summaryrefslogtreecommitdiff
path: root/Documentation/driver-api
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/driver-api')
-rw-r--r--Documentation/driver-api/gpio/driver.rst138
-rw-r--r--Documentation/driver-api/sgi-ioc4.rst49
2 files changed, 116 insertions, 71 deletions
diff --git a/Documentation/driver-api/gpio/driver.rst b/Documentation/driver-api/gpio/driver.rst
index 921c71a3d683..3fdb32422f8a 100644
--- a/Documentation/driver-api/gpio/driver.rst
+++ b/Documentation/driver-api/gpio/driver.rst
@@ -69,9 +69,9 @@ driver code:
The code implementing a gpio_chip should support multiple instances of the
controller, preferably using the driver model. That code will configure each
-gpio_chip and issue ``gpiochip_add[_data]()`` or ``devm_gpiochip_add_data()``.
-Removing a GPIO controller should be rare; use ``[devm_]gpiochip_remove()``
-when it is unavoidable.
+gpio_chip and issue gpiochip_add(), gpiochip_add_data(), or
+devm_gpiochip_add_data(). Removing a GPIO controller should be rare; use
+gpiochip_remove() when it is unavoidable.
Often a gpio_chip is part of an instance-specific structure with states not
exposed by the GPIO interfaces, such as addressing, power management, and more.
@@ -259,7 +259,7 @@ most often cascaded off a parent interrupt controller, and in some special
cases the GPIO logic is melded with a SoC's primary interrupt controller.
The IRQ portions of the GPIO block are implemented using an irq_chip, using
-the header <linux/irq.h>. So basically such a driver is utilizing two sub-
+the header <linux/irq.h>. So this combined driver is utilizing two sub-
systems simultaneously: gpio and irq.
It is legal for any IRQ consumer to request an IRQ from any irqchip even if it
@@ -391,25 +391,119 @@ Infrastructure helpers for GPIO irqchips
----------------------------------------
To help out in handling the set-up and management of GPIO irqchips and the
-associated irqdomain and resource allocation callbacks, the gpiolib has
-some helpers that can be enabled by selecting the GPIOLIB_IRQCHIP Kconfig
-symbol:
-
-- gpiochip_irqchip_add(): adds a chained cascaded irqchip to a gpiochip. It
- will pass the struct gpio_chip* for the chip to all IRQ callbacks, so the
- callbacks need to embed the gpio_chip in its state container and obtain a
- pointer to the container using container_of().
- (See Documentation/driver-api/driver-model/design-patterns.rst)
+associated irqdomain and resource allocation callbacks. These are activated
+by selecting the Kconfig symbol GPIOLIB_IRQCHIP. If the symbol
+IRQ_DOMAIN_HIERARCHY is also selected, hierarchical helpers will also be
+provided. A big portion of overhead code will be managed by gpiolib,
+under the assumption that your interrupts are 1-to-1-mapped to the
+GPIO line index:
+
+ GPIO line offset Hardware IRQ
+ 0 0
+ 1 1
+ 2 2
+ ... ...
+ ngpio-1 ngpio-1
+
+If some GPIO lines do not have corresponding IRQs, the bitmask valid_mask
+and the flag need_valid_mask in gpio_irq_chip can be used to mask off some
+lines as invalid for associating with IRQs.
+
+The preferred way to set up the helpers is to fill in the
+struct gpio_irq_chip inside struct gpio_chip before adding the gpio_chip.
+If you do this, the additional irq_chip will be set up by gpiolib at the
+same time as setting up the rest of the GPIO functionality. The following
+is a typical example of a cascaded interrupt handler using gpio_irq_chip:
+
+ /* Typical state container with dynamic irqchip */
+ struct my_gpio {
+ struct gpio_chip gc;
+ struct irq_chip irq;
+ };
+
+ int irq; /* from platform etc */
+ struct my_gpio *g;
+ struct gpio_irq_chip *girq;
+
+ /* Set up the irqchip dynamically */
+ g->irq.name = "my_gpio_irq";
+ g->irq.irq_ack = my_gpio_ack_irq;
+ g->irq.irq_mask = my_gpio_mask_irq;
+ g->irq.irq_unmask = my_gpio_unmask_irq;
+ g->irq.irq_set_type = my_gpio_set_irq_type;
+
+ /* Get a pointer to the gpio_irq_chip */
+ girq = &g->gc.irq;
+ girq->chip = &g->irq;
+ girq->parent_handler = ftgpio_gpio_irq_handler;
+ girq->num_parents = 1;
+ girq->parents = devm_kcalloc(dev, 1, sizeof(*girq->parents),
+ GFP_KERNEL);
+ if (!girq->parents)
+ return -ENOMEM;
+ girq->default_type = IRQ_TYPE_NONE;
+ girq->handler = handle_bad_irq;
+ girq->parents[0] = irq;
+
+ return devm_gpiochip_add_data(dev, &g->gc, g);
+
+The helper support using hierarchical interrupt controllers as well.
