summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/pinctrl.txt950
1 files changed, 950 insertions, 0 deletions
diff --git a/Documentation/pinctrl.txt b/Documentation/pinctrl.txt
new file mode 100644
index 000000000000..b04cb7d45a16
--- /dev/null
+++ b/Documentation/pinctrl.txt
@@ -0,0 +1,950 @@
+PINCTRL (PIN CONTROL) subsystem
+This document outlines the pin control subsystem in Linux
+
+This subsystem deals with:
+
+- Enumerating and naming controllable pins
+
+- Multiplexing of pins, pads, fingers (etc) see below for details
+
+The intention is to also deal with:
+
+- Software-controlled biasing and driving mode specific pins, such as
+ pull-up/down, open drain etc, load capacitance configuration when controlled
+ by software, etc.
+
+
+Top-level interface
+===================
+
+Definition of PIN CONTROLLER:
+
+- A pin controller is a piece of hardware, usually a set of registers, that
+ can control PINs. It may be able to multiplex, bias, set load capacitance,
+ set drive strength etc for individual pins or groups of pins.
+
+Definition of PIN:
+
+- PINS are equal to pads, fingers, balls or whatever packaging input or
+ output line you want to control and these are denoted by unsigned integers
+ in the range 0..maxpin. This numberspace is local to each PIN CONTROLLER, so
+ there may be several such number spaces in a system. This pin space may
+ be sparse - i.e. there may be gaps in the space with numbers where no
+ pin exists.
+
+When a PIN CONTROLLER is instatiated, it will register a descriptor to the
+pin control framework, and this descriptor contains an array of pin descriptors
+describing the pins handled by this specific pin controller.
+
+Here is an example of a PGA (Pin Grid Array) chip seen from underneath:
+
+ A B C D E F G H
+
+ 8 o o o o o o o o
+
+ 7 o o o o o o o o
+
+ 6 o o o o o o o o
+
+ 5 o o o o o o o o
+
+ 4 o o o o o o o o
+
+ 3 o o o o o o o o
+
+ 2 o o o o o o o o
+
+ 1 o o o o o o o o
+
+To register a pin controller and name all the pins on this package we can do
+this in our driver:
+
+#include <linux/pinctrl/pinctrl.h>
+
+const struct pinctrl_pin_desc __refdata foo_pins[] = {
+ PINCTRL_PIN(0, "A1"),
+ PINCTRL_PIN(1, "A2"),
+ PINCTRL_PIN(2, "A3"),
+ ...
+ PINCTRL_PIN(61, "H6"),
+ PINCTRL_PIN(62, "H7"),
+ PINCTRL_PIN(63, "H8"),
+};
+
+static struct pinctrl_desc foo_desc = {
+ .name = "foo",
+ .pins = foo_pins,
+ .npins = ARRAY_SIZE(foo_pins),
+ .maxpin = 63,
+ .owner = THIS_MODULE,
+};
+
+int __init foo_probe(void)
+{
+ struct pinctrl_dev *pctl;
+
+ pctl = pinctrl_register(&foo_desc, <PARENT>, NULL);
+ if (IS_ERR(pctl))
+ pr_err("could not register foo pin driver\n");
+}
+
+Pins usually have fancier names than this. You can find these in the dataheet
+for your chip. Notice that the core pinctrl.h file provides a fancy macro
+called PINCTRL_PIN() to create the struct entries. As you can see I enumerated
+the pins from 0 in the upper left corner to 63 in the lower right corner,
+this enumeration was arbitrarily chosen, in practice you need to think
+through your numbering system so that it matches the layout of registers
+and such things in your driver, or the code may become complicated. You must
+also consider matching of offsets to the GPIO ranges that may be handled by
+the pin controller.
+
+For a padring with 467 pads, as opposed to actual pins, I used an enumeration
+like this, walking around the edge of the chip, which seems to be industry
+standard too (all these pads had names, too):
+
+
+ 0 ..... 104
+ 466 105
+ . .
+ . .
+ 358 224
+ 357 .... 225
+
+
+Pin groups
+==========
+
+Many controllers need to deal with groups of pins, so the pin controller
+subsystem has a mechanism for enumerating groups of pins and retrieving the
+actual enumerated pins that are part of a certain group.
