* * sys_sched_yield() compat mode @@ -63,13 +63,13 @@ unsigned int __read_mostly sysctl_sched_compat_yield; /* * SCHED_OTHER wake-up granularity. - * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds) + * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) * * This option delays the preemption effects of decoupled workloads * and reduces their over-scheduling. Synchronous workloads will still * have immediate wakeup/sleep latencies. */ -unsigned int sysctl_sched_wakeup_granularity = 5000000UL; +unsigned int sysctl_sched_wakeup_granularity = 1000000UL; const_debug unsigned int sysctl_sched_migration_cost = 500000UL; @@ -79,11 +79,6 @@ static const struct sched_class fair_sched_class; * CFS operations on generic schedulable entities: */ -static inline struct task_struct *task_of(struct sched_entity *se) -{ - return container_of(se, struct task_struct, se); -} - #ifdef CONFIG_FAIR_GROUP_SCHED /* cpu runqueue to which this cfs_rq is attached */ @@ -95,6 +90,14 @@ static inline struct rq *rq_of(struct cfs_rq *cfs_rq) /* An entity is a task if it doesn't "own" a runqueue */ #define entity_is_task(se) (!se->my_q) +static inline struct task_struct *task_of(struct sched_entity *se) +{ +#ifdef CONFIG_SCHED_DEBUG + WARN_ON_ONCE(!entity_is_task(se)); +#endif + return container_of(se, struct task_struct, se); +} + /* Walk up scheduling entities hierarchy */ #define for_each_sched_entity(se) \ for (; se; se = se->parent) @@ -186,7 +189,12 @@ find_matching_se(struct sched_entity **se, struct sched_entity **pse) } } -#else /* CONFIG_FAIR_GROUP_SCHED */ +#else /* !CONFIG_FAIR_GROUP_SCHED */ + +static inline struct task_struct *task_of(struct sched_entity *se) +{ + return container_of(se, struct task_struct, se); +} static inline struct rq *rq_of(struct cfs_rq *cfs_rq) { @@ -537,6 +545,12 @@ update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) schedstat_set(se->wait_count, se->wait_count + 1); schedstat_set(se->wait_sum, se->wait_sum + rq_of(cfs_rq)->clock - se->wait_start); +#ifdef CONFIG_SCHEDSTATS + if (entity_is_task(se)) { + trace_sched_stat_wait(task_of(se), + rq_of(cfs_rq)->clock - se->wait_start); + } +#endif schedstat_set(se->wait_start, 0); } @@ -628,8 +642,10 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) se->sleep_start = 0; se->sum_sleep_runtime += delta; - if (tsk) + if (tsk) { account_scheduler_latency(tsk, delta >> 10, 1); + trace_sched_stat_sleep(tsk, delta); + } } if (se->block_start) { u64 delta = rq_of(cfs_rq)->clock - se->block_start; @@ -644,6 +660,12 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) se->sum_sleep_runtime += delta; if (tsk) { + if (tsk->in_iowait) { + se->iowait_sum += delta; + se->iowait_count++; + trace_sched_stat_iowait(tsk, delta); + } + /* * Blocking time is in units of nanosecs, so shift by * 20 to get a milliseconds-range estimation of the @@ -705,11 +727,11 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) vruntime -= thresh; } - - /* ensure we never gain time by being placed backwards. */ - vruntime = max_vruntime(se->vruntime, vruntime); } + /* ensure we never gain time by being placed backwards. */ + vruntime = max_vruntime(se->vruntime, vruntime); + se->vruntime = vruntime; } @@ -1046,17 +1068,21 @@ static void yield_task_fair(struct rq *rq) * search starts with cpus closest then further out as needed, * so we always favor a closer, idle cpu. * Domains may include CPUs that are not usable for migration, - * hence we need to mask them out (cpu_active_mask) + * hence we need to mask them out (rq->rd->online) * * Returns the CPU we should wake onto. */ #if defined(ARCH_HAS_SCHED_WAKE_IDLE) + +#define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online) + static int wake_idle(int cpu, struct task_struct *p) { struct sched_domain *sd; int i; unsigned int chosen_wakeup_cpu; int this_cpu; + struct rq *task_rq = task_rq(p); /* * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu @@ -1089,10 +1115,10 @@ static int wake_idle(int cpu, struct task_struct *p) for_each_domain(cpu, sd) { if ((sd->flags & SD_WAKE_IDLE) || ((sd->flags & SD_WAKE_IDLE_FAR) - && !task_hot(p, task_rq(p)->clock, sd))) { + && !task_hot(p, task_rq->clock, sd))) { for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { - if (cpu_active(i) && idle_cpu(i)) { + if (cpu_rd_active(i, task_rq) && idle_cpu(i)) { if (i != task_cpu(p)) { schedstat_inc(p, se.nr_wakeups_idle); @@ -1235,7 +1261,17 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, tg = task_group(p); weight = p->se.load.weight; - balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= + /* + * In low-load situations, where prev_cpu is idle and this_cpu is idle + * due to the sync cause above having dropped tl to 0, we'll always have + * an imbalance, but there's really nothing you can do about that, so + * that's good too. + * + * Otherwise check if either cpus are near enough in load to allow this + * task to be woken on this_cpu. + */ + balanced = !tl || + 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); /* @@ -1278,8 +1314,6 @@ static int select_task_rq_fair(struct task_struct *p, int sync) this_rq = cpu_rq(this_cpu); new_cpu = prev_cpu; - if (prev_cpu == this_cpu) - goto out; /* * 'this_sd' is the first domain that both * this_cpu and prev_cpu are present in: @@ -1721,6 +1755,8 @@ static void task_new_fair(struct rq *rq, struct task_struct *p) sched_info_queued(p); update_curr(cfs_rq); + if (curr) + se->vruntime = curr->vruntime; place_entity(cfs_rq, se, 1); /* 'curr' will be NULL if the child belongs to a different group */ diff --git a/kernel/sched_features.h b/kernel/sched_features.h index 4569bfa7df9b..e2dc63a5815d 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h @@ -1,4 +1,4 @@ -SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) +SCHED_FEAT(NEW_FAIR_SLEEPERS, 0) SCHED_FEAT(NORMALIZED_SLEEPER, 0) SCHED_FEAT(ADAPTIVE_GRAN, 1) SCHED_FEAT(WAKEUP_PREEMPT, 1) diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 3918e01994e0..2eb4bd6a526c 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c @@ -3,15 +3,18 @@ * policies) */ +#ifdef CONFIG_RT_GROUP_SCHED + +#define rt_entity_is_task(rt_se) (!(rt_se)->my_q) + static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) { +#ifdef CONFIG_SCHED_DEBUG + WARN_ON_ONCE(!rt_entity_is_task(rt_se)); +#endif return container_of(rt_se, struct task_struct, rt); } -#ifdef CONFIG_RT_GROUP_SCHED - -#define rt_entity_is_task(rt_se) (!(rt_se)->my_q) - static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) { return rt_rq->rq; @@ -26,6 +29,11 @@ static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) #define rt_entity_is_task(rt_se) (1) +static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) +{ + return container_of(rt_se, struct task_struct, rt); +} + static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) { return container_of(rt_rq, struct rq, rt); @@ -128,6 +136,11 @@ static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); } +static inline int has_pushable_tasks(struct rq *rq) +{ + return !plist_head_empty(&rq->rt.pushable_tasks); +} + #else static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) @@ -602,6 +615,8 @@ static void update_curr_rt(struct rq *rq) curr->se.exec_start = rq->clock; cpuacct_charge(curr, delta_exec); + sched_rt_avg_update(rq, delta_exec); + if (!rt_bandwidth_enabled()) return; @@ -874,8 +889,6 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) enqueue_pushable_task(rq, p); - - inc_cpu_load(rq, p->se.load.weight); } static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) @@ -886,8 +899,6 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) dequeue_rt_entity(rt_se); dequeue_pushable_task(rq, p); - - dec_cpu_load(rq, p->se.load.weight); } /* @@ -1064,6 +1075,14 @@ static struct task_struct *pick_next_task_rt(struct rq *rq) if (p) dequeue_pushable_task(rq, p); +#ifdef CONFIG_SMP + /* + * We detect this state here so that we can avoid taking the RQ + * lock again later if there is no need to push + */ + rq->post_schedule = has_pushable_tasks(rq); +#endif + return p; } @@ -1162,13 +1181,6 @@ static int find_lowest_rq(struct task_struct *task) return -1; /* No targets found */ /* - * Only consider CPUs that are usable for migration. - * I guess we might want to change cpupri_find() to ignore those - * in the first place. - */ - cpumask_and(lowest_mask, lowest_mask, cpu_active_mask); - - /* * At this point we have built a mask of cpus representing the * lowest priority tasks in the system. Now we want to elect * the best one based on our affinity and topology. @@ -1262,11 +1274,6 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) return lowest_rq; } -static inline int has_pushable_tasks(struct rq *rq) -{ - return !plist_head_empty(&rq->rt.pushable_tasks); -} - static struct task_struct *pick_next_pushable_task(struct rq *rq) { struct task_struct *p; @@ -1466,23 +1473,9 @@ static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) pull_rt_task(rq); } -/* - * assumes rq->lock is held - */ -static int needs_post_schedule_rt(struct rq *rq) -{ - return has_pushable_tasks(rq); -} - static void post_schedule_rt(struct rq *rq) { - /* - * This is only called if needs_post_schedule_rt() indicates that - * we need to push tasks away - */ - spin_lock_irq(&rq->lock); push_rt_tasks(rq); - spin_unlock_irq(&rq->lock); } /* @@ -1758,7 +1751,6 @@ static const struct sched_class rt_sched_class = { .rq_online = rq_online_rt, .rq_offline = rq_offline_rt, .pre_schedule = pre_schedule_rt, - .needs_post_schedule = needs_post_schedule_rt, .post_schedule = post_schedule_rt, .task_wake_up = task_wake_up_rt, .switched_from = switched_from_rt, diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 71d8dc7f9920..3125cff1c570 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c @@ -245,6 +245,14 @@ static int max_wakeup_granularity_ns = NSEC_PER_SEC; /* 1 second */ #endif static struct ctl_table kern_table[] = { + { + .ctl_name = CTL_UNNUMBERED, + .procname = "sched_child_runs_first", + .data = &sysctl_sched_child_runs_first, + .maxlen = sizeof(unsigned int), + .mode = 0644, + .proc_handler = &proc_dointvec, + }, #ifdef CONFIG_SCHED_DEBUG { .ctl_name = CTL_UNNUMBERED, @@ -299,14 +307,6 @@ static struct ctl_table kern_table[] = { }, { .ctl_name = CTL_UNNUMBERED, - .procname = "sched_child_runs_first", - .data = &sysctl_sched_child_runs_first, - .maxlen = sizeof(unsigned int), - .mode = 0644, - .proc_handler = &proc_dointvec, - }, - { - .ctl_name = CTL_UNNUMBERED, .procname = "sched_features", .data = &sysctl_sched_features, .maxlen = sizeof(unsigned int), @@ -331,6 +331,14 @@ static struct ctl_table kern_table[] = { }, { .ctl_name = CTL_UNNUMBERED, + .procname = "sched_time_avg", + .data = &sysctl_sched_time_avg, + .maxlen = sizeof(unsigned int), + .mode = 0644, + .proc_handler = &proc_dointvec, + }, + { + .ctl_name = CTL_UNNUMBERED, .procname = "timer_migration", .data = &sysctl_timer_migration, .maxlen = sizeof(unsigned int), diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 3c44b56b0da7..addfe2df93b1 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c @@ -317,8 +317,6 @@ static int worker_thread(void *__cwq) if (cwq->wq->freezeable) set_freezable(); - set_user_nice(current, -5); - for (;;) { prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); if (!freezing(current) && |