diff options
Diffstat (limited to 'Documentation')
113 files changed, 3362 insertions, 2717 deletions
diff --git a/Documentation/ABI/testing/sysfs-bus-fcoe b/Documentation/ABI/testing/sysfs-bus-fcoe index 50e2a80ea28f..21640eaad371 100644 --- a/Documentation/ABI/testing/sysfs-bus-fcoe +++ b/Documentation/ABI/testing/sysfs-bus-fcoe @@ -1,14 +1,53 @@ -What: /sys/bus/fcoe/ctlr_X +What: /sys/bus/fcoe/ +Date: August 2012 +KernelVersion: TBD +Contact: Robert Love <robert.w.love@intel.com>, devel@open-fcoe.org +Description: The FCoE bus. Attributes in this directory are control interfaces. +Attributes: + + ctlr_create: 'FCoE Controller' instance creation interface. Writing an + <ifname> to this file will allocate and populate sysfs with a + fcoe_ctlr_device (ctlr_X). The user can then configure any + per-port settings and finally write to the fcoe_ctlr_device's + 'start' attribute to begin the kernel's discovery and login + process. + + ctlr_destroy: 'FCoE Controller' instance removal interface. Writing a + fcoe_ctlr_device's sysfs name to this file will log the + fcoe_ctlr_device out of the fabric or otherwise connected + FCoE devices. It will also free all kernel memory allocated + for this fcoe_ctlr_device and any structures associated + with it, this includes the scsi_host. + +What: /sys/bus/fcoe/devices/ctlr_X Date: March 2012 KernelVersion: TBD Contact: Robert Love <robert.w.love@intel.com>, devel@open-fcoe.org -Description: 'FCoE Controller' instances on the fcoe bus +Description: 'FCoE Controller' instances on the fcoe bus. + The FCoE Controller now has a three stage creation process. + 1) Write interface name to ctlr_create 2) Configure the FCoE + Controller (ctlr_X) 3) Enable the FCoE Controller to begin + discovery and login. The FCoE Controller is destroyed by + writing it's name, i.e. ctlr_X to the ctlr_delete file. + Attributes: fcf_dev_loss_tmo: Device loss timeout peroid (see below). Changing this value will change the dev_loss_tmo for all FCFs discovered by this controller. + mode: Display or change the FCoE Controller's mode. Possible + modes are 'Fabric' and 'VN2VN'. If a FCoE Controller + is started in 'Fabric' mode then FIP FCF discovery is + initiated and ultimately a fabric login is attempted. + If a FCoE Controller is started in 'VN2VN' mode then + FIP VN2VN discovery and login is performed. A FCoE + Controller only supports one mode at a time. + + enabled: Whether an FCoE controller is enabled or disabled. + 0 if disabled, 1 if enabled. Writing either 0 or 1 + to this file will enable or disable the FCoE controller. + lesb/link_fail: Link Error Status Block (LESB) link failure count. lesb/vlink_fail: Link Error Status Block (LESB) virtual link @@ -26,7 +65,7 @@ Attributes: Notes: ctlr_X (global increment starting at 0) -What: /sys/bus/fcoe/fcf_X +What: /sys/bus/fcoe/devices/fcf_X Date: March 2012 KernelVersion: TBD Contact: Robert Love <robert.w.love@intel.com>, devel@open-fcoe.org diff --git a/Documentation/DMA-API-HOWTO.txt b/Documentation/DMA-API-HOWTO.txt index 4a4fb295ceef..14129f149a75 100644 --- a/Documentation/DMA-API-HOWTO.txt +++ b/Documentation/DMA-API-HOWTO.txt @@ -488,9 +488,10 @@ will invoke the generic mapping error check interface. Doing so will ensure that the mapping code will work correctly on all dma implementations without any dependency on the specifics of the underlying implementation. Using the returned address without checking for errors could result in failures ranging -from panics to silent data corruption. Couple of example of incorrect ways to -check for errors that make assumptions about the underlying dma implementation -are as follows and these are applicable to dma_map_page() as well. +from panics to silent data corruption. A couple of examples of incorrect ways +to check for errors that make assumptions about the underlying dma +implementation are as follows and these are applicable to dma_map_page() as +well. Incorrect example 1: dma_addr_t dma_handle; @@ -751,7 +752,7 @@ Example 1: dma_unmap_single(dma_handle1); map_error_handling1: -Example 2: (if buffers are allocated a loop, unmap all mapped buffers when +Example 2: (if buffers are allocated in a loop, unmap all mapped buffers when mapping error is detected in the middle) dma_addr_t dma_addr; diff --git a/Documentation/DocBook/drm.tmpl b/Documentation/DocBook/drm.tmpl index 4ee2304f82f9..f9df3b872c16 100644 --- a/Documentation/DocBook/drm.tmpl +++ b/Documentation/DocBook/drm.tmpl @@ -743,6 +743,10 @@ char *date;</synopsis> These two operations are mandatory for GEM drivers that support DRM PRIME. </para> + <sect4> + <title>DRM PRIME Helper Functions Reference</title> +!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers + </sect4> </sect3> <sect3 id="drm-gem-objects-mapping"> <title>GEM Objects Mapping</title> @@ -978,10 +982,25 @@ int max_width, max_height;</synopsis> If the parameters are deemed valid, drivers then create, initialize and return an instance of struct <structname>drm_framebuffer</structname>. If desired the instance can be embedded in a larger driver-specific - structure. The new instance is initialized with a call to - <function>drm_framebuffer_init</function> which takes a pointer to DRM - frame buffer operations (struct - <structname>drm_framebuffer_funcs</structname>). Frame buffer operations are + structure. Drivers must fill its <structfield>width</structfield>, + <structfield>height</structfield>, <structfield>pitches</structfield>, + <structfield>offsets</structfield>, <structfield>depth</structfield>, + <structfield>bits_per_pixel</structfield> and + <structfield>pixel_format</structfield> fields from the values passed + through the <parameter>drm_mode_fb_cmd2</parameter> argument. They + should call the <function>drm_helper_mode_fill_fb_struct</function> + helper function to do so. + </para> + + <para> + The initailization of the new framebuffer instance is finalized with a + call to <function>drm_framebuffer_init</function> which takes a pointer + to DRM frame buffer operations (struct + <structname>drm_framebuffer_funcs</structname>). Note that this function + publishes the framebuffer and so from this point on it can be accessed + concurrently from other threads. Hence it must be the last step in the + driver's framebuffer initialization sequence. Frame buffer operations + are <itemizedlist> <listitem> <synopsis>int (*create_handle)(struct drm_framebuffer *fb, @@ -1022,16 +1041,16 @@ int max_width, max_height;</synopsis> </itemizedlist> </para> <para> - After initializing the <structname>drm_framebuffer</structname> - instance drivers must fill its <structfield>width</structfield>, - <structfield>height</structfield>, <structfield>pitches</structfield>, - <structfield>offsets</structfield>, <structfield>depth</structfield>, - <structfield>bits_per_pixel</structfield> and - <structfield>pixel_format</structfield> fields from the values passed - through the <parameter>drm_mode_fb_cmd2</parameter> argument. They - should call the <function>drm_helper_mode_fill_fb_struct</function> - helper function to do so. - </para> + The lifetime of a drm framebuffer is controlled with a reference count, + drivers can grab additional references with + <function>drm_framebuffer_reference</function> </para> and drop them + again with <function>drm_framebuffer_unreference</function>. For + driver-private framebuffers for which the last reference is never + dropped (e.g. for the fbdev framebuffer when the struct + <structname>drm_framebuffer</structname> is embedded into the fbdev + helper struct) drivers can manually clean up a framebuffer at module + unload time with + <function>drm_framebuffer_unregister_private</function>. </sect2> <sect2> <title>Output Polling</title> @@ -1043,6 +1062,22 @@ int max_width, max_height;</synopsis> operation. </para> </sect2> + <sect2> + <title>Locking</title> + <para> + Beside some lookup structures with their own locking (which is hidden + behind the interface functions) most of the modeset state is protected + by the <code>dev-<mode_config.lock</code> mutex and additionally + per-crtc locks to allow cursor updates, pageflips and similar operations + to occur concurrently with background tasks like output detection. + Operations which cross domains like a full modeset always grab all + locks. Drivers there need to protect resources shared between crtcs with + additional locking. They also need to be careful to always grab the + relevant crtc locks if a modset functions touches crtc state, e.g. for + load detection (which does only grab the <code>mode_config.lock</code> + to allow concurrent screen updates on live crtcs). + </para> + </sect2> </sect1> <!-- Internals: kms initialization and cleanup --> @@ -1126,6 +1161,12 @@ int max_width, max_height;</synopsis> any new rendering to the frame buffer until the page flip completes. </para> <para> + If a page flip can be successfully scheduled the driver must set the + <code>drm_crtc-<fb</code> field to the new framebuffer pointed to + by <code>fb</code>. This is important so that the reference counting + on framebuffers stays balanced. + </para> + <para> If a page flip is already pending, the <methodname>page_flip</methodname> operation must return -<errorname>EBUSY</errorname>. @@ -1609,6 +1650,10 @@ void intel_crt_init(struct drm_device *dev) make its properties available to applications. </para> </sect2> + <sect2> + <title>KMS API Functions</title> +!Edrivers/gpu/drm/drm_crtc.c + </sect2> </sect1> <!-- Internals: kms helper functions --> @@ -2104,6 +2149,7 @@ void intel_crt_init(struct drm_device *dev) <title>fbdev Helper Functions Reference</title> !Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers !Edrivers/gpu/drm/drm_fb_helper.c +!Iinclude/drm/drm_fb_helper.h </sect2> <sect2> <title>Display Port Helper Functions Reference</title> @@ -2111,6 +2157,10 @@ void intel_crt_init(struct drm_device *dev) !Iinclude/drm/drm_dp_helper.h !Edrivers/gpu/drm/drm_dp_helper.c </sect2> + <sect2> + <title>EDID Helper Functions Reference</title> +!Edrivers/gpu/drm/drm_edid.c + </sect2> </sect1> <!-- Internals: vertical blanking --> diff --git a/Documentation/DocBook/media/dvb/dvbapi.xml b/Documentation/DocBook/media/dvb/dvbapi.xml index 757488b24f4f..0197bcc7842d 100644 --- a/Documentation/DocBook/media/dvb/dvbapi.xml +++ b/Documentation/DocBook/media/dvb/dvbapi.xml @@ -84,7 +84,7 @@ Added ISDB-T test originally written by Patrick Boettcher <title>LINUX DVB API</title> -<subtitle>Version 5.8</subtitle> +<subtitle>Version 5.10</subtitle> <!-- ADD THE CHAPTERS HERE --> <chapter id="dvb_introdution"> &sub-intro; diff --git a/Documentation/DocBook/media/dvb/dvbproperty.xml b/Documentation/DocBook/media/dvb/dvbproperty.xml index 957e3acaae8e..4a5eaeed0b9e 100644 --- a/Documentation/DocBook/media/dvb/dvbproperty.xml +++ b/Documentation/DocBook/media/dvb/dvbproperty.xml @@ -7,14 +7,41 @@ the capability ioctls weren't implemented yet via the new way.</para> <para>The typical usage for the <constant>FE_GET_PROPERTY/FE_SET_PROPERTY</constant> API is to replace the ioctl's were the <link linkend="dvb-frontend-parameters"> struct <constant>dvb_frontend_parameters</constant></link> were used.</para> +<section id="dtv-stats"> +<title>DTV stats type</title> +<programlisting> +struct dtv_stats { + __u8 scale; /* enum fecap_scale_params type */ + union { + __u64 uvalue; /* for counters and relative scales */ + __s64 svalue; /* for 1/1000 dB measures */ + }; +} __packed; +</programlisting> +</section> +<section id="dtv-fe-stats"> +<title>DTV stats type</title> +<programlisting> +#define MAX_DTV_STATS 4 + +struct dtv_fe_stats { + __u8 len; + struct dtv_stats stat[MAX_DTV_STATS]; +} __packed; +</programlisting> +</section> + <section id="dtv-property"> <title>DTV property type</title> <programlisting> /* Reserved fields should be set to 0 */ + struct dtv_property { __u32 cmd; + __u32 reserved[3]; union { __u32 data; + struct dtv_fe_stats st; struct { __u8 data[32]; __u32 len; @@ -440,7 +467,7 @@ typedef enum fe_delivery_system { <title><constant>DTV-ISDBT-LAYER*</constant> parameters</title> <para>ISDB-T channels can be coded hierarchically. As opposed to DVB-T in ISDB-T hierarchical layers can be decoded simultaneously. For that - reason a ISDB-T demodulator has 3 viterbi and 3 reed-solomon-decoders.</para> + reason a ISDB-T demodulator has 3 Viterbi and 3 Reed-Solomon decoders.</para> <para>ISDB-T has 3 hierarchical layers which each can use a part of the available segments. The total number of segments over all layers has to 13 in ISDB-T.</para> @@ -850,6 +877,147 @@ enum fe_interleaving { <para>use the special macro LNA_AUTO to set LNA auto</para> </section> </section> + + <section id="frontend-stat-properties"> + <title>Frontend statistics indicators</title> + <para>The values are returned via <constant>dtv_property.stat</constant>. + If the property is supported, <constant>dtv_property.stat.len</constant> is bigger than zero.</para> + <para>For most delivery systems, <constant>dtv_property.stat.len</constant> + will be 1 if the stats is supported, and the properties will + return a single value for each parameter.</para> + <para>It should be noticed, however, that new OFDM delivery systems + like ISDB can use different modulation types for each group of + carriers. On such standards, up to 3 groups of statistics can be + provided, and <constant>dtv_property.stat.len</constant> is updated + to reflect the "global" metrics, plus one metric per each carrier + group (called "layer" on ISDB).</para> + <para>So, in order to be consistent with other delivery systems, the first + value at <link linkend="dtv-stats"><constant>dtv_property.stat.dtv_stats</constant></link> + array refers to the global metric. The other elements of the array + represent each layer, starting from layer A(index 1), + layer B (index 2) and so on.</para> + <para>The number of filled elements are stored at <constant>dtv_property.stat.len</constant>.</para> + <para>Each element of the <constant>dtv_property.stat.dtv_stats</constant> array consists on two elements:</para> + <itemizedlist mark='opencircle'> + <listitem><para><constant>svalue</constant> or <constant>uvalue</constant>, where + <constant>svalue</constant> is for signed values of the measure (dB measures) + and <constant>uvalue</constant> is for unsigned values (counters, relative scale)</para></listitem> + <listitem><para><constant>scale</constant> - Scale for the value. It can be:</para> + <section id = "fecap-scale-params"> + <itemizedlist mark='bullet'> + <listitem><para><constant>FE_SCALE_NOT_AVAILABLE</constant> - The parameter is supported by the frontend, but it was not possible to collect it (could be a transitory or permanent condition)</para></listitem> + <listitem><para><constant>FE_SCALE_DECIBEL</constant> - parameter is a signed value, measured in 1/1000 dB</para></listitem> + <listitem><para><constant>FE_SCALE_RELATIVE</constant> - parameter is a unsigned value, where 0 means 0% and 65535 means 100%.</para></listitem> + <listitem><para><constant>FE_SCALE_COUNTER</constant> - parameter is a unsigned value that counts the occurrence of an event, like bit error, block error, or lapsed time.</para></listitem> + </itemizedlist> + </section> + </listitem> + </itemizedlist> + <section id="DTV-STAT-SIGNAL-STRENGTH"> + <title><constant>DTV_STAT_SIGNAL_STRENGTH</constant></title> + <para>Indicates the signal strength level at the analog part of the tuner or of the demod.</para> + <para>Possible scales for this metric are:</para> + <itemizedlist mark='bullet'> + <listitem><constant>FE_SCALE_NOT_AVAILABLE</constant> - it failed to measure it, or the measurement was not complete yet.</listitem> + <listitem><constant>FE_SCALE_DECIBEL</constant> - signal strength is in 0.0001 dBm units, power measured in miliwatts. This value is generally negative.</listitem> + <listitem><constant>FE_SCALE_RELATIVE</constant> - The frontend provides a 0% to 100% measurement for power (actually, 0 to 65535).</listitem> + </itemizedlist> + </section> + <section id="DTV-STAT-CNR"> + <title><constant>DTV_STAT_CNR</constant></title> + <para>Indicates the Signal to Noise ratio for the main carrier.</para> + <para>Possible scales for this metric are:</para> + <itemizedlist mark='bullet'> + <listitem><constant>FE_SCALE_NOT_AVAILABLE</constant> - it failed to measure it, or the measurement was not complete yet.</listitem> + <listitem><constant>FE_SCALE_DECIBEL</constant> - Signal/Noise ratio is in 0.0001 dB units.</listitem> + <listitem><constant>FE_SCALE_RELATIVE</constant> - The frontend provides a 0% to 100% measurement for Signal/Noise (actually, 0 to 65535).</listitem> + </itemizedlist> + </section> + <section id="DTV-STAT-PRE-ERROR-BIT-COUNT"> + <title><constant>DTV_STAT_PRE_ERROR_BIT_COUNT</constant></title> + <para>Measures the number of bit errors before the forward error correction (FEC) on the inner coding block (before Viterbi, LDPC or other inner code).</para> + <para>This measure is taken during the same interval as <constant>DTV_STAT_PRE_TOTAL_BIT_COUNT</constant>.</para> + <para>In order to get the BER (Bit Error Rate) measurement, it should be divided by + <link linkend="DTV-STAT-PRE-TOTAL-BIT-COUNT"><constant>DTV_STAT_PRE_TOTAL_BIT_COUNT</constant></link>.</para> + <para>This measurement is monotonically increased, as the frontend gets more bit count measurements. + The frontend may reset it when a channel/transponder is tuned.</para> + <para>Possible scales for this metric are:</para> + <itemizedlist mark='bullet'> + <listitem><constant>FE_SCALE_NOT_AVAILABLE</constant> - it failed to measure it, or the measurement was not complete yet.</listitem> + <listitem><constant>FE_SCALE_COUNTER</constant> - Number of error bits counted before the inner coding.</listitem> + </itemizedlist> + </section> + <section id="DTV-STAT-PRE-TOTAL-BIT-COUNT"> + <title><constant>DTV_STAT_PRE_TOTAL_BIT_COUNT</constant></title> + <para>Measures the amount of bits received before the inner code block, during the same period as + <link linkend="DTV-STAT-PRE-ERROR-BIT-COUNT"><constant>DTV_STAT_PRE_ERROR_BIT_COUNT</constant></link> measurement was taken.</para> + <para>It should be noticed that this measurement can be smaller than the total amount of bits on the transport stream, + as the frontend may need to manually restart the measurement, loosing some data between each measurement interval.</para> + <para>This measurement is monotonically increased, as the frontend gets more bit count measurements. + The frontend may reset it when a channel/transponder is tuned.</para> + <para>Possible scales for this metric are:</para> + <itemizedlist mark='bullet'> + <listitem><constant>FE_SCALE_NOT_AVAILABLE</constant> - it failed to measure it, or the measurement was not complete yet.</listitem> + <listitem><constant>FE_SCALE_COUNTER</constant> - Number of bits counted while measuring + <link linkend="DTV-STAT-PRE-ERROR-BIT-COUNT"><constant>DTV_STAT_PRE_ERROR_BIT_COUNT</constant></link>.</listitem> + </itemizedlist> + </section> + <section id="DTV-STAT-POST-ERROR-BIT-COUNT"> + <title><constant>DTV_STAT_POST_ERROR_BIT_COUNT</constant></title> + <para>Measures the number of bit errors after the forward error correction (FEC) done by inner code block (after Viterbi, LDPC or other inner code).</para> + <para>This measure is taken during the same interval as <constant>DTV_STAT_POST_TOTAL_BIT_COUNT</constant>.</para> + <para>In order to get the BER (Bit Error Rate) measurement, it should be divided by + <link linkend="DTV-STAT-POST-TOTAL-BIT-COUNT"><constant>DTV_STAT_POST_TOTAL_BIT_COUNT</constant></link>.</para> + <para>This measurement is monotonically increased, as the frontend gets more bit count measurements. + The frontend may reset it when a channel/transponder is tuned.</para> + <para>Possible scales for this metric are:</para> + <itemizedlist mark='bullet'> + <listitem><constant>FE_SCALE_NOT_AVAILABLE</constant> - it failed to measure it, or the measurement was not complete yet.</listitem> + <listitem><constant>FE_SCALE_COUNTER</constant> - Number of error bits counted after the inner coding.</listitem> + </itemizedlist> + </section> + <section id="DTV-STAT-POST-TOTAL-BIT-COUNT"> + <title><constant>DTV_STAT_POST_TOTAL_BIT_COUNT</constant></title> + <para>Measures the amount of bits received after the inner coding, during the same period as + <link linkend="DTV-STAT-POST-ERROR-BIT-COUNT"><constant>DTV_STAT_POST_ERROR_BIT_COUNT</constant></link> measurement was taken.</para> + <para>It should be noticed that this measurement can be smaller than the total amount of bits on the transport stream, + as the frontend may need to manually restart the measurement, loosing some data between each measurement interval.</para> + <para>This measurement is monotonically increased, as the frontend gets more bit count measurements. + The frontend may reset it when a channel/transponder is tuned.</para> + <para>Possible scales for this metric are:</para> + <itemizedlist mark='bullet'> + <listitem><constant>FE_SCALE_NOT_AVAILABLE</constant> - it failed to measure it, or the measurement was not complete yet.</listitem> + <listitem><constant>FE_SCALE_COUNTER</constant> - Number of bits counted while measuring + <link linkend="DTV-STAT-POST-ERROR-BIT-COUNT"><constant>DTV_STAT_POST_ERROR_BIT_COUNT</constant></link>.</listitem> + </itemizedlist> + </section> + <section id="DTV-STAT-ERROR-BLOCK-COUNT"> + <title><constant>DTV_STAT_ERROR_BLOCK_COUNT</constant></title> + <para>Measures the number of block errors after the outer forward error correction coding (after Reed-Solomon or other outer code).</para> + <para>This measurement is monotonically increased, as the frontend gets more bit count measurements. + The frontend may reset it when a channel/transponder is tuned.</para> + <para>Possible scales for this metric are:</para> + <itemizedlist mark='bullet'> + <listitem><constant>FE_SCALE_NOT_AVAILABLE</constant> - it failed to measure it, or the measurement was not complete yet.</listitem> + <listitem><constant>FE_SCALE_COUNTER</constant> - Number of error blocks counted after the outer coding.</listitem> + </itemizedlist> + </section> + <section id="DTV-STAT-TOTAL-BLOCK-COUNT"> + <title><constant>DTV-STAT_TOTAL_BLOCK_COUNT</constant></title> + <para>Measures the total number of blocks received during the same period as + <link linkend="DTV-STAT-ERROR-BLOCK-COUNT"><constant>DTV_STAT_ERROR_BLOCK_COUNT</constant></link> measurement was taken.</para> + <para>It can be used to calculate the PER indicator, by dividing + <link linkend="DTV-STAT-ERROR-BLOCK-COUNT"><constant>DTV_STAT_ERROR_BLOCK_COUNT</constant></link> + by <link linkend="DTV-STAT-TOTAL-BLOCK-COUNT"><constant>DTV-STAT-TOTAL-BLOCK-COUNT</constant></link>.</para> + <para>Possible scales for this metric are:</para> + <itemizedlist mark='bullet'> + <listitem><constant>FE_SCALE_NOT_AVAILABLE</constant> - it failed to measure it, or the measurement was not complete yet.</listitem> + <listitem><constant>FE_SCALE_COUNTER</constant> - Number of blocks counted while measuring + <link linkend="DTV-STAT-ERROR-BLOCK-COUNT"><constant>DTV_STAT_ERROR_BLOCK_COUNT</constant></link>.</listitem> + </itemizedlist> + </section> + </section> + <section id="frontend-property-terrestrial-systems"> <title>Properties used on terrestrial delivery systems</title> <section id="dvbt-params"> @@ -871,6 +1039,7 @@ enum fe_interleaving { <listitem><para><link linkend="DTV-HIERARCHY"><constant>DTV_HIERARCHY</constant></link></para></listitem> <listitem><para><link linkend="DTV-LNA"><constant>DTV_LNA</constant></link></para></listitem> </itemizedlist> + <para>In addition, the <link linkend="frontend-stat-properties">DTV QoS statistics</link> are also valid.</para> </section> <section id="dvbt2-params"> <title>DVB-T2 delivery system</title> @@ -895,6 +1064,7 @@ enum fe_interleaving { <listitem><para><link linkend="DTV-STREAM-ID"><constant>DTV_STREAM_ID</constant></link></para></listitem> <listitem><para><link linkend="DTV-LNA"><constant>DTV_LNA</constant></link></para></listitem> </itemizedlist> + <para>In addition, the <link linkend="frontend-stat-properties">DTV QoS statistics</link> are also valid.</para> </section> <section id="isdbt"> <title>ISDB-T delivery system</title> @@ -948,6 +1118,7 @@ enum fe_interleaving { <listitem><para><link linkend="DTV-ISDBT-LAYER-SEGMENT-COUNT"><constant>DTV_ISDBT_LAYERC_SEGMENT_COUNT</constant></link></para></listitem> <listitem><para><link linkend="DTV-ISDBT-LAYER-TIME-INTERLEAVING"><constant>DTV_ISDBT_LAYERC_TIME_INTERLEAVING</constant></link></para></listitem> </itemizedlist> + <para>In addition, the <link linkend="frontend-stat-properties">DTV QoS statistics</link> are also valid.