+
+For example, say that we have a group of pins dealing with an SPI interface
+on { 0, 8, 16, 24 }, and a group of pins dealing with an I2C interface on pins
+on { 24, 25 }.
+
+These two groups are presented to the pin control subsystem by implementing
+some generic pinctrl_ops like this:
+
+#include <linux/pinctrl/pinctrl.h>
+
+struct foo_group {
+ const char *name;
+ const unsigned int *pins;
+ const unsigned num_pins;
+};
+
+static unsigned int spi0_pins[] = { 0, 8, 16, 24 };
+static unsigned int i2c0_pins[] = { 24, 25 };
+
+static const struct foo_group foo_groups[] = {
+ {
+ .name = "spi0_grp",
+ .pins = spi0_pins,
+ .num_pins = ARRAY_SIZE(spi0_pins),
+ },
+ {
+ .name = "i2c0_grp",
+ .pins = i2c0_pins,
+ .num_pins = ARRAY_SIZE(i2c0_pins),
+ },
+};
+
+
+static int foo_list_groups(struct pinctrl_dev *pctldev, unsigned selector)
+{
+ if (selector >= ARRAY_SIZE(foo_groups))
+ return -EINVAL;
+ return 0;
+}
+
+static const char *foo_get_group_name(struct pinctrl_dev *pctldev,
+ unsigned selector)
+{
+ return foo_groups[selector].name;
+}
+
+static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector,
+ unsigned ** const pins,
+ unsigned * const num_pins)
+{
+ *pins = (unsigned *) foo_groups[selector].pins;
+ *num_pins = foo_groups[selector].num_pins;
+ return 0;
+}
+
+static struct pinctrl_ops foo_pctrl_ops = {
+ .list_groups = foo_list_groups,
+ .get_group_name = foo_get_group_name,
+ .get_group_pins = foo_get_group_pins,
+};
+
+
+static struct pinctrl_desc foo_desc = {
+ ...
+ .pctlops = &foo_pctrl_ops,
+};
+
+The pin control subsystem will call the .list_groups() function repeatedly
+beginning on 0 until it returns non-zero to determine legal selectors, then
+it will call the other functions to retrieve the name and pins of the group.
+Maintaining the data structure of the groups is up to the driver, this is
+just a simple example - in practice you may need more entries in your group
+structure, for example specific register ranges associated with each group
+and so on.
+
+
+Interaction with the GPIO subsystem
+===================================
+
+The GPIO drivers may want to perform operations of various types on the same
+physical pins that are also registered as pin controller pins.
+
+Since the pin controller subsystem have its pinspace local to the pin
+controller we need a mapping so that the pin control subsystem can figure out
+which pin controller handles control of a certain GPIO pin. Since a single
+pin controller may be muxing several GPIO ranges (typically SoCs that have
+one set of pins but internally several GPIO silicon blocks, each modeled as
+a struct gpio_chip) any number of GPIO ranges can be added to a pin controller
+instance like this:
+
+struct gpio_chip chip_a;
+struct gpio_chip chip_b;
+
+static struct pinctrl_gpio_range gpio_range_a = {
+ .name = "chip a",
+ .id = 0,
+ .base = 32,
+ .npins = 16,
+ .gc = &chip_a;
+};
+
+static struct pinctrl_gpio_range gpio_range_a = {
+ .name = "chip b",
+ .id = 0,
+ .base = 48,
+ .npins = 8,
+ .gc = &chip_b;
+};
+
+
+{
+ struct pinctrl_dev *pctl;
+ ...
+ pinctrl_add_gpio_range(pctl, &gpio_range_a);
+ pinctrl_add_gpio_range(pctl, &gpio_range_b);
+}
+
+So this complex system has one pin controller handling two different
+GPIO chips. Chip a has 16 pins and chip b has 8 pins. They are mapped in
+the global GPIO pin space at:
+
+chip a: [32 .. 47]
+chip b: [48 .. 55]
+
+When GPIO-specific functions in the pin control subsystem are called, these
+ranges will be used to look up the apropriate pin controller by inspecting
+and matching the pin to the pin ranges across all controllers. When a
+pin controller handling the matching range is found, GPIO-specific functions
+will be called on that specific pin controller.
