diff options
author | Kosuke Tatsukawa <tatsu@ab.jp.nec.com> | 2015-10-02 08:27:05 +0000 |
---|---|---|
committer | Sasha Levin <sasha.levin@oracle.com> | 2015-10-31 09:00:00 -0400 |
commit | b008351f30d7d60b34e0469fc07a8f5b1ac098ad (patch) | |
tree | 5dcca27695636777cdfd1e764428ce87cb771aa0 /sound/soc | |
parent | 80e5c4ddd2fcbf99edd31a7c1379b3907cfd4f38 (diff) |
tty: fix stall caused by missing memory barrier in drivers/tty/n_tty.c
[ Upstream commit e81107d4c6bd098878af9796b24edc8d4a9524fd ]
My colleague ran into a program stall on a x86_64 server, where
n_tty_read() was waiting for data even if there was data in the buffer
in the pty. kernel stack for the stuck process looks like below.
#0 [ffff88303d107b58] __schedule at ffffffff815c4b20
#1 [ffff88303d107bd0] schedule at ffffffff815c513e
#2 [ffff88303d107bf0] schedule_timeout at ffffffff815c7818
#3 [ffff88303d107ca0] wait_woken at ffffffff81096bd2
#4 [ffff88303d107ce0] n_tty_read at ffffffff8136fa23
#5 [ffff88303d107dd0] tty_read at ffffffff81368013
#6 [ffff88303d107e20] __vfs_read at ffffffff811a3704
#7 [ffff88303d107ec0] vfs_read at ffffffff811a3a57
#8 [ffff88303d107f00] sys_read at ffffffff811a4306
#9 [ffff88303d107f50] entry_SYSCALL_64_fastpath at ffffffff815c86d7
There seems to be two problems causing this issue.
First, in drivers/tty/n_tty.c, __receive_buf() stores the data and
updates ldata->commit_head using smp_store_release() and then checks
the wait queue using waitqueue_active(). However, since there is no
memory barrier, __receive_buf() could return without calling
wake_up_interactive_poll(), and at the same time, n_tty_read() could
start to wait in wait_woken() as in the following chart.
__receive_buf() n_tty_read()
------------------------------------------------------------------------
if (waitqueue_active(&tty->read_wait))
/* Memory operations issued after the
RELEASE may be completed before the
RELEASE operation has completed */
add_wait_queue(&tty->read_wait, &wait);
...
if (!input_available_p(tty, 0)) {
smp_store_release(&ldata->commit_head,
ldata->read_head);
...
timeout = wait_woken(&wait,
TASK_INTERRUPTIBLE, timeout);
------------------------------------------------------------------------
The second problem is that n_tty_read() also lacks a memory barrier
call and could also cause __receive_buf() to return without calling
wake_up_interactive_poll(), and n_tty_read() to wait in wait_woken()
as in the chart below.
__receive_buf() n_tty_read()
------------------------------------------------------------------------
spin_lock_irqsave(&q->lock, flags);
/* from add_wait_queue() */
...
if (!input_available_p(tty, 0)) {
/* Memory operations issued after the
RELEASE may be completed before the
RELEASE operation has completed */
smp_store_release(&ldata->commit_head,
ldata->read_head);
if (waitqueue_active(&tty->read_wait))
__add_wait_queue(q, wait);
spin_unlock_irqrestore(&q->lock,flags);
/* from add_wait_queue() */
...
timeout = wait_woken(&wait,
TASK_INTERRUPTIBLE, timeout);
------------------------------------------------------------------------
There are also other places in drivers/tty/n_tty.c which have similar
calls to waitqueue_active(), so instead of adding many memory barrier
calls, this patch simply removes the call to waitqueue_active(),
leaving just wake_up*() behind.
This fixes both problems because, even though the memory access before
or after the spinlocks in both wake_up*() and add_wait_queue() can
sneak into the critical section, it cannot go past it and the critical
section assures that they will be serialized (please see "INTER-CPU
ACQUIRING BARRIER EFFECTS" in Documentation/memory-barriers.txt for a
better explanation). Moreover, the resulting code is much simpler.
Latency measurement using a ping-pong test over a pty doesn't show any
visible performance drop.
Signed-off-by: Kosuke Tatsukawa <tatsu@ab.jp.nec.com>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Diffstat (limited to 'sound/soc')
0 files changed, 0 insertions, 0 deletions