</para> </section> <section id="atsc-params"> <title>ATSC delivery system</title> @@ -961,6 +1132,7 @@ enum fe_interleaving { <listitem><para><link linkend="DTV-MODULATION"><constant>DTV_MODULATION</constant></link></para></listitem> <listitem><para><link linkend="DTV-BANDWIDTH-HZ"><constant>DTV_BANDWIDTH_HZ</constant></link></para></listitem> </itemizedlist> + <para>In addition, the <link linkend="frontend-stat-properties">DTV QoS statistics</link> are also valid.</para> </section> <section id="atscmh-params"> <title>ATSC-MH delivery system</title> @@ -988,6 +1160,7 @@ enum fe_interleaving { <listitem><para><link linkend="DTV-ATSCMH-SCCC-CODE-MODE-C"><constant>DTV_ATSCMH_SCCC_CODE_MODE_C</constant></link></para></listitem> <listitem><para><link linkend="DTV-ATSCMH-SCCC-CODE-MODE-D"><constant>DTV_ATSCMH_SCCC_CODE_MODE_D</constant></link></para></listitem> </itemizedlist> + <para>In addition, the <link linkend="frontend-stat-properties">DTV QoS statistics</link> are also valid.</para> </section> <section id="dtmb-params"> <title>DTMB delivery system</title> @@ -1007,6 +1180,7 @@ enum fe_interleaving { <listitem><para><link linkend="DTV-INTERLEAVING"><constant>DTV_INTERLEAVING</constant></link></para></listitem> <listitem><para><link linkend="DTV-LNA"><constant>DTV_LNA</constant></link></para></listitem> </itemizedlist> + <para>In addition, the <link linkend="frontend-stat-properties">DTV QoS statistics</link> are also valid.</para> </section> </section> <section id="frontend-property-cable-systems"> @@ -1028,6 +1202,7 @@ enum fe_interleaving { <listitem><para><link linkend="DTV-INNER-FEC"><constant>DTV_INNER_FEC</constant></link></para></listitem> <listitem><para><link linkend="DTV-LNA"><constant>DTV_LNA</constant></link></para></listitem> </itemizedlist> + <para>In addition, the <link linkend="frontend-stat-properties">DTV QoS statistics</link> are also valid.</para> </section> <section id="dvbc-annex-b-params"> <title>DVB-C Annex B delivery system</title> @@ -1043,6 +1218,7 @@ enum fe_interleaving { <listitem><para><link linkend="DTV-INVERSION"><constant>DTV_INVERSION</constant></link></para></listitem> <listitem><para><link linkend="DTV-LNA"><constant>DTV_LNA</constant></link></para></listitem> </itemizedlist> + <para>In addition, the <link linkend="frontend-stat-properties">DTV QoS statistics</link> are also valid.</para> </section> </section> <section id="frontend-property-satellital-systems"> @@ -1062,6 +1238,7 @@ enum fe_interleaving { <listitem><para><link linkend="DTV-VOLTAGE"><constant>DTV_VOLTAGE</constant></link></para></listitem> <listitem><para><link linkend="DTV-TONE"><constant>DTV_TONE</constant></link></para></listitem> </itemizedlist> + <para>In addition, the <link linkend="frontend-stat-properties">DTV QoS statistics</link> are also valid.</para> <para>Future implementations might add those two missing parameters:</para> <itemizedlist mark='opencircle'> <listitem><para><link linkend="DTV-DISEQC-MASTER"><constant>DTV_DISEQC_MASTER</constant></link></para></listitem> @@ -1077,6 +1254,7 @@ enum fe_interleaving { <listitem><para><link linkend="DTV-ROLLOFF"><constant>DTV_ROLLOFF</constant></link></para></listitem> <listitem><para><link linkend="DTV-STREAM-ID"><constant>DTV_STREAM_ID</constant></link></para></listitem> </itemizedlist> + <para>In addition, the <link linkend="frontend-stat-properties">DTV QoS statistics</link> are also valid.</para> </section> <section id="turbo-params"> <title>Turbo code delivery system</title> diff --git a/Documentation/DocBook/media/dvb/frontend.xml b/Documentation/DocBook/media/dvb/frontend.xml index 426c2526a454..df39ba395df0 100644 --- a/Documentation/DocBook/media/dvb/frontend.xml +++ b/Documentation/DocBook/media/dvb/frontend.xml @@ -230,7 +230,7 @@ typedef enum fe_status { <entry align="char">The frontend has found a DVB signal</entry> </row><row> <entry align="char">FE_HAS_VITERBI</entry> -<entry align="char">The frontend FEC code is stable</entry> +<entry align="char">The frontend FEC inner coding (Viterbi, LDPC or other inner code) is stable</entry> </row><row> <entry align="char">FE_HAS_SYNC</entry> <entry align="char">Syncronization bytes was found</entry> diff --git a/Documentation/DocBook/media/v4l/common.xml b/Documentation/DocBook/media/v4l/common.xml index 73c6847436c9..ae06afbbb3a9 100644 --- a/Documentation/DocBook/media/v4l/common.xml +++ b/Documentation/DocBook/media/v4l/common.xml @@ -609,7 +609,7 @@ to zero and the <constant>VIDIOC_G_STD</constant>, <para>Applications can make use of the <xref linkend="input-capabilities" /> and <xref linkend="output-capabilities"/> flags to determine whether the video standard ioctls are available for the device.</para> -&ENOTTY;. + <para>See <xref linkend="buffer" /> for a rationale. Probably even USB cameras follow some well known video standard. It might have been better to explicitly indicate elsewhere if a device cannot live diff --git a/Documentation/DocBook/media/v4l/compat.xml b/Documentation/DocBook/media/v4l/compat.xml index 3dd9e78815d1..104a1a2b8849 100644 --- a/Documentation/DocBook/media/v4l/compat.xml +++ b/Documentation/DocBook/media/v4l/compat.xml @@ -2477,6 +2477,22 @@ that used it. It was originally scheduled for removal in 2.6.35. </orderedlist> </section> + <section> + <title>V4L2 in Linux 3.9</title> + <orderedlist> + <listitem> + <para>Added timestamp types to + <structfield>flags</structfield> field in + <structname>v4l2_buffer</structname>. See <xref + linkend="buffer-flags" />.</para> + </listitem> + <listitem> + <para>Added <constant>V4L2_EVENT_CTRL_CH_RANGE</constant> control event + changes flag. See <xref linkend="changes-flags"/>.</para> + </listitem> + </orderedlist> + </section> + <section id="other"> <title>Relation of V4L2 to other Linux multimedia APIs</title> diff --git a/Documentation/DocBook/media/v4l/controls.xml b/Documentation/DocBook/media/v4l/controls.xml index 7fe5be1d3bbb..9e8f85498678 100644 --- a/Documentation/DocBook/media/v4l/controls.xml +++ b/Documentation/DocBook/media/v4l/controls.xml @@ -203,29 +203,6 @@ and should not be used in new drivers and applications.</entry> <entry>boolean</entry> <entry>Mirror the picture vertically.</entry> </row> - <row> - <entry><constant>V4L2_CID_HCENTER_DEPRECATED</constant> (formerly <constant>V4L2_CID_HCENTER</constant>)</entry> - <entry>integer</entry> - <entry>Horizontal image centering. This control is -deprecated. New drivers and applications should use the <link -linkend="camera-controls">Camera class controls</link> -<constant>V4L2_CID_PAN_ABSOLUTE</constant>, -<constant>V4L2_CID_PAN_RELATIVE</constant> and -<constant>V4L2_CID_PAN_RESET</constant> instead.</entry> - </row> - <row> - <entry><constant>V4L2_CID_VCENTER_DEPRECATED</constant> - (formerly <constant>V4L2_CID_VCENTER</constant>)</entry> - <entry>integer</entry> - <entry>Vertical image centering. Centering is intended to -<emphasis>physically</emphasis> adjust cameras. For image cropping see -<xref linkend="crop" />, for clipping <xref linkend="overlay" />. This -control is deprecated. New drivers and applications should use the -<link linkend="camera-controls">Camera class controls</link> -<constant>V4L2_CID_TILT_ABSOLUTE</constant>, -<constant>V4L2_CID_TILT_RELATIVE</constant> and -<constant>V4L2_CID_TILT_RESET</constant> instead.</entry> - </row> <row id="v4l2-power-line-frequency"> <entry><constant>V4L2_CID_POWER_LINE_FREQUENCY</constant></entry> <entry>enum</entry> diff --git a/Documentation/DocBook/media/v4l/io.xml b/Documentation/DocBook/media/v4l/io.xml index 388a34032653..e6c58559ca6b 100644 --- a/Documentation/DocBook/media/v4l/io.xml +++ b/Documentation/DocBook/media/v4l/io.xml @@ -477,7 +477,7 @@ rest should be evident.</para> <note> <title>Experimental</title> - <para>This is an <link linkend="experimental"> experimental </link> + <para>This is an <link linkend="experimental">experimental</link> interface and may change in the future.</para> </note> @@ -488,7 +488,7 @@ DMA buffer from userspace using a file descriptor previously exported for a different or the same device (known as the importer role), or both. This section describes the DMABUF importer role API in V4L2.</para> - <para>Refer to <link linked="vidioc-expbuf"> DMABUF exporting </link> for + <para>Refer to <link linkend="vidioc-expbuf">DMABUF exporting</link> for details about exporting V4L2 buffers as DMABUF file descriptors.</para> <para>Input and output devices support the streaming I/O method when the @@ -741,17 +741,19 @@ applications when an output stream.</entry> <entry>struct timeval</entry> <entry><structfield>timestamp</structfield></entry> <entry></entry> - <entry><para>For input streams this is the -system time (as returned by the <function>gettimeofday()</function> -function) when the first data byte was captured. For output streams -the data will not be displayed before this time, secondary to the -nominal frame rate determined by the current video standard in -enqueued order. Applications can for example zero this field to -display frames as soon as possible. The driver stores the time at -which the first data byte was actually sent out in the -<structfield>timestamp</structfield> field. This permits -applications to monitor the drift between the video and system -clock.</para></entry> + <entry><para>For input streams this is time when the first data + byte was captured, as returned by the + <function>clock_gettime()</function> function for the relevant + clock id; see <constant>V4L2_BUF_FLAG_TIMESTAMP_*</constant> in + <xref linkend="buffer-flags" />. For output streams the data + will not be displayed before this time, secondary to the nominal + frame rate determined by the current video standard in enqueued + order. Applications can for example zero this field to display + frames as soon as possible. The driver stores the time at which + the first data byte was actually sent out in the + <structfield>timestamp</structfield> field. This permits + applications to monitor the drift between the video and system + clock.</para></entry> </row> <row> <entry>&v4l2-timecode;</entry> @@ -903,7 +905,7 @@ should set this to 0.</entry> </row> <row> <entry></entry> - <entry>__unsigned long</entry> + <entry>unsigned long</entry> <entry><structfield>userptr</structfield></entry> <entry>When the memory type in the containing &v4l2-buffer; is <constant>V4L2_MEMORY_USERPTR</constant>, this is a userspace @@ -1114,6 +1116,35 @@ Typically applications shall use this flag for output buffers if the data in this buffer has not been created by the CPU but by some DMA-capable unit, in which case caches have not been used.</entry> </row> + <row> + <entry><constant>V4L2_BUF_FLAG_TIMESTAMP_MASK</constant></entry> + <entry>0xe000</entry> + <entry>Mask for timestamp types below. To test the + timestamp type, mask out bits not belonging to timestamp + type by performing a logical and operation with buffer + flags and timestamp mask.</entry> + </row> + <row> + <entry><constant>V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN</constant></entry> + <entry>0x0000</entry> + <entry>Unknown timestamp type. This type is used by + drivers before Linux 3.9 and may be either monotonic (see + below) or realtime (wall clock). Monotonic clock has been + favoured in embedded systems whereas most of the drivers + use the realtime clock. Either kinds of timestamps are + available in user space via + <function>clock_gettime(2)</function> using clock IDs + <constant>CLOCK_MONOTONIC</constant> and + <constant>CLOCK_REALTIME</constant>, respectively.</entry> + </row> + <row> + <entry><constant>V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC</constant></entry> + <entry>0x2000</entry> + <entry>The buffer timestamp has been taken from the + <constant>CLOCK_MONOTONIC</constant> clock. To access the + same clock outside V4L2, use + <function>clock_gettime(2)</function> .</entry> + </row> </tbody> </tgroup> </table> diff --git a/Documentation/DocBook/media/v4l/pixfmt-nv12m.xml b/Documentation/DocBook/media/v4l/pixfmt-nv12m.xml index a990b34d911a..f3a3d459fcdf 100644 --- a/Documentation/DocBook/media/v4l/pixfmt-nv12m.xml +++ b/Documentation/DocBook/media/v4l/pixfmt-nv12m.xml @@ -6,7 +6,7 @@ <refnamediv> <refname id="V4L2-PIX-FMT-NV12M"><constant>V4L2_PIX_FMT_NV12M</constant></refname> <refname id="V4L2-PIX-FMT-NV21M"><constant>V4L2_PIX_FMT_NV21M</constant></refname> - <refname id="V4L2-PIX-FMT-NV12MT_16X16"><constant>V4L2_PIX_FMT_NV12MT_16X16</constant></refname> + <refname id="V4L2-PIX-FMT-NV12MT-16X16"><constant>V4L2_PIX_FMT_NV12MT_16X16</constant></refname> <refpurpose>Variation of <constant>V4L2_PIX_FMT_NV12</constant> and <constant>V4L2_PIX_FMT_NV21</constant> with planes non contiguous in memory. </refpurpose> </refnamediv> diff --git a/Documentation/DocBook/media/v4l/pixfmt-srggb10alaw8.xml b/Documentation/DocBook/media/v4l/pixfmt-srggb10alaw8.xml new file mode 100644 index 000000000000..29acc2098cc2 --- /dev/null +++ b/Documentation/DocBook/media/v4l/pixfmt-srggb10alaw8.xml @@ -0,0 +1,34 @@ + <refentry> + <refmeta> + <refentrytitle> + V4L2_PIX_FMT_SBGGR10ALAW8 ('aBA8'), + V4L2_PIX_FMT_SGBRG10ALAW8 ('aGA8'), + V4L2_PIX_FMT_SGRBG10ALAW8 ('agA8'), + V4L2_PIX_FMT_SRGGB10ALAW8 ('aRA8'), + </refentrytitle> + &manvol; + </refmeta> + <refnamediv> + <refname id="V4L2-PIX-FMT-SBGGR10ALAW8"> + <constant>V4L2_PIX_FMT_SBGGR10ALAW8</constant> + </refname> + <refname id="V4L2-PIX-FMT-SGBRG10ALAW8"> + <constant>V4L2_PIX_FMT_SGBRG10ALAW8</constant> + </refname> + <refname id="V4L2-PIX-FMT-SGRBG10ALAW8"> + <constant>V4L2_PIX_FMT_SGRBG10ALAW8</constant> + </refname> + <refname id="V4L2-PIX-FMT-SRGGB10ALAW8"> + <constant>V4L2_PIX_FMT_SRGGB10ALAW8</constant> + </refname> + <refpurpose>10-bit Bayer formats compressed to 8 bits</refpurpose> + </refnamediv> + <refsect1> + <title>Description</title> + <para>The following four pixel formats are raw sRGB / Bayer + formats with 10 bits per color compressed to 8 bits each, + using the A-LAW algorithm. Each color component consumes 8 + bits of memory. In other respects this format is similar to + <xref linkend="V4L2-PIX-FMT-SRGGB8"></xref>.</para> + </refsect1> + </refentry> diff --git a/Documentation/DocBook/media/v4l/pixfmt-uv8.xml b/Documentation/DocBook/media/v4l/pixfmt-uv8.xml new file mode 100644 index 000000000000..c507c1f73cd0 --- /dev/null +++ b/Documentation/DocBook/media/v4l/pixfmt-uv8.xml @@ -0,0 +1,62 @@ + <refentry id="V4L2-PIX-FMT-UV8"> + <refmeta> + <refentrytitle>V4L2_PIX_FMT_UV8 ('UV8')</refentrytitle> + &manvol; + </refmeta> + <refnamediv> + <refname><constant>V4L2_PIX_FMT_UV8</constant></refname> + <refpurpose>UV plane interleaved</refpurpose> + </refnamediv> + <refsect1> + <title>Description</title> + <para>In this format there is no Y plane, Only CbCr plane. ie + (UV interleaved)</para> + <example> + <title> + <constant>V4L2_PIX_FMT_UV8</constant> + pixel image + </title> + + <formalpara> + <title>Byte Order.</title> + <para>Each cell is one byte. + <informaltable frame="none"> + <tgroup cols="5" align="center"> + <colspec align="left" colwidth="2*" /> + <tbody valign="top"> + <row> + <entry>start + 0:</entry> + <entry>Cb<subscript>00</subscript></entry> + <entry>Cr<subscript>00</subscript></entry> + <entry>Cb<subscript>01</subscript></entry> + <entry>Cr<subscript>01</subscript></entry> + </row> + <row> + <entry>start + 4:</entry> + <entry>Cb<subscript>10</subscript></entry> + <entry>Cr<subscript>10</subscript></entry> + <entry>Cb<subscript>11</subscript></entry> + <entry>Cr<subscript>11</subscript></entry> + </row> + <row> + <entry>start + 8:</entry> + <entry>Cb<subscript>20</subscript></entry> + <entry>Cr<subscript>20</subscript></entry> + <entry>Cb<subscript>21</subscript></entry> + <entry>Cr<subscript>21</subscript></entry> + </row> + <row> + <entry>start + 12:</entry> + <entry>Cb<subscript>30</subscript></entry> + <entry>Cr<subscript>30</subscript></entry> + <entry>Cb<subscript>31</subscript></entry> + <entry>Cr<subscript>31</subscript></entry> + </row> + </tbody> + </tgroup> + </informaltable> + </para> + </formalpara> + </example> + </refsect1> + </refentry> diff --git a/Documentation/DocBook/media/v4l/pixfmt.xml b/Documentation/DocBook/media/v4l/pixfmt.xml index bf94f417592c..99b8d2ad6e4f 100644 --- a/Documentation/DocBook/media/v4l/pixfmt.xml +++ b/Documentation/DocBook/media/v4l/pixfmt.xml @@ -673,6 +673,7 @@ access the palette, this must be done with ioctls of the Linux framebuffer API.< &sub-srggb8; &sub-sbggr16; &sub-srggb10; + &sub-srggb10alaw8; &sub-srggb10dpcm8; &sub-srggb12; </section> @@ -701,6 +702,7 @@ information.</para> &sub-y12; &sub-y10b; &sub-y16; + &sub-uv8; &sub-yuyv; &sub-uyvy; &sub-yvyu; diff --git a/Documentation/DocBook/media/v4l/subdev-formats.xml b/Documentation/DocBook/media/v4l/subdev-formats.xml index a0a936455fae..cc51372ed5e0 100644 --- a/Documentation/DocBook/media/v4l/subdev-formats.xml +++ b/Documentation/DocBook/media/v4l/subdev-formats.xml @@ -353,9 +353,9 @@ <listitem><para>The number of bits per pixel component. All components are transferred on the same number of bits. Common values are 8, 10 and 12.</para> </listitem> - <listitem><para>If the pixel components are DPCM-compressed, a mention of the - DPCM compression and the number of bits per compressed pixel component.</para> - </listitem> + <listitem><para>The compression (optional). If the pixel components are + ALAW- or DPCM-compressed, a mention of the compression scheme and the + number of bits per compressed pixel component.</para></listitem> <listitem><para>The number of bus samples per pixel. Pixels that are wider than the bus width must be transferred in multiple samples. Common values are 1 and 2.</para></listitem> @@ -504,6 +504,74 @@ <entry>r<subscript>1</subscript></entry> <entry>r<subscript>0</subscript></entry> </row> + <row id="V4L2-MBUS-FMT-SBGGR10-ALAW8-1X8"> + <entry>V4L2_MBUS_FMT_SBGGR10_ALAW8_1X8</entry> + <entry>0x3015</entry> + <entry></entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>b<subscript>7</subscript></entry> + <entry>b<subscript>6</subscript></entry> + <entry>b<subscript>5</subscript></entry> + <entry>b<subscript>4</subscript></entry> + <entry>b<subscript>3</subscript></entry> + <entry>b<subscript>2</subscript></entry> + <entry>b<subscript>1</subscript></entry> + <entry>b<subscript>0</subscript></entry> + </row> + <row id="V4L2-MBUS-FMT-SGBRG10-ALAW8-1X8"> + <entry>V4L2_MBUS_FMT_SGBRG10_ALAW8_1X8</entry> + <entry>0x3016</entry> + <entry></entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>g<subscript>7</subscript></entry> + <entry>g<subscript>6</subscript></entry> + <entry>g<subscript>5</subscript></entry> + <entry>g<subscript>4</subscript></entry> + <entry>g<subscript>3</subscript></entry> + <entry>g<subscript>2</subscript></entry> + <entry>g<subscript>1</subscript></entry> + <entry>g<subscript>0</subscript></entry> + </row> + <row id="V4L2-MBUS-FMT-SGRBG10-ALAW8-1X8"> + <entry>V4L2_MBUS_FMT_SGRBG10_ALAW8_1X8</entry> + <entry>0x3017</entry> + <entry></entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>g<subscript>7</subscript></entry> + <entry>g<subscript>6</subscript></entry> + <entry>g<subscript>5</subscript></entry> + <entry>g<subscript>4</subscript></entry> + <entry>g<subscript>3</subscript></entry> + <entry>g<subscript>2</subscript></entry> + <entry>g<subscript>1</subscript></entry> + <entry>g<subscript>0</subscript></entry> + </row> + <row id="V4L2-MBUS-FMT-SRGGB10-ALAW8-1X8"> + <entry>V4L2_MBUS_FMT_SRGGB10_ALAW8_1X8</entry> + <entry>0x3018</entry> + <entry></entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>r<subscript>7</subscript></entry> + <entry>r<subscript>6</subscript></entry> + <entry>r<subscript>5</subscript></entry> + <entry>r<subscript>4</subscript></entry> + <entry>r<subscript>3</subscript></entry> + <entry>r<subscript>2</subscript></entry> + <entry>r<subscript>1</subscript></entry> + <entry>r<subscript>0</subscript></entry> + </row> <row id="V4L2-MBUS-FMT-SBGGR10-DPCM8-1X8"> <entry>V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8</entry> <entry>0x300b</entry> @@ -853,10 +921,16 @@ <title>Packed YUV Formats</title> <para>Those data formats transfer pixel data as (possibly downsampled) Y, U - and V components. The format code is made of the following information. + and V components. Some formats include dummy bits in some of their samples + and are collectively referred to as "YDYC" (Y-Dummy-Y-Chroma) formats. + One cannot rely on the values of these dummy bits as those are undefined. + </para> + <para>The format code is made of the following information. <itemizedlist> <listitem><para>The Y, U and V components order code, as transferred on the - bus. Possible values are YUYV, UYVY, YVYU and VYUY.</para></listitem> + bus. Possible values are YUYV, UYVY, YVYU and VYUY for formats with no + dummy bit, and YDYUYDYV, YDYVYDYU, YUYDYVYD and YVYDYUYD for YDYC formats. + </para></listitem> <listitem><para>The number of bits per pixel component. All components are transferred on the same number of bits. Common values are 8, 10 and 12.</para> </listitem> @@ -877,7 +951,21 @@ U, Y, V, Y order will be named <constant>V4L2_MBUS_FMT_UYVY8_2X8</constant>. </para> - <para>The following table lisst existing packet YUV formats.</para> + <para><xref linkend="v4l2-mbus-pixelcode-yuv8"/> list existing packet YUV + formats and describes the organization of each pixel data in each sample. + When a format pattern is split across multiple samples each of the samples + in the pattern is described.</para> + + <para>The role of each bit transferred over the bus is identified by one + of the following codes.