+
+For all functionalities dealing with pin biasing, pin muxing etc, the pin
+controller subsystem will subtract the range's .base offset from the passed
+in gpio pin number, and pass that on to the pin control driver, so the driver
+will get an offset into its handled number range. Further it is also passed
+the range ID value, so that the pin controller knows which range it should
+deal with.
+
+For example: if a user issues pinctrl_gpio_set_foo(50), the pin control
+subsystem will find that the second range on this pin controller matches,
+subtract the base 48 and call the
+pinctrl_driver_gpio_set_foo(pinctrl, range, 2) where the latter function has
+this signature:
+
+int pinctrl_driver_gpio_set_foo(struct pinctrl_dev *pctldev,
+ struct pinctrl_gpio_range *rangeid,
+ unsigned offset);
+
+Now the driver knows that we want to do some GPIO-specific operation on the
+second GPIO range handled by "chip b", at offset 2 in that specific range.
+
+(If the GPIO subsystem is ever refactored to use a local per-GPIO controller
+pin space, this mapping will need to be augmented accordingly.)
+
+
+PINMUX interfaces
+=================
+
+These calls use the pinmux_* naming prefix. No other calls should use that
+prefix.
+
+
+What is pinmuxing?
+==================
+
+PINMUX, also known as padmux, ballmux, alternate functions or mission modes
+is a way for chip vendors producing some kind of electrical packages to use
+a certain physical pin (ball, pad, finger, etc) for multiple mutually exclusive
+functions, depending on the application. By "application" in this context
+we usually mean a way of soldering or wiring the package into an electronic
+system, even though the framework makes it possible to also change the function
+at runtime.
+
+Here is an example of a PGA (Pin Grid Array) chip seen from underneath:
+
+ A B C D E F G H
+ +---+
+ 8 | o | o o o o o o o
+ | |
+ 7 | o | o o o o o o o
+ | |
+ 6 | o | o o o o o o o
+ +---+---+
+ 5 | o | o | o o o o o o
+ +---+---+ +---+
+ 4 o o o o o o | o | o
+ | |
+ 3 o o o o o o | o | o
+ | |
+ 2 o o o o o o | o | o
+ +-------+-------+-------+---+---+
+ 1 | o o | o o | o o | o | o |
+ +-------+-------+-------+---+---+
+
+This is not tetris. The game to think of is chess. Not all PGA/BGA packages
+are chessboard-like, big ones have "holes" in some arrangement according to
+different design patterns, but we're using this as a simple example. Of the
+pins you see some will be taken by things like a few VCC and GND to feed power
+to the chip, and quite a few will be taken by large ports like an external
+memory interface. The remaining pins will often be subject to pin multiplexing.
+
+The example 8x8 PGA package above will have pin numbers 0 thru 63 assigned to
+its physical pins. It will name the pins { A1, A2, A3 ... H6, H7, H8 } using
+pinctrl_register_pins() and a suitable data set as shown earlier.
+
+In this 8x8 BGA package the pins { A8, A7, A6, A5 } can be used as an SPI port
+(these are four pins: CLK, RXD, TXD, FRM). In that case, pin B5 can be used as
+some general-purpose GPIO pin. However, in another setting, pins { A5, B5 } can
+be used as an I2C port (these are just two pins: SCL, SDA). Needless to say,
+we cannot use the SPI port and I2C port at the same time. However in the inside
+of the package the silicon performing the SPI logic can alternatively be routed
+out on pins { G4, G3, G2, G1 }.
+
+On the botton row at { A1, B1, C1, D1, E1, F1, G1, H1 } we have something
+special - it's an external MMC bus that can be 2, 4 or 8 bits wide, and it will
+consume 2, 4 or 8 pins respectively, so either { A1, B1 } are taken or
+{ A1, B1, C1, D1 } or all of them. If we use all 8 bits, we cannot use the SPI
+port on pins { G4, G3, G2, G1 } of course.
+
+This way the silicon blocks present inside the chip can be multiplexed "muxed"
+out on different pin ranges. Often contemporary SoC (systems on chip) will
+contain several I2C, SPI, SDIO/MMC, etc silicon blocks that can be routed to
+different pins by pinmux settings.
+
+Since general-purpose I/O pins (GPIO) are typically always in shortage, it is
+common to be able to use almost any pin as a GPIO pin if it is not currently
+in use by some other I/O port.