+In this case the typical set-up will look like this:
+
+ /* Typical state container with dynamic irqchip */
+ struct my_gpio {
+ struct gpio_chip gc;
+ struct irq_chip irq;
+ struct fwnode_handle *fwnode;
+ };
+
+ int irq; /* from platform etc */
+ struct my_gpio *g;
+ struct gpio_irq_chip *girq;
+
+ /* Set up the irqchip dynamically */
+ g->irq.name = "my_gpio_irq";
+ g->irq.irq_ack = my_gpio_ack_irq;
+ g->irq.irq_mask = my_gpio_mask_irq;
+ g->irq.irq_unmask = my_gpio_unmask_irq;
+ g->irq.irq_set_type = my_gpio_set_irq_type;
+
+ /* Get a pointer to the gpio_irq_chip */
+ girq = &g->gc.irq;
+ girq->chip = &g->irq;
+ girq->default_type = IRQ_TYPE_NONE;
+ girq->handler = handle_bad_irq;
+ girq->fwnode = g->fwnode;
+ girq->parent_domain = parent;
+ girq->child_to_parent_hwirq = my_gpio_child_to_parent_hwirq;
+
+ return devm_gpiochip_add_data(dev, &g->gc, g);
+
+As you can see pretty similar, but you do not supply a parent handler for
+the IRQ, instead a parent irqdomain, an fwnode for the hardware and
+a funcion .child_to_parent_hwirq() that has the purpose of looking up
+the parent hardware irq from a child (i.e. this gpio chip) hardware irq.
+As always it is good to look at examples in the kernel tree for advice
+on how to find the required pieces.
+
+The old way of adding irqchips to gpiochips after registration is also still
+available but we try to move away from this:
+
+- DEPRECATED: gpiochip_irqchip_add(): adds a chained cascaded irqchip to a
+ gpiochip. It will pass the struct gpio_chip* for the chip to all IRQ
+ callbacks, so the callbacks need to embed the gpio_chip in its state
+ container and obtain a pointer to the container using container_of().
+ (See Documentation/driver-model/design-patterns.txt)
- gpiochip_irqchip_add_nested(): adds a nested cascaded irqchip to a gpiochip,
as discussed above regarding different types of cascaded irqchips. The
cascaded irq has to be handled by a threaded interrupt handler.
Apart from that it works exactly like the chained irqchip.
-- gpiochip_set_chained_irqchip(): sets up a chained cascaded irq handler for a
- gpio_chip from a parent IRQ and passes the struct gpio_chip* as handler
- data. Notice that we pass is as the handler data, since the irqchip data is
- likely used by the parent irqchip.
+- DEPRECATED: gpiochip_set_chained_irqchip(): sets up a chained cascaded irq
+ handler for a gpio_chip from a parent IRQ and passes the struct gpio_chip*
+ as handler data. Notice that we pass is as the handler data, since the
+ irqchip data is likely used by the parent irqchip.
- gpiochip_set_nested_irqchip(): sets up a nested cascaded irq handler for a
gpio_chip from a parent IRQ. As the parent IRQ has usually been
@@ -418,11 +512,11 @@ symbol:
If there is a need to exclude certain GPIO lines from the IRQ domain handled by
these helpers, we can set .irq.need_valid_mask of the gpiochip before
-``[devm_]gpiochip_add_data()`` is called. This allocates an .irq.valid_mask with as
-many bits set as there are GPIO lines in the chip, each bit representing line
-0..n-1. Drivers can exclude GPIO lines by clearing bits from this mask. The mask
-must be filled in before gpiochip_irqchip_add() or gpiochip_irqchip_add_nested()
-is called.
+devm_gpiochip_add_data() or gpiochip_add_data() is called. This allocates an
+.irq.valid_mask with as many bits set as there are GPIO lines in the chip, each
+bit representing line 0..n-1. Drivers can exclude GPIO lines by clearing bits
+from this mask. The mask must be filled in before gpiochip_irqchip_add() or
+gpiochip_irqchip_add_nested() is called.
To use the helpers please keep the following in mind:
diff --git a/Documentation/driver-api/sgi-ioc4.rst b/Documentation/driver-api/sgi-ioc4.rst
deleted file mode 100644
index 72709222d3c0..000000000000
--- a/Documentation/driver-api/sgi-ioc4.rst
+++ /dev/null
@@ -1,49 +0,0 @@
-====================================
-SGI IOC4 PCI (multi function) device
-====================================
-
-The SGI IOC4 PCI device is a bit of a strange beast, so some notes on
-it are in order.
-
-First, even though the IOC4 performs multiple functions, such as an
-IDE controller, a serial controller, a PS/2 keyboard/mouse controller,
-and an external interrupt mechanism, it's not implemented as a
-multifunction device. The consequence of this from a software
-standpoint is that all these functions share a single IRQ, and
-they can't all register to own the same PCI device ID. To make
-matters a bit worse, some of the register blocks (and even registers
-themselves) present in IOC4 are mixed-purpose between these several
-functions, meaning that there's no clear "owning" device driver.
-
-The solution is to organize the IOC4 driver into several independent
-drivers, "ioc4", "sgiioc4", and "ioc4_serial". Note that there is no
-PS/2 controller driver as this functionality has never been wired up
-on a shipping IO card.
-
-ioc4
-====
-This is the core (or shim) driver for IOC4. It is responsible for
-initializing the basic functionality of the chip, and allocating
-the PCI resources that are shared between the IOC4 functions.
-
-This driver also provides registration functions that the other
-IOC4 drivers can call to make their presence known. Each driver
-needs to provide a probe and remove function, which are invoked
-by the core driver at appropriate times. The interface of these
-IOC4 function probe and remove operations isn't precisely the same
-as PCI device probe and remove operations, but is logically the
-same operation.
-
-sgiioc4
-=======
-This is the IDE driver for IOC4. Its name isn't very descriptive
-simply for historical reasons (it used to be the only IOC4 driver
-component). There's not much to say about it other than it hooks
-up to the ioc4 driver via the appropriate registration, probe, and
-remove functions.
-
-ioc4_serial
-===========
-This is the serial driver for IOC4. There's not much to say about it
-other than it hooks up to the ioc4 driver via the appropriate registration,
-probe, and remove functions.