</para> + + <itemizedlist> + <listitem><para>y<subscript>x</subscript> for luma component bit number x</para></listitem> + <listitem><para>u<subscript>x</subscript> for blue chroma component bit number x</para></listitem> + <listitem><para>v<subscript>x</subscript> for red chroma component bit number x</para></listitem> + <listitem><para>- for non-available bits (for positions higher than the bus width)</para></listitem> + <listitem><para>d for dummy bits</para></listitem> + </itemizedlist> <table pgwide="0" frame="none" id="v4l2-mbus-pixelcode-yuv8"> <title>YUV Formats</title> @@ -885,27 +973,37 @@ <colspec colname="id" align="left" /> <colspec colname="code" align="center"/> <colspec colname="bit" /> - <colspec colnum="4" colname="b19" align="center" /> - <colspec colnum="5" colname="b18" align="center" /> - <colspec colnum="6" colname="b17" align="center" /> - <colspec colnum="7" colname="b16" align="center" /> - <colspec colnum="8" colname="b15" align="center" /> - <colspec colnum="9" colname="b14" align="center" /> - <colspec colnum="10" colname="b13" align="center" /> - <colspec colnum="11" colname="b12" align="center" /> - <colspec colnum="12" colname="b11" align="center" /> - <colspec colnum="13" colname="b10" align="center" /> - <colspec colnum="14" colname="b09" align="center" /> - <colspec colnum="15" colname="b08" align="center" /> - <colspec colnum="16" colname="b07" align="center" /> - <colspec colnum="17" colname="b06" align="center" /> - <colspec colnum="18" colname="b05" align="center" /> - <colspec colnum="19" colname="b04" align="center" /> - <colspec colnum="20" colname="b03" align="center" /> - <colspec colnum="21" colname="b02" align="center" /> - <colspec colnum="22" colname="b01" align="center" /> - <colspec colnum="23" colname="b00" align="center" /> - <spanspec namest="b19" nameend="b00" spanname="b0" /> + <colspec colnum="4" colname="b29" align="center" /> + <colspec colnum="5" colname="b28" align="center" /> + <colspec colnum="6" colname="b27" align="center" /> + <colspec colnum="7" colname="b26" align="center" /> + <colspec colnum="8" colname="b25" align="center" /> + <colspec colnum="9" colname="b24" align="center" /> + <colspec colnum="10" colname="b23" align="center" /> + <colspec colnum="11" colname="b22" align="center" /> + <colspec colnum="12" colname="b21" align="center" /> + <colspec colnum="13" colname="b20" align="center" /> + <colspec colnum="14" colname="b19" align="center" /> + <colspec colnum="15" colname="b18" align="center" /> + <colspec colnum="16" colname="b17" align="center" /> + <colspec colnum="17" colname="b16" align="center" /> + <colspec colnum="18" colname="b15" align="center" /> + <colspec colnum="19" colname="b14" align="center" /> + <colspec colnum="20" colname="b13" align="center" /> + <colspec colnum="21" colname="b12" align="center" /> + <colspec colnum="22" colname="b11" align="center" /> + <colspec colnum="23" colname="b10" align="center" /> + <colspec colnum="24" colname="b09" align="center" /> + <colspec colnum="25" colname="b08" align="center" /> + <colspec colnum="26" colname="b07" align="center" /> + <colspec colnum="27" colname="b06" align="center" /> + <colspec colnum="28" colname="b05" align="center" /> + <colspec colnum="29" colname="b04" align="center" /> + <colspec colnum="30" colname="b03" align="center" /> + <colspec colnum="31" colname="b02" align="center" /> + <colspec colnum="32" colname="b01" align="center" /> + <colspec colnum="33" colname="b00" align="center" /> + <spanspec namest="b29" nameend="b00" spanname="b0" /> <thead> <row> <entry>Identifier</entry> @@ -917,6 +1015,16 @@ <entry></entry> <entry></entry> <entry>Bit</entry> + <entry>29</entry> + <entry>28</entry> + <entry>27</entry> + <entry>26</entry> + <entry>25</entry> + <entry>24</entry> + <entry>23</entry> + <entry>22</entry> + <entry>21</entry> + <entry>10</entry> <entry>19</entry> <entry>18</entry> <entry>17</entry> @@ -944,16 +1052,8 @@ <entry>V4L2_MBUS_FMT_Y8_1X8</entry> <entry>0x2001</entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -965,9 +1065,9 @@ <entry>y<subscript>1</subscript></entry> <entry>y<subscript>0</subscript></entry> </row> - <row id="V4L2-MBUS-FMT-UYVY8-1_5X8"> - <entry>V4L2_MBUS_FMT_UYVY8_1_5X8</entry> - <entry>0x2002</entry> + <row id="V4L2-MBUS-FMT-UV8-1X8"> + <entry>V4L2_MBUS_FMT_UV8_1X8</entry> + <entry>0x2015</entry> <entry></entry> <entry>-</entry> <entry>-</entry> @@ -1006,6 +1106,40 @@ <entry>-</entry> <entry>-</entry> <entry>-</entry> + <entry>v<subscript>7</subscript></entry> + <entry>v<subscript>6</subscript></entry> + <entry>v<subscript>5</subscript></entry> + <entry>v<subscript>4</subscript></entry> + <entry>v<subscript>3</subscript></entry> + <entry>v<subscript>2</subscript></entry> + <entry>v<subscript>1</subscript></entry> + <entry>v<subscript>0</subscript></entry> + </row> + <row id="V4L2-MBUS-FMT-UYVY8-1_5X8"> + <entry>V4L2_MBUS_FMT_UYVY8_1_5X8</entry> + <entry>0x2002</entry> + <entry></entry> + &dash-ent-10; + &dash-ent-10; + <entry>-</entry> + <entry>-</entry> + <entry>u<subscript>7</subscript></entry> + <entry>u<subscript>6</subscript></entry> + <entry>u<subscript>5</subscript></entry> + <entry>u<subscript>4</subscript></entry> + <entry>u<subscript>3</subscript></entry> + <entry>u<subscript>2</subscript></entry> + <entry>u<subscript>1</subscript></entry> + <entry>u<subscript>0</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry></entry> + &dash-ent-10; + &dash-ent-10; + <entry>-</entry> + <entry>-</entry> <entry>y<subscript>7</subscript></entry> <entry>y<subscript>6</subscript></entry> <entry>y<subscript>5</subscript></entry> @@ -1019,16 +1153,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1044,16 +1170,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>v<subscript>7</subscript></entry> @@ -1069,16 +1187,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1094,16 +1204,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1119,16 +1221,8 @@ <entry>V4L2_MBUS_FMT_VYUY8_1_5X8</entry> <entry>0x2003</entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>v<subscript>7</subscript></entry> @@ -1144,16 +1238,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1169,16 +1255,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1194,16 +1272,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>u<subscript>7</subscript></entry> @@ -1219,16 +1289,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1244,16 +1306,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1269,16 +1323,8 @@ <entry>V4L2_MBUS_FMT_YUYV8_1_5X8</entry> <entry>0x2004</entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1294,16 +1340,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1319,16 +1357,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>u<subscript>7</subscript></entry> @@ -1344,16 +1374,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1369,16 +1391,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1394,16 +1408,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>v<subscript>7</subscript></entry> @@ -1419,16 +1425,8 @@ <entry>V4L2_MBUS_FMT_YVYU8_1_5X8</entry> <entry>0x2005</entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1444,16 +1442,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1469,16 +1459,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>v<subscript>7</subscript></entry> @@ -1494,16 +1476,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1519,16 +1493,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1544,16 +1510,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>u<subscript>7</subscript></entry> @@ -1569,16 +1527,8 @@ <entry>V4L2_MBUS_FMT_UYVY8_2X8</entry> <entry>0x2006</entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>u<subscript>7</subscript></entry> @@ -1594,16 +1544,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1619,16 +1561,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>v<subscript>7</subscript></entry> @@ -1644,16 +1578,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1669,16 +1595,8 @@ <entry>V4L2_MBUS_FMT_VYUY8_2X8</entry> <entry>0x2007</entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>v<subscript>7</subscript></entry> @@ -1694,16 +1612,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1719,16 +1629,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>u<subscript>7</subscript></entry> @@ -1744,16 +1646,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1769,16 +1663,8 @@ <entry>V4L2_MBUS_FMT_YUYV8_2X8</entry> <entry>0x2008</entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1794,16 +1680,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>u<subscript>7</subscript></entry> @@ -1819,16 +1697,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1844,16 +1714,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>v<subscript>7</subscript></entry> @@ -1869,16 +1731,8 @@ <entry>V4L2_MBUS_FMT_YVYU8_2X8</entry> <entry>0x2009</entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1894,16 +1748,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>v<subscript>7</subscript></entry> @@ -1919,16 +1765,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>y<subscript>7</subscript></entry> @@ -1944,16 +1782,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>u<subscript>7</subscript></entry> @@ -1969,16 +1799,8 @@ <entry>V4L2_MBUS_FMT_Y10_1X10</entry> <entry>0x200a</entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>y<subscript>9</subscript></entry> <entry>y<subscript>8</subscript></entry> <entry>y<subscript>7</subscript></entry> @@ -1994,16 +1816,8 @@ <entry>V4L2_MBUS_FMT_YUYV10_2X10</entry> <entry>0x200b</entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>y<subscript>9</subscript></entry> <entry>y<subscript>8</subscript></entry> <entry>y<subscript>7</subscript></entry> @@ -2019,16 +1833,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>u<subscript>9</subscript></entry> <entry>u<subscript>8</subscript></entry> <entry>u<subscript>7</subscript></entry> @@ -2044,16 +1850,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>y<subscript>9</subscript></entry> <entry>y<subscript>8</subscript></entry> <entry>y<subscript>7</subscript></entry> @@ -2069,16 +1867,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>v<subscript>9</subscript></entry> <entry>v<subscript>8</subscript></entry> <entry>v<subscript>7</subscript></entry> @@ -2094,16 +1884,8 @@ <entry>V4L2_MBUS_FMT_YVYU10_2X10</entry> <entry>0x200c</entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>y<subscript>9</subscript></entry> <entry>y<subscript>8</subscript></entry> <entry>y<subscript>7</subscript></entry> @@ -2119,16 +1901,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>v<subscript>9</subscript></entry> <entry>v<subscript>8</subscript></entry> <entry>v<subscript>7</subscript></entry> @@ -2144,16 +1918,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>y<subscript>9</subscript></entry> <entry>y<subscript>8</subscript></entry> <entry>y<subscript>7</subscript></entry> @@ -2169,16 +1935,8 @@ <entry></entry> <entry></entry> <entry></entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> - <entry>-</entry> + &dash-ent-10; + &dash-ent-10; <entry>u<subscript>9</subscript></entry> <entry>u<subscript>8</subscript></entry> <entry>u<subscript>7</subscript></entry> @@ -2194,6 +1952,7 @@ <entry>V4L2_MBUS_FMT_Y12_1X12</entry> <entry>0x2013</entry> <entry></entry> + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>-</entry> @@ -2219,6 +1978,7 @@ <entry>V4L2_MBUS_FMT_UYVY8_1X16</entry> <entry>0x200f</entry> <entry></entry> + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>-</entry> @@ -2244,6 +2004,7 @@ <entry></entry> <entry></entry> <entry></entry> + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>-</entry> @@ -2269,6 +2030,7 @@ <entry>V4L2_MBUS_FMT_VYUY8_1X16</entry> <entry>0x2010</entry> <entry></entry> + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>-</entry> @@ -2294,6 +2056,7 @@ <entry></entry> <entry></entry> <entry></entry> + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>-</entry> @@ -2319,6 +2082,7 @@ <entry>V4L2_MBUS_FMT_YUYV8_1X16</entry> <entry>0x2011</entry> <entry></entry> + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>-</entry> @@ -2344,6 +2108,7 @@ <entry></entry> <entry></entry> <entry></entry> + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>-</entry> @@ -2369,6 +2134,7 @@ <entry>V4L2_MBUS_FMT_YVYU8_1X16</entry> <entry>0x2012</entry> <entry></entry> + &dash-ent-10; <entry>-</entry> <entry>-</entry> <entry>-</entry> @@ -2394,6 +2160,57 @@ <entry></entry> <entry></entry> <entry></entry> + &dash-ent-10; + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>y<subscript>7</subscript></entry> + <entry>y<subscript>6</subscript></entry> + <entry>y<subscript>5</subscript></entry> + <entry>y<subscript>4</subscript></entry> + <entry>y<subscript>3</subscript></entry> + <entry>y<subscript>2</subscript></entry> + <entry>y<subscript>1</subscript></entry> + <entry>y<subscript>0</subscript></entry> + <entry>u<subscript>7</subscript></entry> + <entry>u<subscript>6</subscript></entry> + <entry>u<subscript>5</subscript></entry> + <entry>u<subscript>4</subscript></entry> + <entry>u<subscript>3</subscript></entry> + <entry>u<subscript>2</subscript></entry> + <entry>u<subscript>1</subscript></entry> + <entry>u<subscript>0</subscript></entry> + </row> + <row id="V4L2-MBUS-FMT-YDYUYDYV8-1X16"> + <entry>V4L2_MBUS_FMT_YDYUYDYV8_1X16</entry> + <entry>0x2014</entry> + <entry></entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>y<subscript>7</subscript></entry> + <entry>y<subscript>6</subscript></entry> + <entry>y<subscript>5</subscript></entry> + <entry>y<subscript>4</subscript></entry> + <entry>y<subscript>3</subscript></entry> + <entry>y<subscript>2</subscript></entry> + <entry>y<subscript>1</subscript></entry> + <entry>y<subscript>0</subscript></entry> + <entry>d</entry> + <entry>d</entry> + <entry>d</entry> + <entry>d</entry> + <entry>d</entry> + <entry>d</entry> + <entry>d</entry> + <entry>d</entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry></entry> <entry>-</entry> <entry>-</entry> <entry>-</entry> @@ -2415,10 +2232,61 @@ <entry>u<subscript>1</subscript></entry> <entry>u<subscript>0</subscript></entry> </row> + <row> + <entry></entry> + <entry></entry> + <entry></entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>y<subscript>7</subscript></entry> + <entry>y<subscript>6</subscript></entry> + <entry>y<subscript>5</subscript></entry> + <entry>y<subscript>4</subscript></entry> + <entry>y<subscript>3</subscript></entry> + <entry>y<subscript>2</subscript></entry> + <entry>y<subscript>1</subscript></entry> + <entry>y<subscript>0</subscript></entry> + <entry>d</entry> + <entry>d</entry> + <entry>d</entry> + <entry>d</entry> + <entry>d</entry> + <entry>d</entry> + <entry>d</entry> + <entry>d</entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry></entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>y<subscript>7</subscript></entry> + <entry>y<subscript>6</subscript></entry> + <entry>y<subscript>5</subscript></entry> + <entry>y<subscript>4</subscript></entry> + <entry>y<subscript>3</subscript></entry> + <entry>y<subscript>2</subscript></entry> + <entry>y<subscript>1</subscript></entry> + <entry>y<subscript>0</subscript></entry> + <entry>v<subscript>7</subscript></entry> + <entry>v<subscript>6</subscript></entry> + <entry>v<subscript>5</subscript></entry> + <entry>v<subscript>4</subscript></entry> + <entry>v<subscript>3</subscript></entry> + <entry>v<subscript>2</subscript></entry> + <entry>v<subscript>1</subscript></entry> + <entry>v<subscript>0</subscript></entry> + </row> <row id="V4L2-MBUS-FMT-YUYV10-1X20"> <entry>V4L2_MBUS_FMT_YUYV10_1X20</entry> <entry>0x200d</entry> <entry></entry> + &dash-ent-10; <entry>y<subscript>9</subscript></entry> <entry>y<subscript>8</subscript></entry> <entry>y<subscript>7</subscript></entry> @@ -2444,6 +2312,7 @@ <entry></entry> <entry></entry> <entry></entry> + &dash-ent-10; <entry>y<subscript>9</subscript></entry> <entry>y<subscript>8</subscript></entry> <entry>y<subscript>7</subscript></entry> @@ -2469,6 +2338,7 @@ <entry>V4L2_MBUS_FMT_YVYU10_1X20</entry> <entry>0x200e</entry> <entry></entry> + &dash-ent-10; <entry>y<subscript>9</subscript></entry> <entry>y<subscript>8</subscript></entry> <entry>y<subscript>7</subscript></entry> @@ -2494,6 +2364,7 @@ <entry></entry> <entry></entry> <entry></entry> + &dash-ent-10; <entry>y<subscript>9</subscript></entry> <entry>y<subscript>8</subscript></entry> <entry>y<subscript>7</subscript></entry> @@ -2515,6 +2386,41 @@ <entry>u<subscript>1</subscript></entry> <entry>u<subscript>0</subscript></entry> </row> + <row id="V4L2-MBUS-FMT-YUV10-1X30"> + <entry>V4L2_MBUS_FMT_YUV10_1X30</entry> + <entry>0x2014</entry> + <entry></entry> + <entry>y<subscript>9</subscript></entry> + <entry>y<subscript>8</subscript></entry> + <entry>y<subscript>7</subscript></entry> + <entry>y<subscript>6</subscript></entry> + <entry>y<subscript>5</subscript></entry> + <entry>y<subscript>4</subscript></entry> + <entry>y<subscript>3</subscript></entry> + <entry>y<subscript>2</subscript></entry> + <entry>y<subscript>1</subscript></entry> + <entry>y<subscript>0</subscript></entry> + <entry>u<subscript>9</subscript></entry> + <entry>u<subscript>8</subscript></entry> + <entry>u<subscript>7</subscript></entry> + <entry>u<subscript>6</subscript></entry> + <entry>u<subscript>5</subscript></entry> + <entry>u<subscript>4</subscript></entry> + <entry>u<subscript>3</subscript></entry> + <entry>u<subscript>2</subscript></entry> + <entry>u<subscript>1</subscript></entry> + <entry>u<subscript>0</subscript></entry> + <entry>v<subscript>9</subscript></entry> + <entry>v<subscript>8</subscript></entry> + <entry>v<subscript>7</subscript></entry> + <entry>v<subscript>6</subscript></entry> + <entry>v<subscript>5</subscript></entry> + <entry>v<subscript>4</subscript></entry> + <entry>v<subscript>3</subscript></entry> + <entry>v<subscript>2</subscript></entry> + <entry>v<subscript>1</subscript></entry> + <entry>v<subscript>0</subscript></entry> + </row> </tbody> </tgroup> </table> diff --git a/Documentation/DocBook/media/v4l/v4l2.xml b/Documentation/DocBook/media/v4l/v4l2.xml index 4d110b1ad3e9..a3cce18384e9 100644 --- a/Documentation/DocBook/media/v4l/v4l2.xml +++ b/Documentation/DocBook/media/v4l/v4l2.xml @@ -140,6 +140,16 @@ structs, ioctls) must be noted in more detail in the history chapter applications. --> <revision> + <revnumber>3.9</revnumber> + <date>2012-12-03</date> + <authorinitials>sa, sn</authorinitials> + <revremark>Added timestamp types to v4l2_buffer. + Added <constant>V4L2_EVENT_CTRL_CH_RANGE</constant> control + event changes flag, see <xref linkend="changes-flags"/>. + </revremark> + </revision> + + <revision> <revnumber>3.6</revnumber> <date>2012-07-02</date> <authorinitials>hv</authorinitials> @@ -472,7 +482,7 @@ and discussions on the V4L mailing list.</revremark> </partinfo> <title>Video for Linux Two API Specification</title> - <subtitle>Revision 3.6</subtitle> + <subtitle>Revision 3.9</subtitle> <chapter id="common"> &sub-common; diff --git a/Documentation/DocBook/media/v4l/vidioc-dqevent.xml b/Documentation/DocBook/media/v4l/vidioc-dqevent.xml index 98a856f9ec30..89891adb928a 100644 --- a/Documentation/DocBook/media/v4l/vidioc-dqevent.xml +++ b/Documentation/DocBook/media/v4l/vidioc-dqevent.xml @@ -261,6 +261,12 @@ <entry>This control event was triggered because the control flags changed.</entry> </row> + <row> + <entry><constant>V4L2_EVENT_CTRL_CH_RANGE</constant></entry> + <entry>0x0004</entry> + <entry>This control event was triggered because the minimum, + maximum, step or the default value of the control changed.</entry> + </row> </tbody> </tgroup> </table> diff --git a/Documentation/DocBook/media/v4l/vidioc-expbuf.xml b/Documentation/DocBook/media/v4l/vidioc-expbuf.xml index 72dfbd20a802..e287c8fc803b 100644 --- a/Documentation/DocBook/media/v4l/vidioc-expbuf.xml +++ b/Documentation/DocBook/media/v4l/vidioc-expbuf.xml @@ -83,15 +83,14 @@ descriptor. The application may pass it to other DMABUF-aware devices. Refer to <link linkend="dmabuf">DMABUF importing</link> for details about importing DMABUF files into V4L2 nodes. It is recommended to close a DMABUF file when it is no longer used to allow the associated memory to be reclaimed. </para> - </refsect1> + <refsect1> - <section> - <title>Examples</title> + <title>Examples</title> - <example> - <title>Exporting a buffer.</title> - <programlisting> + <example> + <title>Exporting a buffer.</title> + <programlisting> int buffer_export(int v4lfd, &v4l2-buf-type; bt, int index, int *dmafd) { &v4l2-exportbuffer; expbuf; @@ -108,12 +107,12 @@ int buffer_export(int v4lfd, &v4l2-buf-type; bt, int index, int *dmafd) return 0; } - </programlisting> - </example> + </programlisting> + </example> - <example> - <title>Exporting a buffer using the multi-planar API.</title> - <programlisting> + <example> + <title>Exporting a buffer using the multi-planar API.</title> + <programlisting> int buffer_export_mp(int v4lfd, &v4l2-buf-type; bt, int index, int dmafd[], int n_planes) { @@ -137,12 +136,9 @@ int buffer_export_mp(int v4lfd, &v4l2-buf-type; bt, int index, return 0; } - </programlisting> - </example> - </section> - </refsect1> + </programlisting> + </example> - <refsect1> <table pgwide="1" frame="none" id="v4l2-exportbuffer"> <title>struct <structname>v4l2_exportbuffer</structname></title> <tgroup cols="3"> diff --git a/Documentation/DocBook/media/v4l/vidioc-g-ctrl.xml b/Documentation/DocBook/media/v4l/vidioc-g-ctrl.xml index 12b1d0503e26..ee2820d6ca66 100644 --- a/Documentation/DocBook/media/v4l/vidioc-g-ctrl.xml +++ b/Documentation/DocBook/media/v4l/vidioc-g-ctrl.xml @@ -64,7 +64,9 @@ return an &EINVAL;. When the <structfield>value</structfield> is out of bounds drivers can choose to take the closest valid value or return an &ERANGE;, whatever seems more appropriate. However, <constant>VIDIOC_S_CTRL</constant> is a write-only ioctl, it does not -return the actual new value.</para> +return the actual new value. If the <structfield>value</structfield> +is inappropriate for the control (e.g. if it refers to an unsupported +menu index of a menu control), then &EINVAL; is returned as well.</para> <para>These ioctls work only with user controls. For other control classes the &VIDIOC-G-EXT-CTRLS;, &VIDIOC-S-EXT-CTRLS; or @@ -99,7 +101,9 @@ application.</entry> <term><errorcode>EINVAL</errorcode></term> <listitem> <para>The &v4l2-control; <structfield>id</structfield> is -invalid.</para> +invalid or the <structfield>value</structfield> is inappropriate for +the given control (i.e. if a menu item is selected that is not supported +by the driver according to &VIDIOC-QUERYMENU;).</para> </listitem> </varlistentry> <varlistentry> diff --git a/Documentation/DocBook/media/v4l/vidioc-g-ext-ctrls.xml b/Documentation/DocBook/media/v4l/vidioc-g-ext-ctrls.xml index 0a4b90fcf2da..4e16112df992 100644 --- a/Documentation/DocBook/media/v4l/vidioc-g-ext-ctrls.xml +++ b/Documentation/DocBook/media/v4l/vidioc-g-ext-ctrls.xml @@ -106,7 +106,9 @@ value or if an error is returned.</para> &EINVAL;. When the value is out of bounds drivers can choose to take the closest valid value or return an &ERANGE;, whatever seems more appropriate. In the first case the new value is set in -&v4l2-ext-control;.</para> +&v4l2-ext-control;. If the new control value is inappropriate (e.g. the +given menu index is not supported by the menu control), then this will +also result in an &EINVAL; error.</para> <para>The driver will only set/get these controls if all control values are correct. This prevents the situation where only some of the @@ -199,13 +201,46 @@ also be zero.</entry> <row> <entry>__u32</entry> <entry><structfield>error_idx</structfield></entry> - <entry>Set by the driver in case of an error. If it is equal -to <structfield>count</structfield>, then no actual changes were made to -controls. In other words, the error was not associated with setting a particular -control. If it is another value, then only the controls up to <structfield>error_idx-1</structfield> -were modified and control <structfield>error_idx</structfield> is the one that -caused the error. The <structfield>error_idx</structfield> value is undefined -if the ioctl returned 0 (success).</entry> + <entry><para>Set by the driver in case of an error. If the error is +associated with a particular control, then <structfield>error_idx</structfield> +is set to the index of that control. If the error is not related to a specific +control, or the validation step failed (see below), then +<structfield>error_idx</structfield> is set to <structfield>count</structfield>. +The value is undefined if the ioctl returned 0 (success).</para> + +<para>Before controls are read from/written to hardware a validation step +takes place: this checks if all controls in the list are valid controls, +if no attempt is made to write to a read-only control or read from a write-only +control, and any other up-front checks that can be done without accessing the +hardware. The exact validations done during this step are driver dependent +since some checks might require hardware access for some devices, thus making +it impossible to do those checks up-front. However, drivers should make a +best-effort to do as many up-front checks as possible.</para> + +<para>This check is done to avoid leaving the hardware in an inconsistent state due +to easy-to-avoid problems. But it leads to another problem: the application needs to +know whether an error came from the validation step (meaning that the hardware +was not touched) or from an error during the actual reading from/writing to hardware.</para> + +<para>The, in hindsight quite poor, solution for that is to set <structfield>error_idx</structfield> +to <structfield>count</structfield> if the validation failed. This has the +unfortunate side-effect that it is not possible to see which control failed the +validation. If the validation was successful and the error happened while +accessing the hardware, then <structfield>error_idx</structfield> is less than +<structfield>count</structfield> and only the controls up to +<structfield>error_idx-1</structfield> were read or written correctly, and the +state of the remaining controls is undefined.</para> + +<para>Since <constant>VIDIOC_TRY_EXT_CTRLS</constant> does not access hardware +there is also no need to handle the validation step in this special way, +so <structfield>error_idx</structfield> will just be set to the control that +failed the validation step instead of to <structfield>count</structfield>. +This means that if <constant>VIDIOC_S_EXT_CTRLS</constant> fails with +<structfield>error_idx</structfield> set to <structfield>count</structfield>, +then you can call <constant>VIDIOC_TRY_EXT_CTRLS</constant> to try to discover +the actual control that failed the validation step. Unfortunately, there +is no <constant>TRY</constant> equivalent for <constant>VIDIOC_G_EXT_CTRLS</constant>. +</para></entry> </row> <row> <entry>__u32</entry> @@ -298,8 +333,10 @@ These controls are described in <xref <term><errorcode>EINVAL</errorcode></term> <listitem> <para>The &v4l2-ext-control; <structfield>id</structfield> -is invalid or the &v4l2-ext-controls; -<structfield>ctrl_class</structfield> is invalid. This error code is +is invalid, the &v4l2-ext-controls; +<structfield>ctrl_class</structfield> is invalid, or the &v4l2-ext-control; +<structfield>value</structfield> was inappropriate (e.g. the given menu +index is not supported by the driver). This error code is also returned by the <constant>VIDIOC_S_EXT_CTRLS</constant> and <constant>VIDIOC_TRY_EXT_CTRLS</constant> ioctls if two or more control values are in conflict.