+
+
+Pinmux conventions
+==================
+
+The purpose of the pinmux functionality in the pin controller subsystem is to
+abstract and provide pinmux settings to the devices you choose to instantiate
+in your machine configuration. It is inspired by the clk, GPIO and regulator
+subsystems, so devices will request their mux setting, but it's also possible
+to request a single pin for e.g. GPIO.
+
+Definitions:
+
+- FUNCTIONS can be switched in and out by a driver residing with the pin
+ control subsystem in the drivers/pinctrl/* directory of the kernel. The
+ pin control driver knows the possible functions. In the example above you can
+ identify three pinmux functions, one for spi, one for i2c and one for mmc.
+
+- FUNCTIONS are assumed to be enumerable from zero in a one-dimensional array.
+ In this case the array could be something like: { spi0, i2c0, mmc0 }
+ for the three available functions.
+
+- FUNCTIONS have PIN GROUPS as defined on the generic level - so a certain
+ function is *always* associated with a certain set of pin groups, could
+ be just a single one, but could also be many. In the example above the
+ function i2c is associated with the pins { A5, B5 }, enumerated as
+ { 24, 25 } in the controller pin space.
+
+ The Function spi is associated with pin groups { A8, A7, A6, A5 }
+ and { G4, G3, G2, G1 }, which are enumerated as { 0, 8, 16, 24 } and
+ { 38, 46, 54, 62 } respectively.
+
+ Group names must be unique per pin controller, no two groups on the same
+ controller may have the same name.
+
+- The combination of a FUNCTION and a PIN GROUP determine a certain function
+ for a certain set of pins. The knowledge of the functions and pin groups
+ and their machine-specific particulars are kept inside the pinmux driver,
+ from the outside only the enumerators are known, and the driver core can:
+
+ - Request the name of a function with a certain selector (>= 0)
+ - A list of groups associated with a certain function
+ - Request that a certain group in that list to be activated for a certain
+ function
+
+ As already described above, pin groups are in turn self-descriptive, so
+ the core will retrieve the actual pin range in a certain group from the
+ driver.
+
+- FUNCTIONS and GROUPS on a certain PIN CONTROLLER are MAPPED to a certain
+ device by the board file, device tree or similar machine setup configuration
+ mechanism, similar to how regulators are connected to devices, usually by
+ name. Defining a pin controller, function and group thus uniquely identify
+ the set of pins to be used by a certain device. (If only one possible group
+ of pins is available for the function, no group name need to be supplied -
+ the core will simply select the first and only group available.)
+
+ In the example case we can define that this particular machine shall
+ use device spi0 with pinmux function fspi0 group gspi0 and i2c0 on function
+ fi2c0 group gi2c0, on the primary pin controller, we get mappings
+ like these:
+
+ {
+ {"map-spi0", spi0, pinctrl0, fspi0, gspi0},
+ {"map-i2c0", i2c0, pinctrl0, fi2c0, gi2c0}
+ }
+
+ Every map must be assigned a symbolic name, pin controller and function.
+ The group is not compulsory - if it is omitted the first group presented by
+ the driver as applicable for the function will be selected, which is
+ useful for simple cases.
+
+ The device name is present in map entries tied to specific devices. Maps
+ without device names are referred to as SYSTEM pinmuxes, such as can be taken
+ by the machine implementation on boot and not tied to any specific device.
+
+ It is possible to map several groups to the same combination of device,
+ pin controller and function. This is for cases where a certain function on
+ a certain pin controller may use different sets of pins in different
+ configurations.
+
+- PINS for a certain FUNCTION using a certain PIN GROUP on a certain
+ PIN CONTROLLER are provided on a first-come first-serve basis, so if some
+ other device mux setting or GPIO pin request has already taken your physical
+ pin, you will be denied the use of it. To get (activate) a new setting, the
+ old one has to be put (deactivated) first.
+
+Sometimes the documentation and hardware registers will be oriented around
+pads (or "fingers") rather than pins - these are the soldering surfaces on the
+silicon inside the package, and may or may not match the actual number of
+pins/balls underneath the capsule. Pick some enumeration that makes sense to
+you. Define enumerators only for the pins you can control if that makes sense.