</para> diff --git a/Documentation/DocBook/media/v4l/vidioc-querycap.xml b/Documentation/DocBook/media/v4l/vidioc-querycap.xml index 4c70215ae03f..d5a3c97b206a 100644 --- a/Documentation/DocBook/media/v4l/vidioc-querycap.xml +++ b/Documentation/DocBook/media/v4l/vidioc-querycap.xml @@ -76,7 +76,7 @@ make sure the strings are properly NUL-terminated.</para></entry> <row> <entry>__u8</entry> <entry><structfield>card</structfield>[32]</entry> - <entry>Name of the device, a NUL-terminated ASCII string. + <entry>Name of the device, a NUL-terminated UTF-8 string. For example: "Yoyodyne TV/FM". One driver may support different brands or models of video hardware. This information is intended for users, for example in a menu of available devices. Since multiple TV cards of diff --git a/Documentation/DocBook/media_api.tmpl b/Documentation/DocBook/media_api.tmpl index f2413acfe241..1f6593deb995 100644 --- a/Documentation/DocBook/media_api.tmpl +++ b/Documentation/DocBook/media_api.tmpl @@ -22,6 +22,7 @@ <!-- LinuxTV v4l-dvb repository. --> <!ENTITY v4l-dvb "<ulink url='http://linuxtv.org/repo/'>http://linuxtv.org/repo/</ulink>"> +<!ENTITY dash-ent-10 "<entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry>"> ]> <book id="media_api"> diff --git a/Documentation/EDID/HOWTO.txt b/Documentation/EDID/HOWTO.txt index 75a9f2a0c43d..2d0a8f09475d 100644 --- a/Documentation/EDID/HOWTO.txt +++ b/Documentation/EDID/HOWTO.txt @@ -28,11 +28,30 @@ Makefile environment are given here. To create binary EDID and C source code files from the existing data material, simply type "make". -If you want to create your own EDID file, copy the file 1024x768.S and -replace the settings with your own data. The CRC value in the last line +If you want to create your own EDID file, copy the file 1024x768.S, +replace the settings with your own data and add a new target to the +Makefile. Please note that the EDID data structure expects the timing +values in a different way as compared to the standard X11 format. + +X11: +HTimings: hdisp hsyncstart hsyncend htotal +VTimings: vdisp vsyncstart vsyncend vtotal + +EDID: +#define XPIX hdisp +#define XBLANK htotal-hdisp +#define XOFFSET hsyncstart-hdisp +#define XPULSE hsyncend-hsyncstart + +#define YPIX vdisp +#define YBLANK vtotal-vdisp +#define YOFFSET (63+(vsyncstart-vdisp)) +#define YPULSE (63+(vsyncend-vsyncstart)) + +The CRC value in the last line #define CRC 0x55 -is a bit tricky. After a first version of the binary data set is -created, it must be be checked with the "edid-decode" utility which will +also is a bit tricky. After a first version of the binary data set is +created, it must be checked with the "edid-decode" utility which will most probably complain about a wrong CRC. Fortunately, the utility also displays the correct CRC which must then be inserted into the source file. After the make procedure is repeated, the EDID data set is ready diff --git a/Documentation/IPMI.txt b/Documentation/IPMI.txt index 16eb4c9e9233..f13c9132e9f2 100644 --- a/Documentation/IPMI.txt +++ b/Documentation/IPMI.txt @@ -348,34 +348,40 @@ You can change this at module load time (for a module) with: modprobe ipmi_si.o type=<type1>,<type2>.... ports=<port1>,<port2>... addrs=<addr1>,<addr2>... - irqs=<irq1>,<irq2>... trydefaults=[0|1] + irqs=<irq1>,<irq2>... regspacings=<sp1>,<sp2>,... regsizes=<size1>,<size2>,... regshifts=<shift1>,<shift2>,... slave_addrs=<addr1>,<addr2>,... force_kipmid=<enable1>,<enable2>,... kipmid_max_busy_us=<ustime1>,<ustime2>,... unload_when_empty=[0|1] + trydefaults=[0|1] trydmi=[0|1] tryacpi=[0|1] + tryplatform=[0|1] trypci=[0|1] -Each of these except si_trydefaults is a list, the first item for the +Each of these except try... items is a list, the first item for the first interface, second item for the second interface, etc. The si_type may be either "kcs", "smic", or "bt". If you leave it blank, it defaults to "kcs". -If you specify si_addrs as non-zero for an interface, the driver will +If you specify addrs as non-zero for an interface, the driver will use the memory address given as the address of the device. This overrides si_ports. -If you specify si_ports as non-zero for an interface, the driver will +If you specify ports as non-zero for an interface, the driver will use the I/O port given as the device address. -If you specify si_irqs as non-zero for an interface, the driver will +If you specify irqs as non-zero for an interface, the driver will attempt to use the given interrupt for the device. -si_trydefaults sets whether the standard IPMI interface at 0xca2 and +trydefaults sets whether the standard IPMI interface at 0xca2 and any interfaces specified by ACPE are tried. By default, the driver tries it, set this value to zero to turn this off. +The other try... items disable discovery by their corresponding +names. These are all enabled by default, set them to zero to disable +them. The tryplatform disables openfirmware. + The next three parameters have to do with register layout. The registers used by the interfaces may not appear at successive locations and they may not be in 8-bit registers. These parameters diff --git a/Documentation/block/cfq-iosched.txt b/Documentation/block/cfq-iosched.txt index d89b4fe724d7..a5eb7d19a65d 100644 --- a/Documentation/block/cfq-iosched.txt +++ b/Documentation/block/cfq-iosched.txt @@ -102,6 +102,64 @@ processing of request. Therefore, increasing the value can imporve the performace although this can cause the latency of some I/O to increase due to more number of requests. +CFQ Group scheduling +==================== + +CFQ supports blkio cgroup and has "blkio." prefixed files in each +blkio cgroup directory. It is weight-based and there are four knobs +for configuration - weight[_device] and leaf_weight[_device]. +Internal cgroup nodes (the ones with children) can also have tasks in +them, so the former two configure how much proportion the cgroup as a +whole is entitled to at its parent's level while the latter two +configure how much proportion the tasks in the cgroup have compared to +its direct children. + +Another way to think about it is assuming that each internal node has +an implicit leaf child node which hosts all the tasks whose weight is +configured by leaf_weight[_device]. Let's assume a blkio hierarchy +composed of five cgroups - root, A, B, AA and AB - with the following +weights where the names represent the hierarchy. + + weight leaf_weight + root : 125 125 + A : 500 750 + B : 250 500 + AA : 500 500 + AB : 1000 500 + +root never has a parent making its weight is meaningless. For backward +compatibility, weight is always kept in sync with leaf_weight. B, AA +and AB have no child and thus its tasks have no children cgroup to +compete with. They always get 100% of what the cgroup won at the +parent level. Considering only the weights which matter, the hierarchy +looks like the following. + + root + / | \ + A B leaf + 500 250 125 + / | \ + AA AB leaf + 500 1000 750 + +If all cgroups have active IOs and competing with each other, disk +time will be distributed like the following. + +Distribution below root. The total active weight at this level is +A:500 + B:250 + C:125 = 875. + + root-leaf : 125 / 875 =~ 14% + A : 500 / 875 =~ 57% + B(-leaf) : 250 / 875 =~ 28% + +A has children and further distributes its 57% among the children and +the implicit leaf node. The total active weight at this level is +AA:500 + AB:1000 + A-leaf:750 = 2250. + + A-leaf : ( 750 / 2250) * A =~ 19% + AA(-leaf) : ( 500 / 2250) * A =~ 12% + AB(-leaf) : (1000 / 2250) * A =~ 25% + CFQ IOPS Mode for group scheduling =================================== Basic CFQ design is to provide priority based time slices. Higher priority diff --git a/Documentation/blockdev/nbd.txt b/Documentation/blockdev/nbd.txt index aeb93ffe6416..271e607304da 100644 --- a/Documentation/blockdev/nbd.txt +++ b/Documentation/blockdev/nbd.txt @@ -4,43 +4,13 @@ can use a remote server as one of its block devices. So every time the client computer wants to read, e.g., /dev/nb0, it sends a request over TCP to the server, which will reply with the data read. - This can be used for stations with low disk space (or even diskless - - if you boot from floppy) to borrow disk space from another computer. - Unlike NFS, it is possible to put any filesystem on it, etc. It should - even be possible to use NBD as a root filesystem (I've never tried), - but it requires a user-level program to be in the initrd to start. - It also allows you to run block-device in user land (making server - and client physically the same computer, communicating using loopback). - - Current state: It currently works. Network block device is stable. - I originally thought that it was impossible to swap over TCP. It - turned out not to be true - swapping over TCP now works and seems - to be deadlock-free, but it requires heavy patches into Linux's - network layer. - + This can be used for stations with low disk space (or even diskless) + to borrow disk space from another computer. + Unlike NFS, it is possible to put any filesystem on it, etc. + For more information, or to download the nbd-client and nbd-server tools, go to http://nbd.sf.net/. - Howto: To setup nbd, you can simply do the following: - - First, serve a device or file from a remote server: - - nbd-server <port-number> <device-or-file-to-serve-to-client> - - e.g., - root@server1 # nbd-server 1234 /dev/sdb1 - - (serves sdb1 partition on TCP port 1234) - - Then, on the local (client) system: - - nbd-client <server-name-or-IP> <server-port-number> /dev/nb[0-n] - - e.g., - root@client1 # nbd-client server1 1234 /dev/nb0 - - (creates the nb0 device on client1) - The nbd kernel module need only be installed on the client system, as the nbd-server is completely in userspace. In fact, the nbd-server has been successfully ported to other operating diff --git a/Documentation/cgroups/blkio-controller.txt b/Documentation/cgroups/blkio-controller.txt index b4b1fb3a83f0..da272c8f44e7 100644 --- a/Documentation/cgroups/blkio-controller.txt +++ b/Documentation/cgroups/blkio-controller.txt @@ -75,7 +75,7 @@ Throttling/Upper Limit policy mount -t cgroup -o blkio none /sys/fs/cgroup/blkio - Specify a bandwidth rate on particular device for root group. The format - for policy is "<major>:<minor> <byes_per_second>". + for policy is "<major>:<minor> <bytes_per_second>". echo "8:16 1048576" > /sys/fs/cgroup/blkio/blkio.throttle.read_bps_device @@ -94,13 +94,11 @@ Throttling/Upper Limit policy Hierarchical Cgroups ==================== -- Currently none of the IO control policy supports hierarchical groups. But - cgroup interface does allow creation of hierarchical cgroups and internally - IO policies treat them as flat hierarchy. +- Currently only CFQ supports hierarchical groups. For throttling, + cgroup interface does allow creation of hierarchical cgroups and + internally it treats them as flat hierarchy. - So this patch will allow creation of cgroup hierarchcy but at the backend - everything will be treated as flat. So if somebody created a hierarchy like - as follows. + If somebody created a hierarchy like as follows. root / \ @@ -108,16 +106,20 @@ Hierarchical Cgroups | test3 - CFQ and throttling will practically treat all groups at same level. + CFQ will handle the hierarchy correctly but and throttling will + practically treat all groups at same level. For details on CFQ + hierarchy support, refer to Documentation/block/cfq-iosched.txt. + Throttling will treat the hierarchy as if it looks like the + following. pivot / / \ \ root test1 test2 test3 - Down the line we can implement hierarchical accounting/control support - and also introduce a new cgroup file "use_hierarchy" which will control - whether cgroup hierarchy is viewed as flat or hierarchical by the policy.. - This is how memory controller also has implemented the things. + Nesting cgroups, while allowed, isn't officially supported and blkio + genereates warning when cgroups nest. Once throttling implements + hierarchy support, hierarchy will be supported and the warning will + be removed. Various user visible config options =================================== @@ -172,6 +174,12 @@ Proportional weight policy files dev weight 8:16 300 +- blkio.leaf_weight[_device] + - Equivalents of blkio.weight[_device] for the purpose of + deciding how much weight tasks in the given cgroup has while + competing with the cgroup's child cgroups. For details, + please refer to Documentation/block/cfq-iosched.txt. + - blkio.time - disk time allocated to cgroup per device in milliseconds. First two fields specify the major and minor number of the device and @@ -279,6 +287,11 @@ Proportional weight policy files and minor number of the device and third field specifies the number of times a group was dequeued from a particular device. +- blkio.*_recursive + - Recursive version of various stats. These files show the + same information as their non-recursive counterparts but + include stats from all the descendant cgroups. + Throttling/Upper limit policy files ----------------------------------- - blkio.throttle.read_bps_device diff --git a/Documentation/coccinelle.txt b/Documentation/coccinelle.txt index cf44eb6499b4..dffa2d620d6d 100644 --- a/Documentation/coccinelle.txt +++ b/Documentation/coccinelle.txt @@ -87,6 +87,10 @@ As any static code analyzer, Coccinelle produces false positives. Thus, reports must be carefully checked, and patches reviewed. +To enable verbose messages set the V= variable, for example: + + make coccicheck MODE=report V=1 + Using Coccinelle with a single semantic patch ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/Documentation/device-mapper/cache-policies.txt b/Documentation/device-mapper/cache-policies.txt new file mode 100644 index 000000000000..d7c440b444cc --- /dev/null +++ b/Documentation/device-mapper/cache-policies.txt @@ -0,0 +1,77 @@ +Guidance for writing policies +============================= + +Try to keep transactionality out of it. The core is careful to +avoid asking about anything that is migrating. This is a pain, but +makes it easier to write the policies. + +Mappings are loaded into the policy at construction time. + +Every bio that is mapped by the target is referred to the policy. +The policy can return a simple HIT or MISS or issue a migration. + +Currently there's no way for the policy to issue background work, +e.g. to start writing back dirty blocks that are going to be evicte +soon. + +Because we map bios, rather than requests it's easy for the policy +to get fooled by many small bios. For this reason the core target +issues periodic ticks to the policy. It's suggested that the policy +doesn't update states (eg, hit counts) for a block more than once +for each tick. The core ticks by watching bios complete, and so +trying to see when the io scheduler has let the ios run. + + +Overview of supplied cache replacement policies +=============================================== + +multiqueue +---------- + +This policy is the default. + +The multiqueue policy has two sets of 16 queues: one set for entries +waiting for the cache and another one for those in the cache. +Cache entries in the queues are aged based on logical time. Entry into +the cache is based on variable thresholds and queue selection is based +on hit count on entry. The policy aims to take different cache miss +costs into account and to adjust to varying load patterns automatically. + +Message and constructor argument pairs are: + 'sequential_threshold <#nr_sequential_ios>' and + 'random_threshold <#nr_random_ios>'. + +The sequential threshold indicates the number of contiguous I/Os +required before a stream is treated as sequential. The random threshold +is the number of intervening non-contiguous I/Os that must be seen +before the stream is treated as random again. + +The sequential and random thresholds default to 512 and 4 respectively. + +Large, sequential ios are probably better left on the origin device +since spindles tend to have good bandwidth. The io_tracker counts +contiguous I/Os to try to spot when the io is in one of these sequential +modes. + +cleaner +------- + +The cleaner writes back all dirty blocks in a cache to decommission it. + +Examples +======== + +The syntax for a table is: + cache <metadata dev> <cache dev> <origin dev> <block size> + <#feature_args> [<feature arg>]* + <policy> <#policy_args> [<policy arg>]* + +The syntax to send a message using the dmsetup command is: + dmsetup message <mapped device> 0 sequential_threshold 1024 + dmsetup message <mapped device> 0 random_threshold 8 + +Using dmsetup: + dmsetup create blah --table "0 268435456 cache /dev/sdb /dev/sdc \ + /dev/sdd 512 0 mq 4 sequential_threshold 1024 random_threshold 8" + creates a 128GB large mapped device named 'blah' with the + sequential threshold set to 1024 and the random_threshold set to 8. diff --git a/Documentation/device-mapper/cache.txt b/Documentation/device-mapper/cache.txt new file mode 100644 index 000000000000..f50470abe241 --- /dev/null +++ b/Documentation/device-mapper/cache.txt @@ -0,0 +1,243 @@ +Introduction +============ + +dm-cache is a device mapper target written by Joe Thornber, Heinz +Mauelshagen, and Mike Snitzer. + +It aims to improve performance of a block device (eg, a spindle) by +dynamically migrating some of its data to a faster, smaller device +(eg, an SSD). + +This device-mapper solution allows us to insert this caching at +different levels of the dm stack, for instance above the data device for +a thin-provisioning pool. Caching solutions that are integrated more +closely with the virtual memory system should give better performance. + +The target reuses the metadata library used in the thin-provisioning +library. + +The decision as to what data to migrate and when is left to a plug-in +policy module. Several of these have been written as we experiment, +and we hope other people will contribute others for specific io +scenarios (eg. a vm image server). + +Glossary +======== + + Migration - Movement of the primary copy of a logical block from one + device to the other. + Promotion - Migration from slow device to fast device. + Demotion - Migration from fast device to slow device. + +The origin device always contains a copy of the logical block, which +may be out of date or kept in sync with the copy on the cache device +(depending on policy). + +Design +====== + +Sub-devices +----------- + +The target is constructed by passing three devices to it (along with +other parameters detailed later): + +1. An origin device - the big, slow one. + +2. A cache device - the small, fast one. + +3. A small metadata device - records which blocks are in the cache, + which are dirty, and extra hints for use by the policy object. + This information could be put on the cache device, but having it + separate allows the volume manager to configure it differently, + e.g. as a mirror for extra robustness. + +Fixed block size +---------------- + +The origin is divided up into blocks of a fixed size. This block size +is configurable when you first create the cache. Typically we've been +using block sizes of 256k - 1024k. + +Having a fixed block size simplifies the target a lot. But it is +something of a compromise. For instance, a small part of a block may be +getting hit a lot, yet the whole block will be promoted to the cache. +So large block sizes are bad because they waste cache space. And small +block sizes are bad because they increase the amount of metadata (both +in core and on disk). + +Writeback/writethrough +---------------------- + +The cache has two modes, writeback and writethrough. + +If writeback, the default, is selected then a write to a block that is +cached will go only to the cache and the block will be marked dirty in +the metadata. + +If writethrough is selected then a write to a cached block will not +complete until it has hit both the origin and cache devices. Clean +blocks should remain clean. + +A simple cleaner policy is provided, which will clean (write back) all +dirty blocks in a cache. Useful for decommissioning a cache. + +Migration throttling +-------------------- + +Migrating data between the origin and cache device uses bandwidth. +The user can set a throttle to prevent more than a certain amount of +migration occuring at any one time. Currently we're not taking any +account of normal io traffic going to the devices. More work needs +doing here to avoid migrating during those peak io moments. + +For the time being, a message "migration_threshold <#sectors>" +can be used to set the maximum number of sectors being migrated, +the default being 204800 sectors (or 100MB). + +Updating on-disk metadata +------------------------- + +On-disk metadata is committed every time a REQ_SYNC or REQ_FUA bio is +written. If no such requests are made then commits will occur every +second. This means the cache behaves like a physical disk that has a +write cache (the same is true of the thin-provisioning target). If +power is lost you may lose some recent writes. The metadata should +always be consistent in spite of any crash. + +The 'dirty' state for a cache block changes far too frequently for us +to keep updating it on the fly. So we treat it as a hint. In normal +operation it will be written when the dm device is suspended. If the +system crashes all cache blocks will be assumed dirty when restarted. + +Per-block policy hints +---------------------- + +Policy plug-ins can store a chunk of data per cache block. It's up to +the policy how big this chunk is, but it should be kept small. Like the +dirty flags this data is lost if there's a crash so a safe fallback +value should always be possible. + +For instance, the 'mq' policy, which is currently the default policy, +uses this facility to store the hit count of the cache blocks. If +there's a crash this information will be lost, which means the cache +may be less efficient until those hit counts are regenerated. + +Policy hints affect performance, not correctness. + +Policy messaging +---------------- + +Policies will have different tunables, specific to each one, so we +need a generic way of getting and setting these. Device-mapper +messages are used. Refer to cache-policies.txt. + +Discard bitset resolution +------------------------- + +We can avoid copying data during migration if we know the block has +been discarded. A prime example of this is when mkfs discards the +whole block device. We store a bitset tracking the discard state of +blocks. However, we allow this bitset to have a different block size +from the cache blocks. This is because we need to track the discard +state for all of the origin device (compare with the dirty bitset +which is just for the smaller cache device). + +Target interface +================ + +Constructor +----------- + + cache <metadata dev> <cache dev> <origin dev> <block size> + <#feature args> [<feature arg>]* + <policy> <#policy args> [policy args]* + + metadata dev : fast device holding the persistent metadata + cache dev : fast device holding cached data blocks + origin dev : slow device holding original data blocks + block size : cache unit size in sectors + + #feature args : number of feature arguments passed + feature args : writethrough. (The default is writeback.) + + policy : the replacement policy to use + #policy args : an even number of arguments corresponding to + key/value pairs passed to the policy + policy args : key/value pairs passed to the policy + E.g. 'sequential_threshold 1024' + See cache-policies.txt for details. + +Optional feature arguments are: + writethrough : write through caching that prohibits cache block + content from being different from origin block content. + Without this argument, the default behaviour is to write + back cache block contents later for performance reasons, + so they may differ from the corresponding origin blocks. + +A policy called 'default' is always registered. This is an alias for +the policy we currently think is giving best all round performance. + +As the default policy could vary between kernels, if you are relying on +the characteristics of a specific policy, always request it by name. + +Status +------ + +<#used metadata blocks>/<#total metadata blocks> <#read hits> <#read misses> +<#write hits> <#write misses> <#demotions> <#promotions> <#blocks in cache> +<#dirty> <#features> <features>* <#core args> <core args>* <#policy args> +<policy args>* + +#used metadata blocks : Number of metadata blocks used +#total metadata blocks : Total number of metadata blocks +#read hits : Number of times a READ bio has been mapped + to the cache +#read misses : Number of times a READ bio has been mapped + to the origin +#write hits : Number of times a WRITE bio has been mapped + to the cache +#write misses : Number of times a WRITE bio has been + mapped to the origin +#demotions : Number of times a block has been removed + from the cache +#promotions : Number of times a block has been moved to + the cache +#blocks in cache : Number of blocks resident in the cache +#dirty : Number of blocks in the cache that differ + from the origin +#feature args : Number of feature args to follow +feature args : 'writethrough' (optional) +#core args : Number of core arguments (must be even) +core args : Key/value pairs for tuning the core + e.g. migration_threshold +#policy args : Number of policy arguments to follow (must be even) +policy args : Key/value pairs + e.g. 'sequential_threshold 1024 + +Messages +-------- + +Policies will have different tunables, specific to each one, so we +need a generic way of getting and setting these. Device-mapper +messages are used. (A sysfs interface would also be possible.) + +The message format is: + + <key> <value> + +E.g. + dmsetup message my_cache 0 sequential_threshold 1024 + +Examples +======== + +The test suite can be found here: + +https://github.com/jthornber/thinp-test-suite + +dmsetup create my_cache --table '0 41943040 cache /dev/mapper/metadata \ + /dev/mapper/ssd /dev/mapper/origin 512 1 writeback default 0' +dmsetup create my_cache --table '0 41943040 cache /dev/mapper/metadata \ + /dev/mapper/ssd /dev/mapper/origin 1024 1 writeback \ + mq 4 sequential_threshold 1024 random_threshold 8' diff --git a/Documentation/devicetree/bindings/arc/interrupts.txt b/Documentation/devicetree/bindings/arc/interrupts.txt new file mode 100644 index 000000000000..9a5d562435ea --- /dev/null +++ b/Documentation/devicetree/bindings/arc/interrupts.txt @@ -0,0 +1,24 @@ +* ARC700 incore Interrupt Controller + + The core interrupt controller provides 32 prioritised interrupts (2 levels) + to ARC700 core. + +Properties: + +- compatible: "snps,arc700-intc" +- interrupt-controller: This is an interrupt controller. +- #interrupt-cells: Must be <1>. + + Single Cell "interrupts" property of a device specifies the IRQ number + between 0 to 31 + + intc accessed via the special ARC AUX register interface, hence "reg" property + is not specified. + +Example: + + intc: interrupt-controller { + compatible = "snps,arc700-intc"; + interrupt-controller; + #interrupt-cells = <1>; + }; diff --git a/Documentation/devicetree/bindings/arm/armadeus.txt b/Documentation/devicetree/bindings/arm/armadeus.txt new file mode 100644 index 000000000000..9821283ff516 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/armadeus.txt @@ -0,0 +1,6 @@ +Armadeus i.MX Platforms Device Tree Bindings +----------------------------------------------- + +APF51: i.MX51 based module. +Required root node properties: + - compatible = "armadeus,imx51-apf51", "fsl,imx51"; diff --git a/Documentation/devicetree/bindings/arm/fsl.txt b/Documentation/devicetree/bindings/arm/fsl.txt index f79818711e83..e935d7d4ac43 100644 --- a/Documentation/devicetree/bindings/arm/fsl.txt +++ b/Documentation/devicetree/bindings/arm/fsl.txt @@ -5,6 +5,14 @@ i.MX23 Evaluation Kit Required root node properties: - compatible = "fsl,imx23-evk", "fsl,imx23"; +i.MX25 Product Development Kit +Required root node properties: + - compatible = "fsl,imx25-pdk", "fsl,imx25"; + +i.MX27 Product Development Kit +Required root node properties: + - compatible = "fsl,imx27-pdk", "fsl,imx27"; + i.MX28 Evaluation Kit Required root node properties: - compatible = "fsl,imx28-evk", "fsl,imx28"; diff --git a/Documentation/devicetree/bindings/clock/imx5-clock.txt b/Documentation/devicetree/bindings/clock/imx5-clock.txt index 04ad47876be0..2a0c904c46ae 100644 --- a/Documentation/devicetree/bindings/clock/imx5-clock.txt +++ b/Documentation/devicetree/bindings/clock/imx5-clock.txt @@ -171,6 +171,7 @@ clocks and IDs. can_sel 156 can1_serial_gate 157 can1_ipg_gate 158 + owire_gate 159 Examples (for mx53): diff --git a/Documentation/devicetree/bindings/clock/imx6q-clock.txt b/Documentation/devicetree/bindings/clock/imx6q-clock.txt index f73fdf595568..969b38e06ad3 100644 --- a/Documentation/devicetree/bindings/clock/imx6q-clock.txt +++ b/Documentation/devicetree/bindings/clock/imx6q-clock.txt @@ -203,6 +203,8 @@ clocks and IDs. pcie_ref 188 pcie_ref_125m 189 enet_ref 190 + usbphy1_gate 191 + usbphy2_gate 192 Examples: diff --git a/Documentation/devicetree/bindings/crypto/fsl-sec4.txt b/Documentation/devicetree/bindings/crypto/fsl-sec4.txt index 6d21c0288e9e..e4022776ac6e 100644 --- a/Documentation/devicetree/bindings/crypto/fsl-sec4.txt +++ b/Documentation/devicetree/bindings/crypto/fsl-sec4.txt @@ -113,7 +113,7 @@ PROPERTIES EXAMPLE crypto@300000 { compatible = "fsl,sec-v4.0"; - fsl,sec-era = <0x2>; + fsl,sec-era = <2>; #address-cells = <1>; #size-cells = <1>; reg = <0x300000 0x10000>; diff --git a/Documentation/devicetree/bindings/dma/arm-pl330.txt b/Documentation/devicetree/bindings/dma/arm-pl330.txt index 36e27d54260b..267565894db9 100644 --- a/Documentation/devicetree/bindings/dma/arm-pl330.txt +++ b/Documentation/devicetree/bindings/dma/arm-pl330.txt @@ -10,7 +10,11 @@ Required properties: - interrupts: interrupt number to the cpu. Optional properties: -- dma-coherent : Present if dma operations are coherent + - dma-coherent : Present if dma operations are coherent + - #dma-cells: must be <1>. used to represent the number of integer + cells in the dmas property of client device. + - dma-channels: contains the total number of DMA channels supported by the DMAC + - dma-requests: contains the total number of DMA requests supported by the DMAC Example: @@ -18,16 +22,23 @@ Example: compatible = "arm,pl330", "arm,primecell"; reg = <0x12680000 0x1000>; interrupts = <99>; + #dma-cells = <1>; + #dma-channels = <8>; + #dma-requests = <32>; }; Client drivers (device nodes requiring dma transfers from dev-to-mem or -mem-to-dev) should specify the DMA channel numbers using a two-value pair +mem-to-dev) should specify the DMA channel numbers and dma channel names as shown below. [property name] = <[phandle of the dma controller] [dma request id]>; + [property name] = <[dma channel name]> where 'dma request id' is the dma request number which is connected - to the client controller. The 'property name' is recommended to be - of the form <name>-dma-channel. + to the client controller. The 'property name' 'dmas' and 'dma-names' + as required by the generic dma device tree binding helpers. The dma + names correspond 1:1 with the dma request ids in the dmas property. - Example: tx-dma-channel = <&pdma0 12>; + Example: dmas = <&pdma0 12 + &pdma1 11>; + dma-names = "tx", "rx"; diff --git a/Documentation/devicetree/bindings/dma/dma.txt b/Documentation/devicetree/bindings/dma/dma.txt new file mode 100644 index 000000000000..8f504e6bae14 --- /dev/null +++ b/Documentation/devicetree/bindings/dma/dma.txt @@ -0,0 +1,81 @@ +* Generic DMA Controller and DMA request bindings + +Generic binding to provide a way for a driver using DMA Engine to retrieve the +DMA request or channel information that goes from a hardware device to a DMA +controller. + + +* DMA controller + +Required property: +- #dma-cells: Must be at least 1. Used to provide DMA controller + specific information. See DMA client binding below for + more details. + +Optional properties: +- dma-channels: Number of DMA channels supported by the controller. +- dma-requests: Number of DMA requests signals supported by the + controller. + +Example: + + dma: dma@48000000 { + compatible = "ti,omap-sdma"; + reg = <0x48000000 0x1000>; + interrupts = <0 12 0x4 + 0 13 0x4 + 0 14 0x4 + 0 15 0x4>; + #dma-cells = <1>; + dma-channels = <32>; + dma-requests = <127>; + }; + + +* DMA client + +Client drivers should specify the DMA property using a phandle to the controller +followed by DMA controller specific data. + +Required property: +- dmas: List of one or more DMA specifiers, each consisting of + - A phandle pointing to DMA controller node + - A number of integer cells, as determined by the + #dma-cells property in the node referenced by phandle + containing DMA controller specific information. This + typically contains a DMA request line number or a + channel number, but can contain any data that is used + required for configuring a channel. +- dma-names: Contains one identifier string for each DMA specifier in + the dmas property. The specific strings that can be used + are defined in the binding of the DMA client device. + Multiple DMA specifiers can be used to represent + alternatives and in this case the dma-names for those + DMA specifiers must be identical (see examples). + +Examples: + +1. A device with one DMA read channel, one DMA write channel: + + i2c1: i2c@1 { + ... + dmas = <&dma 2 /* read channel */ + &dma 3>; /* write channel */ + dma-names = "rx", "tx"; + ... + }; + +2. A single read-write channel with three alternative DMA controllers: + + dmas = <&dma1 5 + &dma2 7 + &dma3 2>; + dma-names = "rx-tx", "rx-tx", "rx-tx"; + +3. A device with three channels, one of which has two alternatives: + + dmas = <&dma1 2 /* read channel */ + &dma1 3 /* write channel */ + &dma2 0 /* error read */ + &dma3 0>; /* alternative error read */ + dma-names = "rx", "tx", "error", "error"; diff --git a/Documentation/devicetree/bindings/dma/snps-dma.txt b/Documentation/devicetree/bindings/dma/snps-dma.txt index c0d85dbcada5..5bb3dfb6f1d8 100644 --- a/Documentation/devicetree/bindings/dma/snps-dma.txt +++ b/Documentation/devicetree/bindings/dma/snps-dma.txt @@ -6,6 +6,26 @@ Required properties: - interrupt-parent: Should be the phandle for the interrupt controller that services interrupts for this device - interrupt: Should contain the DMAC interrupt number +- nr_channels: Number of channels supported by hardware +- is_private: The device channels should be marked as private and not for by the + general purpose DMA channel allocator. False if not passed. +- chan_allocation_order: order of allocation of channel, 0 (default): ascending, + 1: descending +- chan_priority: priority of channels. 0 (default): increase from chan 0->n, 1: + increase from chan n->0 +- block_size: Maximum block size supported by the controller +- nr_masters: Number of AHB masters supported by the controller +- data_width: Maximum data width supported by hardware per AHB master + (0 - 8bits, 1 - 16bits, ..., 5 - 256bits) +- slave_info: + - bus_id: name of this device channel, not just a device name since + devices may have more than one channel e.g. "foo_tx". For using the + dw_generic_filter(), slave drivers must pass exactly this string as + param to filter function. + - cfg_hi: Platform-specific initializer for the CFG_HI register + - cfg_lo: Platform-specific initializer for the CFG_LO register + - src_master: src master for transfers on allocated channel. + - dst_master: dest master for transfers on allocated channel. Example: @@ -14,4 +34,28 @@ Example: reg = <0xfc000000 0x1000>; interrupt-parent = <&vic1>; interrupts = <12>; + + nr_channels = <8>; + chan_allocation_order = <1>; + chan_priority = <1>; + block_size = <0xfff>; + nr_masters = <2>; + data_width = <3 3 0 0>; + + slave_info { + uart0-tx { + bus_id = "uart0-tx"; + cfg_hi = <0x4000>; /* 0x8 << 11 */ + cfg_lo = <0>; + src_master = <0>; + dst_master = <1>; + }; + spi0-tx { + bus_id = "spi0-tx"; + cfg_hi = <0x2000>; /* 0x4 << 11 */ + cfg_lo = <0>; + src_master = <0>; + dst_master = <0>; + }; + }; }; diff --git a/Documentation/devicetree/bindings/drm/tilcdc/panel.txt b/Documentation/devicetree/bindings/drm/tilcdc/panel.txt new file mode 100644 index 000000000000..9301c330d1a6 --- /dev/null +++ b/Documentation/devicetree/bindings/drm/tilcdc/panel.txt @@ -0,0 +1,59 @@ +Device-Tree bindings for tilcdc DRM generic panel output driver + +Required properties: + - compatible: value should be "ti,tilcdc,panel". + - panel-info: configuration info to configure LCDC correctly for the panel + - ac-bias: AC Bias Pin Frequency + - ac-bias-intrpt: AC Bias Pin Transitions per Interrupt + - dma-burst-sz: DMA burst size + - bpp: Bits per pixel + - fdd: FIFO DMA Request Delay + - sync-edge: Horizontal and Vertical Sync Edge: 0=rising 1=falling + - sync-ctrl: Horizontal and Vertical Sync: Control: 0=ignore + - raster-order: Raster Data Order Select: 1=Most-to-least 0=Least-to-most + - fifo-th: DMA FIFO threshold + - display-timings: typical videomode of lcd panel. Multiple video modes + can be listed if the panel supports multiple timings, but the 'native-mode' + should be the preferred/default resolution. Refer to + Documentation/devicetree/bindings/video/display-timing.txt for display + timing binding details. + +Recommended properties: + - pinctrl-names, pinctrl-0: the pincontrol settings to configure + muxing properly for pins that connect to TFP410 device + +Example: + + /* Settings for CDTech_S035Q01 / LCD3 cape: */ + lcd3 { + compatible = "ti,tilcdc,panel"; + pinctrl-names = "default"; + pinctrl-0 = <&bone_lcd3_cape_lcd_pins>; + panel-info { + ac-bias = <255>; + ac-bias-intrpt = <0>; + dma-burst-sz = <16>; + bpp = <16>; + fdd = <0x80>; + sync-edge = <0>; + sync-ctrl = <1>; + raster-order = <0>; + fifo-th = <0>; + }; + display-timings { + native-mode = <&timing0>; + timing0: 320x240 { + hactive = <320>; + vactive = <240>; + hback-porch = <21>; + hfront-porch = <58>; + hsync-len = <47>; + vback-porch = <11>; + vfront-porch = <23>; + vsync-len = <2>; + clock-frequency = <8000000>; + hsync-active = <0>; + vsync-active = <0>; + }; + }; + }; diff --git a/Documentation/devicetree/bindings/drm/tilcdc/slave.txt b/Documentation/devicetree/bindings/drm/tilcdc/slave.txt new file mode 100644 index 000000000000..3d2c52460dca --- /dev/null +++ b/Documentation/devicetree/bindings/drm/tilcdc/slave.txt @@ -0,0 +1,18 @@ +Device-Tree bindings for tilcdc DRM encoder slave output driver + +Required properties: + - compatible: value should be "ti,tilcdc,slave". + - i2c: the phandle for the i2c device the encoder slave is connected to + +Recommended properties: + - pinctrl-names, pinctrl-0: the pincontrol settings to configure + muxing properly for pins that connect to TFP410 device + +Example: + + hdmi { + compatible = "ti,tilcdc,slave"; + i2c = <&i2c0>; + pinctrl-names = "default"; + pinctrl-0 = <&nxp_hdmi_bonelt_pins>; + }; diff --git a/Documentation/devicetree/bindings/drm/tilcdc/tfp410.txt b/Documentation/devicetree/bindings/drm/tilcdc/tfp410.txt new file mode 100644 index 000000000000..a58ae7756fc6 --- /dev/null +++ b/Documentation/devicetree/bindings/drm/tilcdc/tfp410.txt @@ -0,0 +1,21 @@ +Device-Tree bindings for tilcdc DRM TFP410 output driver + +Required properties: + - compatible: value should be "ti,tilcdc,tfp410". + - i2c: the phandle for the i2c device to use for DDC + +Recommended properties: + - pinctrl-names, pinctrl-0: the pincontrol settings to configure + muxing properly for pins that connect to TFP410 device + - powerdn-gpio: the powerdown GPIO, pulled low to power down the + TFP410 device (for DPMS_OFF) + +Example: + + dvicape { + compatible = "ti,tilcdc,tfp410"; + i2c = <&i2c2>; + pinctrl-names = "default"; + pinctrl-0 = <&bone_dvi_cape_dvi_00A1_pins>; + powerdn-gpio = <&gpio2 31 0>; + }; diff --git a/Documentation/devicetree/bindings/drm/tilcdc/tilcdc.txt b/Documentation/devicetree/bindings/drm/tilcdc/tilcdc.txt new file mode 100644 index 000000000000..e5f130159ae1 --- /dev/null +++ b/Documentation/devicetree/bindings/drm/tilcdc/tilcdc.txt @@ -0,0 +1,21 @@ +Device-Tree bindings for tilcdc DRM driver + +Required properties: + - compatible: value should be "ti,am33xx-tilcdc". + - interrupts: the interrupt number + - reg: base address and size of the LCDC device + +Recommended properties: + - interrupt-parent: the phandle for the interrupt controller that + services interrupts for this device. + - ti,hwmods: Name of the hwmod associated to the LCDC + +Example: + + fb: fb@4830e000 { + compatible = "ti,am33xx-tilcdc"; + reg = <0x4830e000 0x1000>; + interrupt-parent = <&intc>; + interrupts = <36>; + ti,hwmods = "lcdc"; + }; diff --git a/Documentation/devicetree/bindings/i2c/brcm,bcm2835-i2c.txt b/Documentation/devicetree/bindings/i2c/brcm,bcm2835-i2c.txt new file mode 100644 index 000000000000..e9de3756752b --- /dev/null +++ b/Documentation/devicetree/bindings/i2c/brcm,bcm2835-i2c.txt @@ -0,0 +1,20 @@ +Broadcom BCM2835 I2C controller + +Required properties: +- compatible : Should be "brcm,bcm2835-i2c". +- reg: Should contain register location and length. +- interrupts: Should contain interrupt. +- clocks : The clock feeding the I2C controller. + +Recommended properties: +- clock-frequency : desired I2C bus clock frequency in Hz. + +Example: + +i2c@20205000 { + compatible = "brcm,bcm2835-i2c"; + reg = <0x7e205000 0x1000>; + interrupts = <2 21>; + clocks = <&clk_i2c>; + clock-frequency = <100000>; +}; diff --git a/Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt b/Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt index e9611ace8792..f98d4c5b5cca 100644 --- a/Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt +++ b/Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt @@ -8,6 +8,8 @@ Required properties: (b) "samsung, s3c2440-i2c", for i2c compatible with s3c2440 i2c. (c) "samsung, s3c2440-hdmiphy-i2c", for s3c2440-like i2c used inside HDMIPHY block found on several samsung SoCs + (d) "samsung, exynos5440-i2c", for s3c2440-like i2c used + on EXYNOS5440 which does not need GPIO configuration. - reg: physical base address of the controller and length of memory mapped region. - interrupts: interrupt number to the cpu. diff --git a/Documentation/devicetree/bindings/leds/leds-pwm.txt b/Documentation/devicetree/bindings/leds/leds-pwm.txt new file mode 100644 index 000000000000..7297107cf832 --- /dev/null +++ b/Documentation/devicetree/bindings/leds/leds-pwm.txt @@ -0,0 +1,48 @@ +LED connected to PWM + +Required properties: +- compatible : should be "pwm-leds". + +Each LED is represented as a sub-node of the pwm-leds device. Each +node's name represents the name of the corresponding LED. + +LED sub-node properties: +- pwms : PWM property to point to the PWM device (phandle)/port (id) and to + specify the period time to be used: <&phandle id period_ns>; +- pwm-names : (optional) Name to be used by the PWM subsystem for the PWM device + For the pwms and pwm-names property please refer to: + Documentation/devicetree/bindings/pwm/pwm.txt +- max-brightness : Maximum brightness possible for the LED +- label : (optional) + see Documentation/devicetree/bindings/leds/common.txt +- linux,default-trigger : (optional) + see Documentation/devicetree/bindings/leds/common.txt + +Example: + +twl_pwm: pwm { + /* provides two PWMs (id 0, 1 for PWM1 and PWM2) */ + compatible = "ti,twl6030-pwm"; + #pwm-cells = <2>; +}; + +twl_pwmled: pwmled { + /* provides one PWM (id 0 for Charing indicator LED) */ + compatible = "ti,twl6030-pwmled"; + #pwm-cells = <2>; +}; + +pwmleds { + compatible = "pwm-leds"; + kpad { + label = "omap4::keypad"; + pwms = <&twl_pwm 0 7812500>; + max-brightness = <127>; + }; + + charging { + label = "omap4:green:chrg"; + pwms = <&twl_pwmled 0 7812500>; + max-brightness = <255>; + }; +}; diff --git a/Documentation/devicetree/bindings/leds/tca6507.txt b/Documentation/devicetree/bindings/leds/tca6507.txt new file mode 100644 index 000000000000..2b6693b972fb --- /dev/null +++ b/Documentation/devicetree/bindings/leds/tca6507.txt @@ -0,0 +1,33 @@ +LEDs conected to tca6507 + +Required properties: +- compatible : should be : "ti,tca6507". + +Each led is represented as a sub-node of the ti,tca6507 device. + +LED sub-node properties: +- label : (optional) see Documentation/devicetree/bindings/leds/common.txt +- reg : number of LED line (could be from 0 to 6) +- linux,default-trigger : (optional) + see Documentation/devicetree/bindings/leds/common.txt + +Examples: + +tca6507@45 { + compatible = "ti,tca6507"; + #address-cells = <1>; + #size-cells = <0>; + reg = <0x45>; + + led0: red-aux@0 { + label = "red:aux"; + reg = <0x0>; + }; + + led1: green-aux@1 { + label = "green:aux"; + reg = <0x5>; + linux,default-trigger = "default-on"; + }; +}; + diff --git a/Documentation/devicetree/bindings/media/gpio-ir-receiver.txt b/Documentation/devicetree/bindings/media/gpio-ir-receiver.txt new file mode 100644 index 000000000000..56e726ef4bf2 --- /dev/null +++ b/Documentation/devicetree/bindings/media/gpio-ir-receiver.txt @@ -0,0 +1,16 @@ +Device-Tree bindings for GPIO IR receiver + +Required properties: + - compatible: should be "gpio-ir-receiver". + - gpios: specifies GPIO used for IR signal reception. + +Optional properties: + - linux,rc-map-name: Linux specific remote control map name. + +Example node: + + ir: ir-receiver { + compatible = "gpio-ir-receiver"; + gpios = <&gpio0 19 1>; + linux,rc-map-name = "rc-rc6-mce"; + }; diff --git a/Documentation/devicetree/bindings/mfd/max8925.txt b/Documentation/devicetree/bindings/mfd/max8925.txt new file mode 100644 index 000000000000..4f0dc6638e5e --- /dev/null +++ b/Documentation/devicetree/bindings/mfd/max8925.txt @@ -0,0 +1,64 @@ +* Maxim max8925 Power Management IC + +Required parent device properties: +- compatible : "maxim,max8925" +- reg : the I2C slave address for the max8925 chip +- interrupts : IRQ line for the max8925 chip +- interrupt-controller: describes the max8925 as an interrupt + controller (has its own domain) +- #interrupt-cells : should be 1. + - The cell is the max8925 local IRQ number + +Optional parent device properties: +- maxim,tsc-irq: there are 2 IRQ lines for max8925, one is indicated in + interrupts property, the other is indicated here. + +max8925 consists of a large and varied group of sub-devices: + +Device Supply Names Description +------ ------------ ----------- +max8925-onkey : : On key +max8925-rtc : : RTC +max8925-regulator : : Regulators +max8925-backlight : : Backlight +max8925-touch : : Touchscreen +max8925-power : : Charger + +Example: + + pmic: max8925@3c { + compatible = "maxim,max8925"; + reg = <0x3c>; + interrupts = <1>; + interrupt-parent = <&intcmux4>; + interrupt-controller; + #interrupt-cells = <1>; + maxim,tsc-irq = <0>; + + regulators { + SDV1 { + regulator-min-microvolt = <637500>; + regulator-max-microvolt = <1425000>; + regulator-boot-on; + regulator-always-on; + }; + + LDO1 { + regulator-min-microvolt = <750000>; + regulator-max-microvolt = <3900000>; + regulator-boot-on; + regulator-always-on; + }; + + }; + backlight { + maxim,max8925-dual-string = <0>; + }; + charger { + batt-detect = <0>; + topoff-threshold = <1>; + fast-charge = <7>; + no-temp-support = <0>; + no-insert-detect = <0>; + }; + }; diff --git a/Documentation/devicetree/bindings/mips/cpu_irq.txt b/Documentation/devicetree/bindings/mips/cpu_irq.txt new file mode 100644 index 000000000000..13aa4b62c62a --- /dev/null +++ b/Documentation/devicetree/bindings/mips/cpu_irq.txt @@ -0,0 +1,47 @@ +MIPS CPU interrupt controller + +On MIPS the mips_cpu_intc_init() helper can be used to initialize the 8 CPU +IRQs from a devicetree file and create a irq_domain for IRQ controller. + +With the irq_domain in place we can describe how the 8 IRQs are wired to the +platforms internal interrupt controller cascade. + +Below is an example of a platform describing the cascade inside the devicetree +and the code used to load it inside arch_init_irq(). + +Required properties: +- compatible : Should be "mti,cpu-interrupt-controller" + +Example devicetree: + cpu-irq: cpu-irq@0 { + #address-cells = <0>; + + interrupt-controller; + #interrupt-cells = <1>; + + compatible = "mti,cpu-interrupt-controller"; + }; + + intc: intc@200 { + compatible = "ralink,rt2880-intc"; + reg = <0x200 0x100>; + + interrupt-controller; + #interrupt-cells = <1>; + + interrupt-parent = <&cpu-irq>; + interrupts = <2>; + }; + + +Example platform irq.c: +static struct of_device_id __initdata of_irq_ids[] = { + { .compatible = "mti,cpu-interrupt-controller", .data = mips_cpu_intc_init }, + { .compatible = "ralink,rt2880-intc", .data = intc_of_init }, + {}, +}; + +void __init arch_init_irq(void) +{ + of_irq_init(of_irq_ids); +} diff --git a/Documentation/devicetree/bindings/mmc/brcm,bcm2835-sdhci.txt b/Documentation/devicetree/bindings/mmc/brcm,bcm2835-sdhci.txt new file mode 100644 index 000000000000..59476fbdbfa1 --- /dev/null +++ b/Documentation/devicetree/bindings/mmc/brcm,bcm2835-sdhci.txt @@ -0,0 +1,18 @@ +Broadcom BCM2835 SDHCI controller + +This file documents differences between the core properties described +by mmc.txt and the properties that represent the BCM2835 controller. + +Required properties: +- compatible : Should be "brcm,bcm2835-sdhci". +- clocks : The clock feeding the SDHCI controller. + +Example: + +sdhci: sdhci { + compatible = "brcm,bcm2835-sdhci"; + reg = <0x7e300000 0x100>; + interrupts = <2 30>; + clocks = <&clk_mmc>; + bus-width = <4>; +}; diff --git a/Documentation/devicetree/bindings/mmc/mmc.txt b/Documentation/devicetree/bindings/mmc/mmc.txt index a591c6741d75..85aada2263d5 100644 --- a/Documentation/devicetree/bindings/mmc/mmc.txt +++ b/Documentation/devicetree/bindings/mmc/mmc.txt @@ -6,23 +6,45 @@ Interpreted by the OF core: - reg: Registers location and length. - interrupts: Interrupts used by the MMC controller. -Required properties: -- bus-width: Number of data lines, can be <1>, <4>, or <8> - Card detection: -If no property below is supplied, standard SDHCI card detect is used. +If no property below is supplied, host native card detect is used. Only one of the properties in this section should be supplied: - broken-cd: There is no card detection available; polling must be used. - cd-gpios: Specify GPIOs for card detection, see gpio binding - non-removable: non-removable slot (like eMMC); assume always present. Optional properties: +- bus-width: Number of data lines, can be <1>, <4>, or <8>. The default + will be <1> if the property is absent. - wp-gpios: Specify GPIOs for write protection, see gpio binding -- cd-inverted: when present, polarity on the cd gpio line is inverted -- wp-inverted: when present, polarity on the wp gpio line is inverted +- cd-inverted: when present, polarity on the CD line is inverted. See the note + below for the case, when a GPIO is used for the CD line +- wp-inverted: when present, polarity on the WP line is inverted. See the note + below for the case, when a GPIO is used for the WP line - max-frequency: maximum operating clock frequency - no-1-8-v: when present, denotes that 1.8v card voltage is not supported on this system, even if the controller claims it is. +- cap-sd-highspeed: SD high-speed timing is supported +- cap-mmc-highspeed: MMC high-speed timing is supported +- cap-power-off-card: powering off the card is safe +- cap-sdio-irq: enable SDIO IRQ signalling on this interface + +*NOTE* on CD and WP polarity. To use common for all SD/MMC host controllers line +polarity properties, we have to fix the meaning of the "normal" and "inverted" +line levels. We choose to follow the SDHCI standard, which specifies both those +lines as "active low." Therefore, using the "cd-inverted" property means, that +the CD line is active high, i.e. it is high, when a card is inserted. Similar +logic applies to the "wp-inverted" property. + +CD and WP lines can be implemented on the hardware in one of two ways: as GPIOs, +specified in cd-gpios and wp-gpios properties, or as dedicated pins. Polarity of +dedicated pins can be specified, using *-inverted properties. GPIO polarity can +also be specified using the OF_GPIO_ACTIVE_LOW flag. This creates an ambiguity +in the latter case. We choose to use the XOR logic for GPIO CD and WP lines. +This means, the two properties are "superimposed," for example leaving the +OF_GPIO_ACTIVE_LOW flag clear and specifying the respective *-inverted +property results in a double-inversion and actually means the "normal" line +polarity is in effect. Optional SDIO properties: - keep-power-in-suspend: Preserves card power during a suspend/resume cycle diff --git a/Documentation/devicetree/bindings/mmc/orion-sdio.txt b/Documentation/devicetree/bindings/mmc/orion-sdio.txt new file mode 100644 index 000000000000..84f0ebd67a13 --- /dev/null +++ b/Documentation/devicetree/bindings/mmc/orion-sdio.txt @@ -0,0 +1,17 @@ +* Marvell orion-sdio controller + +This file documents differences between the core properties in mmc.txt +and the properties used by the orion-sdio driver. + +- compatible: Should be "marvell,orion-sdio" +- clocks: reference to the clock of the SDIO interface + +Example: + + mvsdio@d00d4000 { + compatible = "marvell,orion-sdio"; + reg = <0xd00d4000 0x200>; + interrupts = <54>; + clocks = <&gateclk 17>; + status = "disabled"; + }; diff --git a/Documentation/devicetree/bindings/mmc/synopsis-dw-mshc.txt b/Documentation/devicetree/bindings/mmc/synopsis-dw-mshc.txt index 06cd32d08052..726fd2122a13 100644 --- a/Documentation/devicetree/bindings/mmc/synopsis-dw-mshc.txt +++ b/Documentation/devicetree/bindings/mmc/synopsis-dw-mshc.txt @@ -26,8 +26,16 @@ Required Properties: * bus-width: as documented in mmc core bindings. * wp-gpios: specifies the write protect gpio line. The format of the - gpio specifier depends on the gpio controller. If the write-protect - line is not available, this property is optional. + gpio specifier depends on the gpio controller. If a GPIO is not used + for write-protect, this property is optional. + + * disable-wp: If the wp-gpios property isn't present then (by default) + we'd assume that the write protect is hooked up directly to the + controller's special purpose write protect line (accessible via + the WRTPRT register). However, it's possible that we simply don't + want write protect. In that case specify 'disable-wp'. + NOTE: This property is not required for slots known to always + connect to eMMC or SDIO cards. Optional properties: diff --git a/Documentation/devicetree/bindings/mmc/tmio_mmc.txt b/Documentation/devicetree/bindings/mmc/tmio_mmc.txt new file mode 100644 index 000000000000..df204e18e030 --- /dev/null +++ b/Documentation/devicetree/bindings/mmc/tmio_mmc.txt @@ -0,0 +1,20 @@ +* Toshiba Mobile IO SD/MMC controller + +The tmio-mmc driver doesn't probe its devices actively, instead its binding to +devices is managed by either MFD drivers or by the sh_mobile_sdhi platform +driver. Those drivers supply the tmio-mmc driver with platform data, that either +describe hardware capabilities, known to them, or are obtained by them from +their own platform data or from their DT information. In the latter case all +compulsory and any optional properties, common to all SD/MMC drivers, as +described in mmc.txt, can be used. Additionally the following tmio_mmc-specific +optional bindings can be used. + +Optional properties: +- toshiba,mmc-wrprotect-disable: write-protect detection is unavailable + +When used with Renesas SDHI hardware, the following compatibility strings +configure various model-specific properties: + +"renesas,sh7372-sdhi": (default) compatible with SH7372 +"renesas,r8a7740-sdhi": compatible with R8A7740: certain MMC/SD commands have to + wait for the interface to become idle. diff --git a/Documentation/devicetree/bindings/mtd/elm.txt b/Documentation/devicetree/bindings/mtd/elm.txt new file mode 100644 index 000000000000..8c1528c421d4 --- /dev/null +++ b/Documentation/devicetree/bindings/mtd/elm.txt @@ -0,0 +1,16 @@ +Error location module + +Required properties: +- compatible: Must be "ti,am33xx-elm" +- reg: physical base address and size of the registers map. +- interrupts: Interrupt number for the elm. + +Optional properties: +- ti,hwmods: Name of the hwmod associated to the elm + +Example: +elm: elm@0 { + compatible = "ti,am3352-elm"; + reg = <0x48080000 0x2000>; + interrupts = <4>; +}; diff --git a/Documentation/devicetree/bindings/mtd/mtd-physmap.txt b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt index dab7847fc800..61c5ec850f2f 100644 --- a/Documentation/devicetree/bindings/mtd/mtd-physmap.txt +++ b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt @@ -26,6 +26,9 @@ file systems on embedded devices. - linux,mtd-name: allow to specify the mtd name for retro capability with physmap-flash drivers as boot loader pass the mtd partition via the old device name physmap-flash. + - use-advanced-sector-protection: boolean to enable support for the + advanced sector protection (Spansion: PPB - Persistent Protection + Bits) locking. For JEDEC compatible devices, the following additional properties are defined: diff --git a/Documentation/devicetree/bindings/power_supply/max8925_batter.txt b/Documentation/devicetree/bindings/power_supply/max8925_batter.txt new file mode 100644 index 000000000000..d7e3e0c0f71d --- /dev/null +++ b/Documentation/devicetree/bindings/power_supply/max8925_batter.txt @@ -0,0 +1,18 @@ +max8925-battery bindings +~~~~~~~~~~~~~~~~ + +Optional properties : + - batt-detect: whether support battery detect + - topoff-threshold: set charging current in topoff mode + - fast-charge: set charging current in fast mode + - no-temp-support: whether support temperature protection detect + - no-insert-detect: whether support insert detect + +Example: + charger { + batt-detect = <0>; + topoff-threshold = <1>; + fast-charge = <7>; + no-temp-support = <0>; + no-insert-detect = <0>; + }; diff --git a/Documentation/devicetree/bindings/pwm/atmel-tcb-pwm.txt b/Documentation/devicetree/bindings/pwm/atmel-tcb-pwm.txt new file mode 100644 index 000000000000..de0eaed86651 --- /dev/null +++ b/Documentation/devicetree/bindings/pwm/atmel-tcb-pwm.txt @@ -0,0 +1,18 @@ +Atmel TCB PWM controller + +Required properties: +- compatible: should be "atmel,tcb-pwm" +- #pwm-cells: Should be 3. The first cell specifies the per-chip index + of the PWM to use, the second cell is the period in nanoseconds and + bit 0 in the third cell is used to encode the polarity of PWM output. + Set bit 0 of the third cell in PWM specifier to 1 for inverse polarity & + set to 0 for normal polarity. +- tc-block: The Timer Counter block to use as a PWM chip. + +Example: + +pwm { + compatible = "atmel,tcb-pwm"; + #pwm-cells = <3>; + tc-block = <1>; +}; diff --git a/Documentation/devicetree/bindings/pwm/vt8500-pwm.txt b/Documentation/devicetree/bindings/pwm/vt8500-pwm.txt index bcc63678a9a5..d21d82d29855 100644 --- a/Documentation/devicetree/bindings/pwm/vt8500-pwm.txt +++ b/Documentation/devicetree/bindings/pwm/vt8500-pwm.txt @@ -3,14 +3,17 @@ VIA/Wondermedia VT8500/WM8xxx series SoC PWM controller Required properties: - compatible: should be "via,vt8500-pwm" - reg: physical base address and length of the controller's registers -- #pwm-cells: should be 2. The first cell specifies the per-chip index - of the PWM to use and the second cell is the period in nanoseconds. +- #pwm-cells: Should be 3. Number of cells being used to specify PWM property. + First cell specifies the per-chip index of the PWM to use, the second + cell is the period in nanoseconds and bit 0 in the third cell is used to + encode the polarity of PWM output. Set bit 0 of the third in PWM specifier + to 1 for inverse polarity & set to 0 for normal polarity. - clocks: phandle to the PWM source clock Example: pwm1: pwm@d8220000 { - #pwm-cells = <2>; + #pwm-cells = <3>; compatible = "via,vt8500-pwm"; reg = <0xd8220000 0x1000>; clocks = <&clkpwm>; diff --git a/Documentation/devicetree/bindings/regulator/tps65090.txt b/Documentation/devicetree/bindings/regulator/tps65090.txt new file mode 100644 index 000000000000..313a60ba61d8 --- /dev/null +++ b/Documentation/devicetree/bindings/regulator/tps65090.txt @@ -0,0 +1,122 @@ +TPS65090 regulators + +Required properties: +- compatible: "ti,tps65090" +- reg: I2C slave address +- interrupts: the interrupt outputs of the controller +- regulators: A node that houses a sub-node for each regulator within the + device. Each sub-node is identified using the node's name, with valid + values listed below. The content of each sub-node is defined by the + standard binding for regulators; see regulator.txt. + dcdc[1-3], fet[1-7] and ldo[1-2] respectively. +- vsys[1-3]-supply: The input supply for DCDC[1-3] respectively. +- infet[1-7]-supply: The input supply for FET[1-7] respectively. +- vsys-l[1-2]-supply: The input supply for LDO[1-2] respectively. + +Optional properties: +- ti,enable-ext-control: This is applicable for DCDC1, DCDC2 and DCDC3. + If DCDCs are externally controlled then this property should be there. +- "dcdc-ext-control-gpios: This is applicable for DCDC1, DCDC2 and DCDC3. + If DCDCs are externally controlled and if it is from GPIO then GPIO + number should be provided. If it is externally controlled and no GPIO + entry then driver will just configure this rails as external control + and will not provide any enable/disable APIs. + +Each regulator is defined using the standard binding for regulators. + +Example: + + tps65090@48 { + compatible = "ti,tps65090"; + reg = <0x48>; + interrupts = <0 88 0x4>; + + vsys1-supply = <&some_reg>; + vsys2-supply = <&some_reg>; + vsys3-supply = <&some_reg>; + infet1-supply = <&some_reg>; + infet2-supply = <&some_reg>; + infet3-supply = <&some_reg>; + infet4-supply = <&some_reg>; + infet5-supply = <&some_reg>; + infet6-supply = <&some_reg>; + infet7-supply = <&some_reg>; + vsys_l1-supply = <&some_reg>; + vsys_l2-supply = <&some_reg>; + + regulators { + dcdc1 { + regulator-name = "dcdc1"; + regulator-boot-on; + regulator-always-on; + ti,enable-ext-control; + dcdc-ext-control-gpios = <&gpio 10 0>; + }; + + dcdc2 { + regulator-name = "dcdc2"; + regulator-boot-on; + regulator-always-on; + }; + + dcdc3 { + regulator-name = "dcdc3"; + regulator-boot-on; + regulator-always-on; + }; + + fet1 { + regulator-name = "fet1"; + regulator-boot-on; + regulator-always-on; + }; + + fet2 { + regulator-name = "fet2"; + regulator-boot-on; + regulator-always-on; + }; + + fet3 { + regulator-name = "fet3"; + regulator-boot-on; + regulator-always-on; + }; + + fet4 { + regulator-name = "fet4"; + regulator-boot-on; + regulator-always-on; + }; + + fet5 { + regulator-name = "fet5"; + regulator-boot-on; + regulator-always-on; + }; + + fet6 { + regulator-name = "fet6"; + regulator-boot-on; + regulator-always-on; + }; + + fet7 { + regulator-name = "fet7"; + regulator-boot-on; + regulator-always-on; + }; + + ldo1 { + regulator-name = "ldo1"; + regulator-boot-on; + regulator-always-on; + }; + + ldo2 { + regulator-name = "ldo2"; + regulator-boot-on; + regulator-always-on; + }; + }; + }; diff --git a/Documentation/devicetree/bindings/serial/lantiq_asc.txt b/Documentation/devicetree/bindings/serial/lantiq_asc.txt new file mode 100644 index 000000000000..5b78591aaa46 --- /dev/null +++ b/Documentation/devicetree/bindings/serial/lantiq_asc.txt @@ -0,0 +1,16 @@ +Lantiq SoC ASC serial controller + +Required properties: +- compatible : Should be "lantiq,asc" +- reg : Address and length of the register set for the device +- interrupts: the 3 (tx rx err) interrupt numbers. The interrupt specifier + depends on the interrupt-parent interrupt controller. + +Example: + +asc1: serial@E100C00 { + compatible = "lantiq,asc"; + reg = <0xE100C00 0x400>; + interrupt-parent = <&icu0>; + interrupts = <112 113 114>; +}; diff --git a/Documentation/devicetree/bindings/thermal/dove-thermal.txt b/Documentation/devicetree/bindings/thermal/dove-thermal.txt new file mode 100644 index 000000000000..6f474677d472 --- /dev/null +++ b/Documentation/devicetree/bindings/thermal/dove-thermal.txt @@ -0,0 +1,18 @@ +* Dove Thermal + +This driver is for Dove SoCs which contain a thermal sensor. + +Required properties: +- compatible : "marvell,dove-thermal" +- reg : Address range of the thermal registers + +The reg properties should contain two ranges. The first is for the +three Thermal Manager registers, while the second range contains the +Thermal Diode Control Registers. + +Example: + + thermal@10078 { + compatible = "marvell,dove-thermal"; + reg = <0xd001c 0x0c>, <0xd005c 0x08>; + }; diff --git a/Documentation/devicetree/bindings/thermal/kirkwood-thermal.txt b/Documentation/devicetree/bindings/thermal/kirkwood-thermal.txt new file mode 100644 index 000000000000..8c0f5eb86da7 --- /dev/null +++ b/Documentation/devicetree/bindings/thermal/kirkwood-thermal.txt @@ -0,0 +1,15 @@ +* Kirkwood Thermal + +This version is for Kirkwood 88F8262 & 88F6283 SoCs. Other kirkwoods +don't contain a thermal sensor. + +Required properties: +- compatible : "marvell,kirkwood-thermal" +- reg : Address range of the thermal registers + +Example: + + thermal@10078 { + compatible = "marvell,kirkwood-thermal"; + reg = <0x10078 0x4>; + }; diff --git a/Documentation/devicetree/bindings/thermal/rcar-thermal.txt b/Documentation/devicetree/bindings/thermal/rcar-thermal.txt new file mode 100644 index 000000000000..28ef498a66e5 --- /dev/null +++ b/Documentation/devicetree/bindings/thermal/rcar-thermal.txt @@ -0,0 +1,29 @@ +* Renesas R-Car Thermal + +Required properties: +- compatible : "renesas,rcar-thermal" +- reg : Address range of the thermal registers. + The 1st reg will be recognized as common register + if it has "interrupts". + +Option properties: + +- interrupts : use interrupt + +Example (non interrupt support): + +thermal@e61f0100 { + compatible = "renesas,rcar-thermal"; + reg = <0xe61f0100 0x38>; +}; + +Example (interrupt support): + +thermal@e61f0000 { + compatible = "renesas,rcar-thermal"; + reg = <0xe61f0000 0x14 + 0xe61f0100 0x38 + 0xe61f0200 0x38 + 0xe61f0300 0x38>; + interrupts = <0 69 4>; +}; diff --git a/Documentation/devicetree/bindings/arm/armada-370-xp-timer.txt b/Documentation/devicetree/bindings/timer/marvell,armada-370-xp-timer.txt index 64830118b013..36381129d141 100644 --- a/Documentation/devicetree/bindings/arm/armada-370-xp-timer.txt +++ b/Documentation/devicetree/bindings/timer/marvell,armada-370-xp-timer.txt @@ -1,10 +1,13 @@ -Marvell Armada 370 and Armada XP Global Timers ----------------------------------------------- +Marvell Armada 370 and Armada XP Timers +--------------------------------------- Required properties: - compatible: Should be "marvell,armada-370-xp-timer" -- interrupts: Should contain the list of Global Timer interrupts -- reg: Should contain the base address of the Global Timer registers +- interrupts: Should contain the list of Global Timer interrupts and + then local timer interrupts +- reg: Should contain location and length for timers register. First + pair for the Global Timer registers, second pair for the + local/private timers. - clocks: clock driving the timer hardware Optional properties: diff --git a/Documentation/devicetree/bindings/video/backlight/max8925-backlight.txt b/Documentation/devicetree/bindings/video/backlight/max8925-backlight.txt new file mode 100644 index 000000000000..b4cffdaa4137 --- /dev/null +++ b/Documentation/devicetree/bindings/video/backlight/max8925-backlight.txt @@ -0,0 +1,10 @@ +88pm860x-backlight bindings + +Optional properties: + - maxim,max8925-dual-string: whether support dual string + +Example: + + backlights { + maxim,max8925-dual-string = <0>; + }; diff --git a/Documentation/devicetree/bindings/video/display-timing.txt b/Documentation/devicetree/bindings/video/display-timing.txt new file mode 100644 index 000000000000..150038552bc3 --- /dev/null +++ b/Documentation/devicetree/bindings/video/display-timing.txt @@ -0,0 +1,109 @@ +display-timing bindings +======================= + +display-timings node +-------------------- + +required properties: + - none + +optional properties: + - native-mode: The native mode for the display, in case multiple modes are + provided. When omitted, assume the first node is the native. + +timing subnode +-------------- + +required properties: + - hactive, vactive: display resolution + - hfront-porch, hback-porch, hsync-len: horizontal display timing parameters + in pixels + vfront-porch, vback-porch, vsync-len: vertical display timing parameters in + lines + - clock-frequency: display clock in Hz + +optional properties: + - hsync-active: hsync pulse is active low/high/ignored + - vsync-active: vsync pulse is active low/high/ignored + - de-active: data-enable pulse is active low/high/ignored + - pixelclk-active: with + - active high = drive pixel data on rising edge/ + sample data on falling edge + - active low = drive pixel data on falling edge/ + sample data on rising edge + - ignored = ignored + - interlaced (bool): boolean to enable interlaced mode + - doublescan (bool): boolean to enable doublescan mode + +All the optional properties that are not bool follow the following logic: + <1>: high active + <0>: low active + omitted: not used on hardware + +There are different ways of describing the capabilities of a display. The +devicetree representation corresponds to the one commonly found in datasheets +for displays. If a display supports multiple signal timings, the native-mode +can be specified. + +The parameters are defined as: + + +----------+-------------------------------------+----------+-------+ + | | ↑ | | | + | | |vback_porch | | | + | | ↓ | | | + +----------#######################################----------+-------+ + | # ↑ # | | + | # | # | | + | hback # | # hfront | hsync | + | porch # | hactive # porch | len | + |<-------->#<-------+--------------------------->#<-------->|<----->| + | # | # | | + | # |vactive # | | + | # | # | | + | # ↓ # | | + +----------#######################################----------+-------+ + | | ↑ | | | + | | |vfront_porch | | | + | | ↓ | | | + +----------+-------------------------------------+----------+-------+ + | | ↑ | | | + | | |vsync_len | | | + | | ↓ | | | + +----------+-------------------------------------+----------+-------+ + +Example: + + display-timings { + native-mode = <&timing0>; + timing0: 1080p24 { + /* 1920x1080p24 */ + clock-frequency = <52000000>; + hactive = <1920>; + vactive = <1080>; + hfront-porch = <25>; + hback-porch = <25>; + hsync-len = <25>; + vback-porch = <2>; + vfront-porch = <2>; + vsync-len = <2>; + hsync-active = <1>; + }; + }; + +Every required property also supports the use of ranges, so the commonly used +datasheet description with minimum, typical and maximum values can be used. + +Example: + + timing1: timing { + /* 1920x1080p24 */ + clock-frequency = <148500000>; + hactive = <1920>; + vactive = <1080>; + hsync-len = <0 44 60>; + hfront-porch = <80 88 95>; + hback-porch = <100 148 160>; + vfront-porch = <0 4 6>; + vback-porch = <0 36 50>; + vsync-len = <0 5 6>; + }; diff --git a/Documentation/devicetree/bindings/w1/fsl-imx-owire.txt b/Documentation/devicetree/bindings/w1/fsl-imx-owire.txt new file mode 100644 index 000000000000..ecf42c07684d --- /dev/null +++ b/Documentation/devicetree/bindings/w1/fsl-imx-owire.txt @@ -0,0 +1,19 @@ +* Freescale i.MX One wire bus master controller + +Required properties: +- compatible : should be "fsl,imx21-owire" +- reg : Address and length of the register set for the device + +Optional properties: +- clocks : phandle of clock that supplies the module (required if platform + clock bindings use device tree) + +Example: + +- From imx53.dtsi: +owire: owire@63fa4000 { + compatible = "fsl,imx53-owire", "fsl,imx21-owire"; + reg = <0x63fa4000 0x4000>; + clocks = <&clks 159>; + status = "disabled"; +}; diff --git a/Documentation/dma-buf-sharing.txt b/Documentation/dma-buf-sharing.txt index 0188903bc9e1..4966b1be42ac 100644 --- a/Documentation/dma-buf-sharing.txt +++ b/Documentation/dma-buf-sharing.txt @@ -302,7 +302,11 @@ Access to a dma_buf from the kernel context involves three steps: void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr) The vmap call can fail if there is no vmap support in the exporter, or if it - runs out of vmalloc space. Fallback to kmap should be implemented. + runs out of vmalloc space. Fallback to kmap should be implemented. Note that + the dma-buf layer keeps a reference count for all vmap access and calls down + into the exporter's vmap function only when no vmapping exists, and only + unmaps it once. Protection against concurrent vmap/vunmap calls is provided + by taking the dma_buf->lock mutex. 