+
+Assumptions:
+
+We assume that the number possible function maps to pin groups is limited by
+the hardware. I.e. we assume that there is no system where any function can be
+mapped to any pin, like in a phone exchange. So the available pins groups for
+a certain function will be limited to a few choices (say up to eight or so),
+not hundreds or any amount of choices. This is the characteristic we have found
+by inspecting available pinmux hardware, and a necessary assumption since we
+expect pinmux drivers to present *all* possible function vs pin group mappings
+to the subsystem.
+
+
+Pinmux drivers
+==============
+
+The pinmux core takes care of preventing conflicts on pins and calling
+the pin controller driver to execute different settings.
+
+It is the responsibility of the pinmux driver to impose further restrictions
+(say for example infer electronic limitations due to load etc) to determine
+whether or not the requested function can actually be allowed, and in case it
+is possible to perform the requested mux setting, poke the hardware so that
+this happens.
+
+Pinmux drivers are required to supply a few callback functions, some are
+optional. Usually the enable() and disable() functions are implemented,
+writing values into some certain registers to activate a certain mux setting
+for a certain pin.
+
+A simple driver for the above example will work by setting bits 0, 1, 2, 3 or 4
+into some register named MUX to select a certain function with a certain
+group of pins would work something like this:
+
+#include <linux/pinctrl/pinctrl.h>
+#include <linux/pinctrl/pinmux.h>
+
+struct foo_group {
+ const char *name;
+ const unsigned int *pins;
+ const unsigned num_pins;
+};
+
+static const unsigned spi0_0_pins[] = { 0, 8, 16, 24 };
+static const unsigned spi0_1_pins[] = { 38, 46, 54, 62 };
+static const unsigned i2c0_pins[] = { 24, 25 };
+static const unsigned mmc0_1_pins[] = { 56, 57 };
+static const unsigned mmc0_2_pins[] = { 58, 59 };
+static const unsigned mmc0_3_pins[] = { 60, 61, 62, 63 };
+
+static const struct foo_group foo_groups[] = {
+ {
+ .name = "spi0_0_grp",
+ .pins = spi0_0_pins,
+ .num_pins = ARRAY_SIZE(spi0_0_pins),
+ },
+ {
+ .name = "spi0_1_grp",
+ .pins = spi0_1_pins,
+ .num_pins = ARRAY_SIZE(spi0_1_pins),
+ },
+ {
+ .name = "i2c0_grp",
+ .pins = i2c0_pins,
+ .num_pins = ARRAY_SIZE(i2c0_pins),
+ },
+ {
+ .name = "mmc0_1_grp",
+ .pins = mmc0_1_pins,
+ .num_pins = ARRAY_SIZE(mmc0_1_pins),
+ },
+ {
+ .name = "mmc0_2_grp",
+ .pins = mmc0_2_pins,
+ .num_pins = ARRAY_SIZE(mmc0_2_pins),
+ },
+ {
+ .name = "mmc0_3_grp",
+ .pins = mmc0_3_pins,
+ .num_pins = ARRAY_SIZE(mmc0_3_pins),
+ },
+};
+
+
+static int foo_list_groups(struct pinctrl_dev *pctldev, unsigned selector)
+{
+ if (selector >= ARRAY_SIZE(foo_groups))
+ return -EINVAL;
+ return 0;
+}
+
+static const char *foo_get_group_name(struct pinctrl_dev *pctldev,
+ unsigned selector)
+{
+ return foo_groups[selector].name;
+}
+
+static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector,
+ unsigned ** const pins,
+ unsigned * const num_pins)
+{
+ *pins = (unsigned *) foo_groups[selector].pins;
+ *num_pins = foo_groups[selector].num_pins;
+ return 0;
+}
+
+static struct pinctrl_ops foo_pctrl_ops = {
+ .list_groups = foo_list_groups,
+ .get_group_name = foo_get_group_name,
+ .get_group_pins = foo_get_group_pins,
+};
+
+struct foo_pmx_func {
+ const char *name;
+ const char * const *groups;
+ const unsigned num_groups;
+};
+
+static const char * const spi0_groups[] = { "spi0_1_grp" };
+static const char * const i2c0_groups[] = { "i2c0_grp" };
+static const char * const mmc0_groups[] = { "mmc0_1_grp", "mmc0_2_grp",