3. Finish access diff --git a/Documentation/dvb/get_dvb_firmware b/Documentation/dvb/get_dvb_firmware index 32bc56b13b1c..5d5ee4c13fa6 100755 --- a/Documentation/dvb/get_dvb_firmware +++ b/Documentation/dvb/get_dvb_firmware @@ -23,7 +23,7 @@ use IO::Handle; @components = ( "sp8870", "sp887x", "tda10045", "tda10046", "tda10046lifeview", "av7110", "dec2000t", "dec2540t", - "dec3000s", "vp7041", "dibusb", "nxt2002", "nxt2004", + "dec3000s", "vp7041", "vp7049", "dibusb", "nxt2002", "nxt2004", "or51211", "or51132_qam", "or51132_vsb", "bluebird", "opera1", "cx231xx", "cx18", "cx23885", "pvrusb2", "mpc718", "af9015", "ngene", "az6027", "lme2510_lg", "lme2510c_s7395", @@ -289,6 +289,19 @@ sub vp7041 { $outfile; } +sub vp7049 { + my $fwfile = "dvb-usb-vp7049-0.95.fw"; + my $url = "http://ao2.it/sites/default/files/blog/2012/11/06/linux-support-digicom-digitune-s-vp7049-udtt7049/$fwfile"; + my $hash = "5609fd295168aea88b25ff43a6f79c36"; + + checkstandard(); + + wgetfile($fwfile, $url); + verify($fwfile, $hash); + + $fwfile; +} + sub dibusb { my $url = "http://www.linuxtv.org/downloads/firmware/dvb-usb-dibusb-5.0.0.11.fw"; my $outfile = "dvb-dibusb-5.0.0.11.fw"; @@ -677,7 +690,7 @@ sub drxk_terratec_h5 { } sub drxk_terratec_htc_stick { - my $url = "http://ftp.terratec.de/Receiver/Cinergy_HTC_Stick/Updates/"; + my $url = "http://ftp.terratec.de/Receiver/Cinergy_HTC_Stick/Updates/History/"; my $zipfile = "Cinergy_HTC_Stick_Drv_5.09.1202.00_XP_Vista_7.exe"; my $hash = "6722a2442a05423b781721fbc069ed5e"; my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 0); diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking index f48e0c6b4c42..0706d32a61e6 100644 --- a/Documentation/filesystems/Locking +++ b/Documentation/filesystems/Locking @@ -10,6 +10,7 @@ be able to use diff(1). --------------------------- dentry_operations -------------------------- prototypes: int (*d_revalidate)(struct dentry *, unsigned int); + int (*d_weak_revalidate)(struct dentry *, unsigned int); int (*d_hash)(const struct dentry *, const struct inode *, struct qstr *); int (*d_compare)(const struct dentry *, const struct inode *, @@ -25,6 +26,7 @@ prototypes: locking rules: rename_lock ->d_lock may block rcu-walk d_revalidate: no no yes (ref-walk) maybe +d_weak_revalidate:no no yes no d_hash no no no maybe d_compare: yes no no maybe d_delete: no yes no no diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting index 0472c31c163b..4db22f6491e0 100644 --- a/Documentation/filesystems/porting +++ b/Documentation/filesystems/porting @@ -441,3 +441,7 @@ d_make_root() drops the reference to inode if dentry allocation fails. two, it gets "is it an O_EXCL or equivalent?" boolean argument. Note that local filesystems can ignore tha argument - they are guaranteed that the object doesn't exist. It's remote/distributed ones that might care... +-- +[mandatory] + FS_REVAL_DOT is gone; if you used to have it, add ->d_weak_revalidate() +in your dentry operations instead. diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt index e3869098163e..bc4b06b3160a 100644 --- a/Documentation/filesystems/vfs.txt +++ b/Documentation/filesystems/vfs.txt @@ -900,6 +900,7 @@ defined: struct dentry_operations { int (*d_revalidate)(struct dentry *, unsigned int); + int (*d_weak_revalidate)(struct dentry *, unsigned int); int (*d_hash)(const struct dentry *, const struct inode *, struct qstr *); int (*d_compare)(const struct dentry *, const struct inode *, @@ -915,8 +916,13 @@ struct dentry_operations { d_revalidate: called when the VFS needs to revalidate a dentry. This is called whenever a name look-up finds a dentry in the - dcache. Most filesystems leave this as NULL, because all their - dentries in the dcache are valid + dcache. Most local filesystems leave this as NULL, because all their + dentries in the dcache are valid. Network filesystems are different + since things can change on the server without the client necessarily + being aware of it. + + This function should return a positive value if the dentry is still + valid, and zero or a negative error code if it isn't. d_revalidate may be called in rcu-walk mode (flags & LOOKUP_RCU). If in rcu-walk mode, the filesystem must revalidate the dentry without @@ -927,6 +933,20 @@ struct dentry_operations { If a situation is encountered that rcu-walk cannot handle, return -ECHILD and it will be called again in ref-walk mode. + d_weak_revalidate: called when the VFS needs to revalidate a "jumped" dentry. + This is called when a path-walk ends at dentry that was not acquired by + doing a lookup in the parent directory. This includes "/", "." and "..", + as well as procfs-style symlinks and mountpoint traversal. + + In this case, we are less concerned with whether the dentry is still + fully correct, but rather that the inode is still valid. As with + d_revalidate, most local filesystems will set this to NULL since their + dcache entries are always valid. + + This function has the same return code semantics as d_revalidate. + + d_weak_revalidate is only called after leaving rcu-walk mode. + d_hash: called when the VFS adds a dentry to the hash table. The first dentry passed to d_hash is the parent directory that the name is to be hashed into. The inode is the dentry's inode. diff --git a/Documentation/i2c/busses/i2c-i801 b/Documentation/i2c/busses/i2c-i801 index 157416e78cc4..d55b8ab2d10f 100644 --- a/Documentation/i2c/busses/i2c-i801 +++ b/Documentation/i2c/busses/i2c-i801 @@ -22,6 +22,8 @@ Supported adapters: * Intel Panther Point (PCH) * Intel Lynx Point (PCH) * Intel Lynx Point-LP (PCH) + * Intel Avoton (SOC) + * Intel Wellsburg (PCH) Datasheets: Publicly available at the Intel website On Intel Patsburg and later chipsets, both the normal host SMBus controller diff --git a/Documentation/i2c/busses/i2c-ismt b/Documentation/i2c/busses/i2c-ismt new file mode 100644 index 000000000000..737355822c0b --- /dev/null +++ b/Documentation/i2c/busses/i2c-ismt @@ -0,0 +1,36 @@ +Kernel driver i2c-ismt + +Supported adapters: + * Intel S12xx series SOCs + +Authors: + Bill Brown <bill.e.brown@intel.com> + + +Module Parameters +----------------- + +* bus_speed (unsigned int) +Allows changing of the bus speed. Normally, the bus speed is set by the BIOS +and never needs to be changed. However, some SMBus analyzers are too slow for +monitoring the bus during debug, thus the need for this module parameter. +Specify the bus speed in kHz. +Available bus frequency settings: + 0 no change + 80 kHz + 100 kHz + 400 kHz + 1000 kHz + + +Description +----------- + +The S12xx series of SOCs have a pair of integrated SMBus 2.0 controllers +targeted primarily at the microserver and storage markets. + +The S12xx series contain a pair of PCI functions. An output of lspci will show +something similar to the following: + + 00:13.0 System peripheral: Intel Corporation Centerton SMBus 2.0 Controller 0 + 00:13.1 System peripheral: Intel Corporation Centerton SMBus 2.0 Controller 1 diff --git a/Documentation/i2c/busses/i2c-sis630 b/Documentation/i2c/busses/i2c-sis630 index 0b9697366930..ee7943631074 100644 --- a/Documentation/i2c/busses/i2c-sis630 +++ b/Documentation/i2c/busses/i2c-sis630 @@ -4,9 +4,11 @@ Supported adapters: * Silicon Integrated Systems Corp (SiS) 630 chipset (Datasheet: available at http://www.sfr-fresh.com/linux) 730 chipset + 964 chipset * Possible other SiS chipsets ? Author: Alexander Malysh <amalysh@web.de> + Amaury Decrême <amaury.decreme@gmail.com> - SiS964 support Module Parameters ----------------- @@ -18,6 +20,7 @@ Module Parameters * high_clock = [1|0] Forcibly set Host Master Clock to 56KHz (default, what your BIOS use). DANGEROUS! This should be a bit faster, but freeze some systems (i.e. my Laptop). + SIS630/730 chip only. Description @@ -36,6 +39,12 @@ or like this: 00:00.0 Host bridge: Silicon Integrated Systems [SiS] 730 Host (rev 02) 00:01.0 ISA bridge: Silicon Integrated Systems [SiS] 85C503/5513 +or like this: + +00:00.0 Host bridge: Silicon Integrated Systems [SiS] 760/M760 Host (rev 02) +00:02.0 ISA bridge: Silicon Integrated Systems [SiS] SiS964 [MuTIOL Media IO] + LPC Controller (rev 36) + in your 'lspci' output , then this driver is for your chipset. Thank You diff --git a/Documentation/i2c/smbus-protocol b/Documentation/i2c/smbus-protocol index d1f22618e14b..6012b12b3510 100644 --- a/Documentation/i2c/smbus-protocol +++ b/Documentation/i2c/smbus-protocol @@ -137,8 +137,8 @@ available for writes where the two data bytes are the other way around (not SMBus compliant, but very popular.) -SMBus Process Call: i2c_smbus_process_call() -============================================= +SMBus Process Call: +=================== This command selects a device register (through the Comm byte), sends 16 bits of data to it, and reads 16 bits of data in return. diff --git a/Documentation/i2c/writing-clients b/Documentation/i2c/writing-clients index 3a94b0e6f601..6b344b516bff 100644 --- a/Documentation/i2c/writing-clients +++ b/Documentation/i2c/writing-clients @@ -365,8 +365,6 @@ in terms of it. Never use this function directly! s32 i2c_smbus_read_word_data(struct i2c_client *client, u8 command); s32 i2c_smbus_write_word_data(struct i2c_client *client, u8 command, u16 value); - s32 i2c_smbus_process_call(struct i2c_client *client, - u8 command, u16 value); s32 i2c_smbus_read_block_data(struct i2c_client *client, u8 command, u8 *values); s32 i2c_smbus_write_block_data(struct i2c_client *client, @@ -381,6 +379,8 @@ These ones were removed from i2c-core because they had no users, but could be added back later if needed: s32 i2c_smbus_write_quick(struct i2c_client *client, u8 value); + s32 i2c_smbus_process_call(struct i2c_client *client, + u8 command, u16 value); s32 i2c_smbus_block_process_call(struct i2c_client *client, u8 command, u8 length, u8 *values); diff --git a/Documentation/kbuild/kconfig-language.txt b/Documentation/kbuild/kconfig-language.txt index a686f9cd69c1..c858f8419eba 100644 --- a/Documentation/kbuild/kconfig-language.txt +++ b/Documentation/kbuild/kconfig-language.txt @@ -388,26 +388,3 @@ config FOO depends on BAR && m limits FOO to module (=m) or disabled (=n). - -Kconfig symbol existence -~~~~~~~~~~~~~~~~~~~~~~~~ -The following two methods produce the same kconfig symbol dependencies -but differ greatly in kconfig symbol existence (production) in the -generated config file. - -case 1: - -config FOO - tristate "about foo" - depends on BAR - -vs. case 2: - -if BAR -config FOO - tristate "about foo" -endif - -In case 1, the symbol FOO will always exist in the config file (given -no other dependencies). In case 2, the symbol FOO will only exist in -the config file if BAR is enabled. diff --git a/Documentation/kbuild/kconfig.txt b/Documentation/kbuild/kconfig.txt index a09f1a6a830c..b8b77bbc784f 100644 --- a/Documentation/kbuild/kconfig.txt +++ b/Documentation/kbuild/kconfig.txt @@ -46,6 +46,12 @@ KCONFIG_OVERWRITECONFIG If you set KCONFIG_OVERWRITECONFIG in the environment, Kconfig will not break symlinks when .config is a symlink to somewhere else. +CONFIG_ +-------------------------------------------------- +If you set CONFIG_ in the environment, Kconfig will prefix all symbols +with its value when saving the configuration, instead of using the default, +"CONFIG_". + ______________________________________________________________________ Environment variables for '{allyes/allmod/allno/rand}config' diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 766087781ecd..3a54fca730c0 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -564,6 +564,8 @@ bytes respectively. Such letter suffixes can also be entirely omitted. UART at the specified I/O port or MMIO address, switching to the matching ttyS device later. The options are the same as for ttyS, above. + hvc<n> Use the hypervisor console device <n>. This is for + both Xen and PowerPC hypervisors. If the device connected to the port is not a TTY but a braille device, prepend "brl," before the device type, for instance @@ -757,6 +759,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted. earlyprintk= [X86,SH,BLACKFIN] earlyprintk=vga + earlyprintk=xen earlyprintk=serial[,ttySn[,baudrate]] earlyprintk=ttySn[,baudrate] earlyprintk=dbgp[debugController#] @@ -774,6 +777,8 @@ bytes respectively. Such letter suffixes can also be entirely omitted. The VGA output is eventually overwritten by the real console. + The xen output can only be used by Xen PV guests. + ekgdboc= [X86,KGDB] Allow early kernel console debugging ekgdboc=kbd @@ -1640,42 +1645,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted. that the amount of memory usable for all allocations is not too small. - movablemem_map=acpi - [KNL,X86,IA-64,PPC] This parameter is similar to - memmap except it specifies the memory map of - ZONE_MOVABLE. - This option inform the kernel to use Hot Pluggable bit - in flags from SRAT from ACPI BIOS to determine which - memory devices could be hotplugged. The corresponding - memory ranges will be set as ZONE_MOVABLE. - NOTE: Whatever node the kernel resides in will always - be un-hotpluggable. - - movablemem_map=nn[KMG]@ss[KMG] - [KNL,X86,IA-64,PPC] This parameter is similar to - memmap except it specifies the memory map of - ZONE_MOVABLE. - If user specifies memory ranges, the info in SRAT will - be ingored. And it works like the following: - - If more ranges are all within one node, then from - lowest ss to the end of the node will be ZONE_MOVABLE. - - If a range is within a node, then from ss to the end - of the node will be ZONE_MOVABLE. - - If a range covers two or more nodes, then from ss to - the end of the 1st node will be ZONE_MOVABLE, and all - the rest nodes will only have ZONE_MOVABLE. - If memmap is specified at the same time, the - movablemem_map will be limited within the memmap - areas. If kernelcore or movablecore is also specified, - movablemem_map will have higher priority to be - satisfied. So the administrator should be careful that - the amount of movablemem_map areas are not too large. - Otherwise kernel won't have enough memory to start. - NOTE: We don't stop users specifying the node the - kernel resides in as hotpluggable so that this - option can be used as a workaround of firmware - bugs. - MTD_Partition= [MTD] Format: <name>,<region-number>,<size>,<offset> @@ -2262,6 +2231,21 @@ bytes respectively. Such letter suffixes can also be entirely omitted. This sorting is done to get a device order compatible with older (<= 2.4) kernels. nobfsort Don't sort PCI devices into breadth-first order. + pcie_bus_tune_off Disable PCIe MPS (Max Payload Size) + tuning and use the BIOS-configured MPS defaults. + pcie_bus_safe Set every device's MPS to the largest value + supported by all devices below the root complex. + pcie_bus_perf Set device MPS to the largest allowable MPS + based on its parent bus. Also set MRRS (Max + Read Request Size) to the largest supported + value (no larger than the MPS that the device + or bus can support) for best performance. + pcie_bus_peer2peer Set every device's MPS to 128B, which + every device is guaranteed to support. This + configuration allows peer-to-peer DMA between + any pair of devices, possibly at the cost of + reduced performance. This also guarantees + that hot-added devices will work. cbiosize=nn[KMG] The fixed amount of bus space which is reserved for the CardBus bridge's IO window. The default value is 256 bytes. @@ -2283,6 +2267,12 @@ bytes respectively. Such letter suffixes can also be entirely omitted. the default. off: Turn ECRC off on: Turn ECRC on. + hpiosize=nn[KMG] The fixed amount of bus space which is + reserved for hotplug bridge's IO window. + Default size is 256 bytes. + hpmemsize=nn[KMG] The fixed amount of bus space which is + reserved for hotplug bridge's memory window. + Default size is 2 megabytes. realloc= Enable/disable reallocating PCI bridge resources if allocations done by BIOS are too small to accommodate resources required by all child diff --git a/Documentation/leds/00-INDEX b/Documentation/leds/00-INDEX index 5fefe374892f..5246090ef15c 100644 --- a/Documentation/leds/00-INDEX +++ b/Documentation/leds/00-INDEX @@ -6,5 +6,7 @@ leds-lp5521.txt - notes on how to use the leds-lp5521 driver. leds-lp5523.txt - notes on how to use the leds-lp5523 driver. +leds-lp55xx.txt + - description about lp55xx common driver. leds-lm3556.txt - notes on how to use the leds-lm3556 driver. diff --git a/Documentation/leds/leds-lp5521.txt b/Documentation/leds/leds-lp5521.txt index 0e542ab3d4a0..270f57196339 100644 --- a/Documentation/leds/leds-lp5521.txt +++ b/Documentation/leds/leds-lp5521.txt @@ -17,19 +17,8 @@ lp5521:channelx, where x is 0 .. 2 All three channels can be also controlled using the engine micro programs. More details of the instructions can be found from the public data sheet. -Control interface for the engines: -x is 1 .. 3 -enginex_mode : disabled, load, run -enginex_load : store program (visible only in engine load mode) - -Example (start to blink the channel 2 led): -cd /sys/class/leds/lp5521:channel2/device -echo "load" > engine3_mode -echo "037f4d0003ff6000" > engine3_load -echo "run" > engine3_mode - -stop the engine: -echo "disabled" > engine3_mode +LP5521 has the internal program memory for running various LED patterns. +For the details, please refer to 'firmware' section in leds-lp55xx.txt sysfs contains a selftest entry. The test communicates with the chip and checks that @@ -47,7 +36,7 @@ The name of each channel can be configurable. If the name field is not defined, the default name will be set to 'xxxx:channelN' (XXXX : pdata->label or i2c client name, N : channel number) -static struct lp5521_led_config lp5521_led_config[] = { +static struct lp55xx_led_config lp5521_led_config[] = { { .name = "red", .chan_nr = 0, @@ -81,10 +70,10 @@ static void lp5521_enable(bool state) /* Control of chip enable signal */ } -static struct lp5521_platform_data lp5521_platform_data = { +static struct lp55xx_platform_data lp5521_platform_data = { .led_config = lp5521_led_config, .num_channels = ARRAY_SIZE(lp5521_led_config), - .clock_mode = LP5521_CLOCK_EXT, + .clock_mode = LP55XX_CLOCK_EXT, .setup_resources = lp5521_setup, .release_resources = lp5521_release, .enable = lp5521_enable, @@ -105,47 +94,9 @@ example of update_config : LP5521_CP_MODE_AUTO | LP5521_R_TO_BATT | \ LP5521_CLK_INT) -static struct lp5521_platform_data lp5521_pdata = { +static struct lp55xx_platform_data lp5521_pdata = { .led_config = lp5521_led_config, .num_channels = ARRAY_SIZE(lp5521_led_config), - .clock_mode = LP5521_CLOCK_INT, + .clock_mode = LP55XX_CLOCK_INT, .update_config = LP5521_CONFIGS, }; - -LED patterns : LP5521 has autonomous operation without external control. -Pattern data can be defined in the platform data. - -example of led pattern data : - -/* RGB(50,5,0) 500ms on, 500ms off, infinite loop */ -static u8 pattern_red[] = { - 0x40, 0x32, 0x60, 0x00, 0x40, 0x00, 0x60, 0x00, - }; - -static u8 pattern_green[] = { - 0x40, 0x05, 0x60, 0x00, 0x40, 0x00, 0x60, 0x00, - }; - -static struct lp5521_led_pattern board_led_patterns[] = { - { - .r = pattern_red, - .g = pattern_green, - .size_r = ARRAY_SIZE(pattern_red), - .size_g = ARRAY_SIZE(pattern_green), - }, -}; - -static struct lp5521_platform_data lp5521_platform_data = { - .led_config = lp5521_led_config, - .num_channels = ARRAY_SIZE(lp5521_led_config), - .clock_mode = LP5521_CLOCK_EXT, - .patterns = board_led_patterns, - .num_patterns = ARRAY_SIZE(board_led_patterns), -}; - -Then predefined led pattern(s) can be executed via the sysfs. -To start the pattern #1, -# echo 1 > /sys/bus/i2c/devices/xxxx/led_pattern -(xxxx : i2c bus & slave address) -To end the pattern, -# echo 0 > /sys/bus/i2c/devices/xxxx/led_pattern diff --git a/Documentation/leds/leds-lp5523.txt b/Documentation/leds/leds-lp5523.txt index c2743f59f9ac..899fdad509fe 100644 --- a/Documentation/leds/leds-lp5523.txt +++ b/Documentation/leds/leds-lp5523.txt @@ -27,25 +27,8 @@ c) Default If both fields are NULL, 'lp5523' is used by default. /sys/class/leds/lp5523:channelN (N: 0 ~ 8) -The chip provides 3 engines. Each engine can control channels without -interaction from the main CPU. Details of the micro engine code can be found -from the public data sheet. Leds can be muxed to different channels. - -Control interface for the engines: -x is 1 .. 3 -enginex_mode : disabled, load, run -enginex_load : microcode load (visible only in load mode) -enginex_leds : led mux control (visible only in load mode) - -cd /sys/class/leds/lp5523:channel2/device -echo "load" > engine3_mode -echo "9d80400004ff05ff437f0000" > engine3_load -echo "111111111" > engine3_leds -echo "run" > engine3_mode - -sysfs contains a selftest entry. It measures each channel -voltage level and checks if it looks reasonable. If the level is too high, -the led is missing; if the level is too low, there is a short circuit. +LP5523 has the internal program memory for running various LED patterns. +For the details, please refer to 'firmware' section in leds-lp55xx.txt Selftest uses always the current from the platform data. @@ -58,7 +41,7 @@ Example platform data: Note - chan_nr can have values between 0 and 8. -static struct lp5523_led_config lp5523_led_config[] = { +static struct lp55xx_led_config lp5523_led_config[] = { { .name = "D1", .chan_nr = 0, @@ -88,10 +71,10 @@ static void lp5523_enable(bool state) /* Control chip enable signal */ } -static struct lp5523_platform_data lp5523_platform_data = { +static struct lp55xx_platform_data lp5523_platform_data = { .led_config = lp5523_led_config, .num_channels = ARRAY_SIZE(lp5523_led_config), - .clock_mode = LP5523_CLOCK_EXT, + .clock_mode = LP55XX_CLOCK_EXT, .setup_resources = lp5523_setup, .release_resources = lp5523_release, .enable = lp5523_enable, diff --git a/Documentation/leds/leds-lp55xx.txt b/Documentation/leds/leds-lp55xx.txt new file mode 100644 index 000000000000..ced41868d2d1 --- /dev/null +++ b/Documentation/leds/leds-lp55xx.txt @@ -0,0 +1,118 @@ +LP5521/LP5523/LP55231 Common Driver +=================================== + +Authors: Milo(Woogyom) Kim <milo.kim@ti.com> + +Description +----------- +LP5521, LP5523/55231 have common features as below. + + Register access via the I2C + Device initialization/deinitialization + Create LED class devices for multiple output channels + Device attributes for user-space interface + Program memory for running LED patterns + +The LP55xx common driver provides these features using exported functions. + lp55xx_init_device() / lp55xx_deinit_device() + lp55xx_register_leds() / lp55xx_unregister_leds() + lp55xx_regsister_sysfs() / lp55xx_unregister_sysfs() + +( Driver Structure Data ) + +In lp55xx common driver, two different data structure is used. + +o lp55xx_led + control multi output LED channels such as led current, channel index. +o lp55xx_chip + general chip control such like the I2C and platform data. + +For example, LP5521 has maximum 3 LED channels. +LP5523/55231 has 9 output channels. + +lp55xx_chip for LP5521 ... lp55xx_led #1 + lp55xx_led #2 + lp55xx_led #3 + +lp55xx_chip for LP5523 ... lp55xx_led #1 + lp55xx_led #2 + . + . + lp55xx_led #9 + +( Chip Dependent Code ) + +To support device specific configurations, special structure +'lpxx_device_config' is used. + + Maximum number of channels + Reset command, chip enable command + Chip specific initialization + Brightness control register access + Setting LED output current + Program memory address access for running patterns + Additional device specific attributes + +( Firmware Interface ) + +LP55xx family devices have the internal program memory for running +various LED patterns. +This pattern data is saved as a file in the user-land or +hex byte string is written into the memory through the I2C. +LP55xx common driver supports the firmware interface. + +LP55xx chips have three program engines. +To load and run the pattern, the programming sequence is following. + (1) Select an engine number (1/2/3) + (2) Mode change to load + (3) Write pattern data into selected area + (4) Mode change to run + +The LP55xx common driver provides simple interfaces as below. +select_engine : Select which engine is used for running program +run_engine : Start program which is loaded via the firmware interface +firmware : Load program data + +For example, run blinking pattern in engine #1 of LP5521 +echo 1 > /sys/bus/i2c/devices/xxxx/select_engine +echo 1 > /sys/class/firmware/lp5521/loading +echo "4000600040FF6000" > /sys/class/firmware/lp5521/data +echo 0 > /sys/class/firmware/lp5521/loading +echo 1 > /sys/bus/i2c/devices/xxxx/run_engine + +For example, run blinking pattern in engine #3 of LP55231 +echo 3 > /sys/bus/i2c/devices/xxxx/select_engine +echo 1 > /sys/class/firmware/lp55231/loading +echo "9d0740ff7e0040007e00a0010000" > /sys/class/firmware/lp55231/data +echo 0 > /sys/class/firmware/lp55231/loading +echo 1 > /sys/bus/i2c/devices/xxxx/run_engine + +To start blinking patterns in engine #2 and #3 simultaneously, +for idx in 2 3 +do + echo $idx > /sys/class/leds/red/device/select_engine + sleep 0.1 + echo 1 > /sys/class/firmware/lp5521/loading + echo "4000600040FF6000" > /sys/class/firmware/lp5521/data + echo 0 > /sys/class/firmware/lp5521/loading +done +echo 1 > /sys/class/leds/red/device/run_engine + +Here is another example for LP5523. +echo 2 > /sys/bus/i2c/devices/xxxx/select_engine +echo 1 > /sys/class/firmware/lp5523/loading +echo "9d80400004ff05ff437f0000" > /sys/class/firmware/lp5523/data +echo 0 > /sys/class/firmware/lp5523/loading +echo 1 > /sys/bus/i2c/devices/xxxx/run_engine + +As soon as 'loading' is set to 0, registered callback is called. +Inside the callback, the selected engine is loaded and memory is updated. +To run programmed pattern, 'run_engine' attribute should be enabled. + +( 'run_engine' and 'firmware_cb' ) +The sequence of running the program data is common. +But each device has own specific register addresses for commands. +To support this, 'run_engine' and 'firmware_cb' are