+ "mmc0_3_grp" };
+
+static const struct foo_pmx_func foo_functions[] = {
+ {
+ .name = "spi0",
+ .groups = spi0_groups,
+ .num_groups = ARRAY_SIZE(spi0_groups),
+ },
+ {
+ .name = "i2c0",
+ .groups = i2c0_groups,
+ .num_groups = ARRAY_SIZE(i2c0_groups),
+ },
+ {
+ .name = "mmc0",
+ .groups = mmc0_groups,
+ .num_groups = ARRAY_SIZE(mmc0_groups),
+ },
+};
+
+int foo_list_funcs(struct pinctrl_dev *pctldev, unsigned selector)
+{
+ if (selector >= ARRAY_SIZE(foo_functions))
+ return -EINVAL;
+ return 0;
+}
+
+const char *foo_get_fname(struct pinctrl_dev *pctldev, unsigned selector)
+{
+ return myfuncs[selector].name;
+}
+
+static int foo_get_groups(struct pinctrl_dev *pctldev, unsigned selector,
+ const char * const **groups,
+ unsigned * const num_groups)
+{
+ *groups = foo_functions[selector].groups;
+ *num_groups = foo_functions[selector].num_groups;
+ return 0;
+}
+
+int foo_enable(struct pinctrl_dev *pctldev, unsigned selector,
+ unsigned group)
+{
+ u8 regbit = (1 << group);
+
+ writeb((readb(MUX)|regbit), MUX)
+ return 0;
+}
+
+int foo_disable(struct pinctrl_dev *pctldev, unsigned selector,
+ unsigned group)
+{
+ u8 regbit = (1 << group);
+
+ writeb((readb(MUX) & ~(regbit)), MUX)
+ return 0;
+}
+
+struct pinmux_ops foo_pmxops = {
+ .list_functions = foo_list_funcs,
+ .get_function_name = foo_get_fname,
+ .get_function_groups = foo_get_groups,
+ .enable = foo_enable,
+ .disable = foo_disable,
+};
+
+/* Pinmux operations are handled by some pin controller */
+static struct pinctrl_desc foo_desc = {
+ ...
+ .pctlops = &foo_pctrl_ops,
+ .pmxops = &foo_pmxops,
+};
+
+In the example activating muxing 0 and 1 at the same time setting bits
+0 and 1, uses one pin in common so they would collide.
+
+The beauty of the pinmux subsystem is that since it keeps track of all
+pins and who is using them, it will already have denied an impossible
+request like that, so the driver does not need to worry about such
+things - when it gets a selector passed in, the pinmux subsystem makes
+sure no other device or GPIO assignment is already using the selected
+pins. Thus bits 0 and 1 in the control register will never be set at the
+same time.
+
+All the above functions are mandatory to implement for a pinmux driver.
+
+
+Pinmux interaction with the GPIO subsystem
+==========================================
+
+The function list could become long, especially if you can convert every
+individual pin into a GPIO pin independent of any other pins, and then try
+the approach to define every pin as a function.
+
+In this case, the function array would become 64 entries for each GPIO
+setting and then the device functions.
+
+For this reason there is an additional function a pinmux driver can implement
+to enable only GPIO on an individual pin: .gpio_request_enable(). The same
+.free() function as for other functions is assumed to be usable also for
+GPIO pins.
+
+This function will pass in the affected GPIO range identified by the pin
+controller core, so you know which GPIO pins are being affected by the request
+operation.
+
+Alternatively it is fully allowed to use named functions for each GPIO
+pin, the pinmux_request_gpio() will attempt to obtain the function "gpioN"
+where "N" is the global GPIO pin number if no special GPIO-handler is
+registered.
+
+
+Pinmux board/machine configuration
+==================================
+
+Boards and machines define how a certain complete running system is put
+together, including how GPIOs and devices are muxed, how regulators are
+constrained and how the clock tree looks. Of course pinmux settings are also
+part of this.
+
+A pinmux config for a machine looks pretty much like a simple regulator
+configuration, so for the example array above we want to enable i2c and
+spi on the second function mapping:
+
+#include <linux/pinctrl/machine.h>
+
+static struct pinmux_map pmx_mapping[] = {
+ {
+ .ctrl_dev_name = "pinctrl.0",
+ .function = "spi0",
+ .dev_name = "foo-spi.0",
+ },
+ {
+ .ctrl_dev_name = "pinctrl.0",
+ .function = "i2c0",
+ .dev_name = "foo-i2c.0",
+ },
+ {
+ .ctrl_dev_name = "pinctrl.0",
+ .function = "mmc0",
+ .dev_name = "foo-mmc.0",
+ },
+};
+
+The dev_name here matches to the unique device name that can be used to look
+up the device struct (just like with clockdev or regulators). The function name
+must match a function provided by the pinmux driver handling this pin range.
+
+As you can see we may have several pin controllers on the system and thus
+we need to specify which one of them that contain the functions we wish
+to map. The map can also use struct device * directly, so there is no
+inherent need to use strings to specify .dev_name or .ctrl_dev_name, these
+are for the situation where you do not have a handle to the struct device *,
+for example if they are not yet instantiated or cumbersome to obtain.
+
+You register this pinmux mapping to the pinmux subsystem by simply:
+
+ ret = pinmux_register_mappings(&pmx_mapping, ARRAY_SIZE(pmx_mapping));
+
+Since the above construct is pretty common there is a helper macro to make
+it even more compact which assumes you want to use pinctrl.0 and position
+0 for mapping, for example:
+
+static struct pinmux_map pmx_mapping[] = {
+ PINMUX_MAP_PRIMARY("I2CMAP", "i2c0", "foo-i2c.0"),
+};
+
+
+Complex mappings
+================
+
+As it is possible to map a function to different groups of pins an optional
+.group can be specified like this:
+
+...
+{
+ .name = "spi0-pos-A",
+ .ctrl_dev_name = "pinctrl.0",
+ .function = "spi0",
+ .group = "spi0_0_grp",
+ .dev_name = "foo-spi.0",
+},
+{
+ .name = "spi0-pos-B",
+ .ctrl_dev_name = "pinctrl.0",
+ .function = "spi0",
+ .group = "spi0_1_grp",
+ .dev_name = "foo-spi.0",
+},
+...
+
+This example mapping is used to switch between two positions for spi0 at
+runtime, as described further below under the heading "Runtime pinmuxing".
+
+Further it is possible to match several groups of pins to the same function
+for a single device, say for example in the mmc0 example above, where you can
+additively expand the mmc0 bus from 2 to 4 to 8 pins. If we want to use all
+three groups for a total of 2+2+4 = 8 pins (for an 8-bit MMC bus as is the
+case), we define a mapping like this:
+
+...
+{
+ .name "2bit"
+ .ctrl_dev_name = "pinctrl.0",
+ .function = "mmc0",
+ .group = "mmc0_0_grp",
+ .dev_name = "foo-mmc.0",
+},
+{
+ .name "4bit"
+ .ctrl_dev_name = "pinctrl.0",
+ .function = "mmc0",
+ .group = "mmc0_0_grp",
+ .dev_name = "foo-mmc.0",
+},
+{
+ .name "4bit"
+ .ctrl_dev_name = "pinctrl.0",
+ .function = "mmc0",
+ .group = "mmc0_1_grp",
+ .dev_name = "foo-mmc.0",
+},
+{
+ .name "8bit"
+ .ctrl_dev_name = "pinctrl.0",
+ .function = "mmc0",
+ .group = "mmc0_0_grp",
+ .dev_name = "foo-mmc.0",
+},
+{
+ .name "8bit"
+ .ctrl_dev_name = "pinctrl.0",
+ .function = "mmc0",
+ .group = "mmc0_1_grp",
+ .dev_name = "foo-mmc.0",
+},
+{
+ .name "8bit"
+ .ctrl_dev_name = "pinctrl.0",
+ .function = "mmc0",
+ .group = "mmc0_2_grp",
+ .dev_name = "foo-mmc.0",
+},
+...
+
+The result of grabbing this mapping from the device with something like
+this (see next paragraph):
+
+ pmx = pinmux_get(&device, "8bit");
+
+Will be that you activate all the three bottom records in the mapping at
+once. Since they share the same name, pin controller device, funcion and
+device, and since we allow multiple groups to match to a single device, they
+all get selected, and they all get enabled and disable simultaneously by the
+pinmux core.
+
+
+Pinmux requests from drivers
+============================
+
+Generally it is discouraged to let individual drivers get and enable pinmuxes.
+So if possible, handle the pinmuxes in platform code or some other place where
+you have access to all the affected struct device * pointers. In some cases
+where a driver needs to switch between different mux mappings at runtime
+this is not possible.
+
+A driver may request a certain mux to be activated, usually just the default
+mux like this:
+
+#include <linux/pinctrl/pinmux.h>
+
+struct foo_state {
+ struct pinmux *pmx;
+ ...
+};
+
+foo_probe()
+{
+ /* Allocate a state holder named "state" etc */
+ struct pinmux pmx;
+
+ pmx = pinmux_get(&device, NULL);
+ if IS_ERR(pmx)
+ return PTR_ERR(pmx);
+ pinmux_enable(pmx);
+
+ state->pmx = pmx;
+}
+
+foo_remove()
+{
+ pinmux_disable(state->pmx);
+ pinmux_put(state->pmx);
+}
+
+If you want to grab a specific mux mapping and not just the first one found for
+this device you can specify a specific mapping name, for example in the above
+example the second i2c0 setting: pinmux_get(&device, "spi0-pos-B");
+
+This get/enable/disable/put sequence can just as well be handled by bus drivers
+if you don't want each and every driver to handle it and you know the
+arrangement on your bus.
+
+The semantics of the get/enable respective disable/put is as follows:
+
+- pinmux_get() is called in process context to reserve the pins affected with
+ a certain mapping and set up the pinmux core and the driver. It will allocate
+ a struct from the kernel memory to hold the pinmux state.
+
+- pinmux_enable()/pinmux_disable() is quick and can be called from fastpath
+ (irq context) when you quickly want to set up/tear down the hardware muxing
+ when running a device driver. Usually it will just poke some values into a
+ register.
+
+- pinmux_disable() is called in process context to tear down the pin requests
+ and release the state holder struct for the mux setting.
+
+Usually the pinmux core handled the get/put pair and call out to the device
+drivers bookkeeping operations, like checking available functions and the
+associated pins, whereas the enable/disable pass on to the pin controller
+driver which takes care of activating and/or deactivating the mux setting by
+quickly poking some registers.
+
+The pins are allocated for your device when you issue the pinmux_get() call,
+after this you should be able to see this in the debugfs listing of all pins.
+
+
+System pinmux hogging
+=====================
+
+A system pinmux map entry, i.e. a pinmux setting that does not have a device
+associated with it, can be hogged by the core when the pin controller is
+registered. This means that the core will attempt to call pinmux_get() and
+pinmux_enable() on it immediately after the pin control device has been
+registered.
+
+This is enabled by simply setting the .hog_on_boot field in the map to true,
+like this:
+
+{
+ .name "POWERMAP"
+ .ctrl_dev_name = "pinctrl.0",
+ .function = "power_func",
+ .hog_on_boot = true,
+},
+
+Since it may be common to request the core to hog a few always-applicable
+mux settings on the primary pin controller, there is a convenience macro for
+this:
+
+PINMUX_MAP_PRIMARY_SYS_HOG("POWERMAP", "power_func")
+
+This gives the exact same result as the above construction.
+
+
+Runtime pinmuxing
+=================
+
+It is possible to mux a certain function in and out at runtime, say to move
+an SPI port from one set of pins to another set of pins. Say for example for
+spi0 in the example above, we expose two different groups of pins for the same
+function, but with different named in the mapping as described under
+"Advanced mapping" above. So we have two mappings named "spi0-pos-A" and
+"spi0-pos-B".
+
+This snippet first muxes the function in the pins defined by group A, enables
+it, disables and releases it, and muxes it in on the pins defined by group B:
+
+foo_switch()
+{
+ struct pinmux pmx;
+
+ /* Enable on position A */
+ pmx = pinmux_get(&device, "spi0-pos-A");
+ if IS_ERR(pmx)
+ return PTR_ERR(pmx);
+ pinmux_enable(pmx);
+
+ /* This releases the pins again */
+ pinmux_disable(pmx);
+ pinmux_put(pmx);
+
+ /* Enable on position B */
+ pmx = pinmux_get(&device, "spi0-pos-B");
+ if IS_ERR(pmx)
+ return PTR_ERR(pmx);
+ pinmux_enable(pmx);
+ ...
+}
+
+The above has to be done from process context.