configurable in each driver. +run_engine : Control the selected engine +firmware_cb : The callback function after loading the firmware is done. + Chip specific commands for loading and updating program memory. diff --git a/Documentation/media-framework.txt b/Documentation/media-framework.txt index 802875413873..77bd0a42f19d 100644 --- a/Documentation/media-framework.txt +++ b/Documentation/media-framework.txt @@ -336,7 +336,7 @@ Calls to media_entity_pipeline_start() can be nested. The pipeline pointer must be identical for all nested calls to the function. media_entity_pipeline_start() may return an error. In that case, it will -clean up any the changes it did by itself. +clean up any of the changes it did by itself. When stopping the stream, drivers must notify the entities with diff --git a/Documentation/namespaces/resource-control.txt b/Documentation/namespaces/resource-control.txt new file mode 100644 index 000000000000..abc13c394738 --- /dev/null +++ b/Documentation/namespaces/resource-control.txt @@ -0,0 +1,14 @@ +There are a lot of kinds of objects in the kernel that don't have +individual limits or that have limits that are ineffective when a set +of processes is allowed to switch user ids. With user namespaces +enabled in a kernel for people who don't trust their users or their +users programs to play nice this problems becomes more acute. + +Therefore it is recommended that memory control groups be enabled in +kernels that enable user namespaces, and it is further recommended +that userspace configure memory control groups to limit how much +memory user's they don't trust to play nice can use. + +Memory control groups can be configured by installing the libcgroup +package present on most distros editing /etc/cgrules.conf, +/etc/cgconfig.conf and setting up libpam-cgroup. diff --git a/Documentation/scsi/ChangeLog.megaraid_sas b/Documentation/scsi/ChangeLog.megaraid_sas index da03146c182a..09673c7fc8ee 100644 --- a/Documentation/scsi/ChangeLog.megaraid_sas +++ b/Documentation/scsi/ChangeLog.megaraid_sas @@ -1,3 +1,12 @@ +Release Date : Sat. Feb 9, 2013 17:00:00 PST 2013 - + (emaild-id:megaraidlinux@lsi.com) + Adam Radford +Current Version : 06.506.00.00-rc1 +Old Version : 06.504.01.00-rc1 + 1. Add 4k FastPath DIF support. + 2. Dont load DevHandle unless FastPath enabled. + 3. Version and Changelog update. +------------------------------------------------------------------------------- Release Date : Mon. Oct 1, 2012 17:00:00 PST 2012 - (emaild-id:megaraidlinux@lsi.com) Adam Radford diff --git a/Documentation/thermal/exynos_thermal_emulation b/Documentation/thermal/exynos_thermal_emulation new file mode 100644 index 000000000000..b73bbfb697bb --- /dev/null +++ b/Documentation/thermal/exynos_thermal_emulation @@ -0,0 +1,53 @@ +EXYNOS EMULATION MODE +======================== + +Copyright (C) 2012 Samsung Electronics + +Written by Jonghwa Lee <jonghwa3.lee@samsung.com> + +Description +----------- + +Exynos 4x12 (4212, 4412) and 5 series provide emulation mode for thermal management unit. +Thermal emulation mode supports software debug for TMU's operation. User can set temperature +manually with software code and TMU will read current temperature from user value not from +sensor's value. + +Enabling CONFIG_EXYNOS_THERMAL_EMUL option will make this support in available. +When it's enabled, sysfs node will be created under +/sys/bus/platform/devices/'exynos device name'/ with name of 'emulation'. + +The sysfs node, 'emulation', will contain value 0 for the initial state. When you input any +temperature you want to update to sysfs node, it automatically enable emulation mode and +current temperature will be changed into it. +(Exynos also supports user changable delay time which would be used to delay of + changing temperature. However, this node only uses same delay of real sensing time, 938us.) + +Exynos emulation mode requires synchronous of value changing and enabling. It means when you +want to update the any value of delay or next temperature, then you have to enable emulation +mode at the same time. (Or you have to keep the mode enabling.) If you don't, it fails to +change the value to updated one and just use last succeessful value repeatedly. That's why +this node gives users the right to change termerpature only. Just one interface makes it more +simply to use. + +Disabling emulation mode only requires writing value 0 to sysfs node. + + +TEMP 120 | + | + 100 | + | + 80 | + | +----------- + 60 | | | + | +-------------| | + 40 | | | | + | | | | + 20 | | | +---------- + | | | | | + 0 |______________|_____________|__________|__________|_________ + A A A A TIME + |<----->| |<----->| |<----->| | + | 938us | | | | | | +emulation : 0 50 | 70 | 20 | 0 +current temp : sensor 50 70 20 sensor diff --git a/Documentation/thermal/intel_powerclamp.txt b/Documentation/thermal/intel_powerclamp.txt new file mode 100644 index 000000000000..332de4a39b5a --- /dev/null +++ b/Documentation/thermal/intel_powerclamp.txt @@ -0,0 +1,307 @@ + ======================= + INTEL POWERCLAMP DRIVER + ======================= +By: Arjan van de Ven <arjan@linux.intel.com> + Jacob Pan <jacob.jun.pan@linux.intel.com> + +Contents: + (*) Introduction + - Goals and Objectives + + (*) Theory of Operation + - Idle Injection + - Calibration + + (*) Performance Analysis + - Effectiveness and Limitations + - Power vs Performance + - Scalability + - Calibration + - Comparison with Alternative Techniques + + (*) Usage and Interfaces + - Generic Thermal Layer (sysfs) + - Kernel APIs (TBD) + +============ +INTRODUCTION +============ + +Consider the situation where a system’s power consumption must be +reduced at runtime, due to power budget, thermal constraint, or noise +level, and where active cooling is not preferred. Software managed +passive power reduction must be performed to prevent the hardware +actions that are designed for catastrophic scenarios. + +Currently, P-states, T-states (clock modulation), and CPU offlining +are used for CPU throttling. + +On Intel CPUs, C-states provide effective power reduction, but so far +they’re only used opportunistically, based on workload. With the +development of intel_powerclamp driver, the method of synchronizing +idle injection across all online CPU threads was introduced. The goal +is to achieve forced and controllable C-state residency. + +Test/Analysis has been made in the areas of power, performance, +scalability, and user experience. In many cases, clear advantage is +shown over taking the CPU offline or modulating the CPU clock. + + +=================== +THEORY OF OPERATION +=================== + +Idle Injection +-------------- + +On modern Intel processors (Nehalem or later), package level C-state +residency is available in MSRs, thus also available to the kernel. + +These MSRs are: + #define MSR_PKG_C2_RESIDENCY 0x60D + #define MSR_PKG_C3_RESIDENCY 0x3F8 + #define MSR_PKG_C6_RESIDENCY 0x3F9 + #define MSR_PKG_C7_RESIDENCY 0x3FA + +If the kernel can also inject idle time to the system, then a +closed-loop control system can be established that manages package +level C-state. The intel_powerclamp driver is conceived as such a +control system, where the target set point is a user-selected idle +ratio (based on power reduction), and the error is the difference +between the actual package level C-state residency ratio and the target idle +ratio. + +Injection is controlled by high priority kernel threads, spawned for +each online CPU. + +These kernel threads, with SCHED_FIFO class, are created to perform +clamping actions of controlled duty ratio and duration. Each per-CPU +thread synchronizes its idle time and duration, based on the rounding +of jiffies, so accumulated errors can be prevented to avoid a jittery +effect. Threads are also bound to the CPU such that they cannot be +migrated, unless the CPU is taken offline. In this case, threads +belong to the offlined CPUs will be terminated immediately. + +Running as SCHED_FIFO and relatively high priority, also allows such +scheme to work for both preemptable and non-preemptable kernels. +Alignment of idle time around jiffies ensures scalability for HZ +values. This effect can be better visualized using a Perf timechart. +The following diagram shows the behavior of kernel thread +kidle_inject/cpu. During idle injection, it runs monitor/mwait idle +for a given "duration", then relinquishes the CPU to other tasks, +until the next time interval. + +The NOHZ schedule tick is disabled during idle time, but interrupts +are not masked. Tests show that the extra wakeups from scheduler tick +have a dramatic impact on the effectiveness of the powerclamp driver +on large scale systems (Westmere system with 80 processors). + +CPU0 + ____________ ____________ +kidle_inject/0 | sleep | mwait | sleep | + _________| |________| |_______ + duration +CPU1 + ____________ ____________ +kidle_inject/1 | sleep | mwait | sleep | + _________| |________| |_______ + ^ + | + | + roundup(jiffies, interval) + +Only one CPU is allowed to collect statistics and update global +control parameters. This CPU is referred to as the controlling CPU in +this document. The controlling CPU is elected at runtime, with a +policy that favors BSP, taking into account the possibility of a CPU +hot-plug. + +In terms of dynamics of the idle control system, package level idle +time is considered largely as a non-causal system where its behavior +cannot be based on the past or current input. Therefore, the +intel_powerclamp driver attempts to enforce the desired idle time +instantly as given input (target idle ratio). After injection, +powerclamp moniors the actual idle for a given time window and adjust +the next injection accordingly to avoid over/under correction. + +When used in a causal control system, such as a temperature control, +it is up to the user of this driver to implement algorithms where +past samples and outputs are included in the feedback. For example, a +PID-based thermal controller can use the powerclamp driver to +maintain a desired target temperature, based on integral and +derivative gains of the past samples. + + + +Calibration +----------- +During scalability testing, it is observed that synchronized actions +among CPUs become challenging as the number of cores grows. This is +also true for the ability of a system to enter package level C-states. + +To make sure the intel_powerclamp driver scales well, online +calibration is implemented. The goals for doing such a calibration +are: + +a) determine the effective range of idle injection ratio +b) determine the amount of compensation needed at each target ratio + +Compensation to each target ratio consists of two parts: + + a) steady state error compensation + This is to offset the error occurring when the system can + enter idle without extra wakeups (such as external interrupts). + + b) dynamic error compensation + When an excessive amount of wakeups occurs during idle, an + additional idle ratio can be added to quiet interrupts, by + slowing down CPU activities. + +A debugfs file is provided for the user to examine compensation +progress and results, such as on a Westmere system. +[jacob@nex01 ~]$ cat +/sys/kernel/debug/intel_powerclamp/powerclamp_calib +controlling cpu: 0 +pct confidence steady dynamic (compensation) +0 0 0 0 +1 1 0 0 +2 1 1 0 +3 3 1 0 +4 3 1 0 +5 3 1 0 +6 3 1 0 +7 3 1 0 +8 3 1 0 +... +30 3 2 0 +31 3 2 0 +32 3 1 0 +33 3 2 0 +34 3 1 0 +35 3 2 0 +36 3 1 0 +37 3 2 0 +38 3 1 0 +39 3 2 0 +40 3 3 0 +41 3 1 0 +42 3 2 0 +43 3 1 0 +44 3 1 0 +45 3 2 0 +46 3 3 0 +47 3 0 0 +48 3 2 0 +49 3 3 0 + +Calibration occurs during runtime. No offline method is available. +Steady state compensation is used only when confidence levels of all +adjacent ratios have reached satisfactory level. A confidence level +is accumulated based on clean data collected at runtime. Data +collected during a period without extra interrupts is considered +clean. + +To compensate for excessive amounts of wakeup during idle, additional +idle time is injected when such a condition is detected. Currently, +we have a simple algorithm to double the injection ratio. A possible +enhancement might be to throttle the offending IRQ, such as delaying +EOI for level triggered interrupts. But it is a challenge to be +non-intrusive to the scheduler or the IRQ core code. + + +CPU Online/Offline +------------------ +Per-CPU kernel threads are started/stopped upon receiving +notifications of CPU hotplug activities. The intel_powerclamp driver +keeps track of clamping kernel threads, even after they are migrated +to other CPUs, after a CPU offline event. + + +===================== +Performance Analysis +===================== +This section describes the general performance data collected on +multiple systems, including Westmere (80P) and Ivy Bridge (4P, 8P). + +Effectiveness and Limitations +----------------------------- +The maximum range that idle injection is allowed is capped at 50 +percent. As mentioned earlier, since interrupts are allowed during +forced idle time, excessive interrupts could result in less +effectiveness. The extreme case would be doing a ping -f to generated +flooded network interrupts without much CPU acknowledgement. In this +case, little can be done from the idle injection threads. In most +normal cases, such as scp a large file, applications can be throttled +by the powerclamp driver, since slowing down the CPU also slows down +network protocol processing, which in turn reduces interrupts. + +When control parameters change at runtime by the controlling CPU, it +may take an additional period for the rest of the CPUs to catch up +with the changes. During this time, idle injection is out of sync, +thus not able to enter package C- states at the expected ratio. But +this effect is minor, in that in most cases change to the target +ratio is updated much less frequently than the idle injection +frequency. + +Scalability +----------- +Tests also show a minor, but measurable, difference between the 4P/8P +Ivy Bridge system and the 80P Westmere server under 50% idle ratio. +More compensation is needed on Westmere for the same amount of +target idle ratio. The compensation also increases as the idle ratio +gets larger. The above reason constitutes the need for the +calibration code. + +On the IVB 8P system, compared to an offline CPU, powerclamp can +achieve up to 40% better performance per watt. (measured by a spin +counter summed over per CPU counting threads spawned for all running +CPUs). + +==================== +Usage and Interfaces +==================== +The powerclamp driver is registered to the generic thermal layer as a +cooling device. Currently, it’s not bound to any thermal zones. + +jacob@chromoly:/sys/class/thermal/cooling_device14$ grep . * +cur_state:0 +max_state:50 +type:intel_powerclamp + +Example usage: +- To inject 25% idle time +$ sudo sh -c "echo 25 > /sys/class/thermal/cooling_device80/cur_state +" + +If the system is not busy and has more than 25% idle time already, +then the powerclamp driver will not start idle injection. Using Top +will not show idle injection kernel threads. + +If the system is busy (spin test below) and has less than 25% natural +idle time, powerclamp kernel threads will do idle injection, which +appear running to the scheduler. But the overall system idle is still +reflected. In this example, 24.1% idle is shown. This helps the +system admin or user determine the cause of slowdown, when a +powerclamp driver is in action. + + +Tasks: 197 total, 1 running, 196 sleeping, 0 stopped, 0 zombie +Cpu(s): 71.2%us, 4.7%sy, 0.0%ni, 24.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st +Mem: 3943228k total, 1689632k used, 2253596k free, 74960k buffers +Swap: 4087804k total, 0k used, 4087804k free, 945336k cached + + PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND + 3352 jacob 20 0 262m 644 428 S 286 0.0 0:17.16 spin + 3341 root -51 0 0 0 0 D 25 0.0 0:01.62 kidle_inject/0 + 3344 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/3 + 3342 root -51 0 0 0 0 D 25 0.0 0:01.61 kidle_inject/1 + 3343 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/2 + 2935 jacob 20 0 696m 125m 35m S 5 3.3 0:31.11 firefox + 1546 root 20 0 158m 20m 6640 S 3 0.5 0:26.97 Xorg + 2100 jacob 20 0 1223m 88m 30m S 3 2.3 0:23.68 compiz + +Tests have shown that by using the powerclamp driver as a cooling +device, a PID based userspace thermal controller can manage to +control CPU temperature effectively, when no other thermal influence +is added. For example, a UltraBook user can compile the kernel under +certain temperature (below most active trip points). diff --git a/Documentation/thermal/nouveau_thermal b/Documentation/thermal/nouveau_thermal new file mode 100644 index 000000000000..efceb7828f54 --- /dev/null +++ b/Documentation/thermal/nouveau_thermal @@ -0,0 +1,81 @@ +Kernel driver nouveau +=================== + +Supported chips: +* NV43+ + +Authors: Martin Peres (mupuf) <martin.peres@labri.fr> + +Description +--------- + +This driver allows to read the GPU core temperature, drive the GPU fan and +set temperature alarms. + +Currently, due to the absence of in-kernel API to access HWMON drivers, Nouveau +cannot access any of the i2c external monitoring chips it may find. If you +have one of those, temperature and/or fan management through Nouveau's HWMON +interface is likely not to work. This document may then not cover your situation +entirely. + +Temperature management +-------------------- + +Temperature is exposed under as a read-only HWMON attribute temp1_input. + +In order to protect the GPU from overheating, Nouveau supports 4 configurable +temperature thresholds: + + * Fan_boost: Fan speed is set to 100% when reaching this temperature; + * Downclock: The GPU will be downclocked to reduce its power dissipation; + * Critical: The GPU is put on hold to further lower power dissipation; + * Shutdown: Shut the computer down to protect your GPU. + +WARNING: Some of these thresholds may not be used by Nouveau depending +on your chipset. + +The default value for these thresholds comes from the GPU's vbios. These +thresholds can be configured thanks to the following HWMON attributes: + + * Fan_boost: temp1_auto_point1_temp and temp1_auto_point1_temp_hyst; + * Downclock: temp1_max and temp1_max_hyst; + * Critical: temp1_crit and temp1_crit_hyst; + * Shutdown: temp1_emergency and temp1_emergency_hyst. + +NOTE: Remember that the values are stored as milli degrees Celcius. Don't forget +to multiply! + +Fan management +------------ + +Not all cards have a drivable fan. If you do, then the following HWMON +attributes should be available: + + * pwm1_enable: Current fan management mode (NONE, MANUAL or AUTO); + * pwm1: Current PWM value (power percentage); + * pwm1_min: The minimum PWM speed allowed; + * pwm1_max: The maximum PWM speed allowed (bypassed when hitting Fan_boost); + +You may also have the following attribute: + + * fan1_input: Speed in RPM of your fan. + +Your fan can be driven in different modes: + + * 0: The fan is left untouched; + * 1: The fan can be driven in manual (use pwm1 to change the speed); + * 2; The fan is driven automatically depending on the temperature. + +NOTE: Be sure to use the manual mode if you want to drive the fan speed manually + +NOTE2: Not all fan management modes may be supported on all chipsets. We are +working on it. + +Bug reports +--------- + +Thermal management on Nouveau is new and may not work on all cards. If you have +inquiries, please ping mupuf on IRC (#nouveau, freenode). + +Bug reports should be filled on Freedesktop's bug tracker. Please follow +http://nouveau.freedesktop.org/wiki/Bugs diff --git a/Documentation/thermal/sysfs-api.txt b/Documentation/thermal/sysfs-api.txt index 88c02334e356..6859661c9d31 100644 --- a/Documentation/thermal/sysfs-api.txt +++ b/Documentation/thermal/sysfs-api.txt @@ -55,6 +55,8 @@ temperature) and throttle appropriate devices. .get_trip_type: get the type of certain trip point. .get_trip_temp: get the temperature above which the certain trip point will be fired. + .set_emul_temp: set the emulation temperature which helps in debugging + different threshold temperature points. 1.1.2 void thermal_zone_device_unregister(struct thermal_zone_device *tz) @@ -153,6 +155,7 @@ Thermal zone device sys I/F, created once it's registered: |---trip_point_[0-*]_temp: Trip point temperature |---trip_point_[0-*]_type: Trip point type |---trip_point_[0-*]_hyst: Hysteresis value for this trip point + |---emul_temp: Emulated temperature set node Thermal cooling device sys I/F, created once it's registered: /sys/class/thermal/cooling_device[0-*]: @@ -252,6 +255,16 @@ passive Valid values: 0 (disabled) or greater than 1000 RW, Optional +emul_temp + Interface to set the emulated temperature method in thermal zone + (sensor). After setting this temperature, the thermal zone may pass + this temperature to platform emulation function if registered or + cache it locally. This is useful in debugging different temperature + threshold and its associated cooling action. This is write only node + and writing 0 on this node should disable emulation. + Unit: millidegree Celsius + WO, Optional + ***************************** * Cooling device attributes * ***************************** @@ -329,8 +342,9 @@ The framework includes a simple notification mechanism, in the form of a netlink event. Netlink socket initialization is done during the _init_ of the framework. Drivers which intend to use the notification mechanism just need to call thermal_generate_netlink_event() with two arguments viz -(originator, event). Typically the originator will be an integer assigned -to a thermal_zone_device when it registers itself with the framework. The +(originator, event). The originator is a pointer to struct thermal_zone_device +from where the event has been originated. An integer which represents the +thermal zone device will be used in the message to identify the zone. The event will be one of:{THERMAL_AUX0, THERMAL_AUX1, THERMAL_CRITICAL, THERMAL_DEV_FAULT}. Notification can be sent when the current temperature crosses any of the configured thresholds. diff --git a/Documentation/video4linux/CARDLIST.au0828 b/Documentation/video4linux/CARDLIST.au0828 index a8a65753e544..55a21deab7db 100644 --- a/Documentation/video4linux/CARDLIST.au0828 +++ b/Documentation/video4linux/CARDLIST.au0828 @@ -1,5 +1,5 @@ 0 -> Unknown board (au0828) - 1 -> Hauppauge HVR950Q (au0828) [2040:7200,2040:7210,2040:7217,2040:721b,2040:721e,2040:721f,2040:7280,0fd9:0008,2040:7260,2040:7213] + 1 -> Hauppauge HVR950Q (au0828) [2040:7200,2040:7210,2040:7217,2040:721b,2040:721e,2040:721f,2040:7280,0fd9:0008,2040:7260,2040:7213,2040:7270] 2 -> Hauppauge HVR850 (au0828) [2040:7240] 3 -> DViCO FusionHDTV USB (au0828) [0fe9:d620] 4 -> Hauppauge HVR950Q rev xxF8 (au0828) [2040:7201,2040:7211,2040:7281] diff --git a/Documentation/video4linux/CARDLIST.cx23885 b/Documentation/video4linux/CARDLIST.cx23885 index 1299b5e82d7f..9f056d512e35 100644 --- a/Documentation/video4linux/CARDLIST.cx23885 +++ b/Documentation/video4linux/CARDLIST.cx23885 @@ -36,3 +36,5 @@ 35 -> TeVii S471 [d471:9022] 36 -> Hauppauge WinTV-HVR1255 [0070:2259] 37 -> Prof Revolution DVB-S2 8000 [8000:3034] + 38 -> Hauppauge WinTV-HVR4400 [0070:c108,0070:c138,0070:c12a,0070:c1f8] + 39 -> AVerTV Hybrid Express Slim HC81R [1461:d939] diff --git a/Documentation/video4linux/CARDLIST.em28xx b/Documentation/video4linux/CARDLIST.em28xx index d99262dda533..3f12865b2a88 100644 --- a/Documentation/video4linux/CARDLIST.em28xx +++ b/Documentation/video4linux/CARDLIST.em28xx @@ -76,7 +76,7 @@ 76 -> KWorld PlusTV 340U or UB435-Q (ATSC) (em2870) [1b80:a340] 77 -> EM2874 Leadership ISDBT (em2874) 78 -> PCTV nanoStick T2 290e (em28174) - 79 -> Terratec Cinergy H5 (em2884) [0ccd:008e,0ccd:00ac,0ccd:10a2,0ccd:10ad] + 79 -> Terratec Cinergy H5 (em2884) [0ccd:10a2,0ccd:10ad] 80 -> PCTV DVB-S2 Stick (460e) (em28174) 81 -> Hauppauge WinTV HVR 930C (em2884) [2040:1605] 82 -> Terratec Cinergy HTC Stick (em2884) [0ccd:00b2] @@ -84,3 +84,4 @@ 84 -> MaxMedia UB425-TC (em2874) [1b80:e425] 85 -> PCTV QuatroStick (510e) (em2884) [2304:0242] 86 -> PCTV QuatroStick nano (520e) (em2884) [2013:0251] + 87 -> Terratec Cinergy HTC USB XS (em2884) [0ccd:008e,0ccd:00ac] diff --git a/Documentation/video4linux/CARDLIST.saa7134 b/Documentation/video4linux/CARDLIST.saa7134 index 94d9025aa82d..b3ad68309109 100644 --- a/Documentation/video4linux/CARDLIST.saa7134 +++ b/Documentation/video4linux/CARDLIST.saa7134 @@ -189,3 +189,4 @@ 188 -> Sensoray 811/911 [6000:0811,6000:0911] 189 -> Kworld PC150-U [17de:a134] 190 -> Asus My Cinema PS3-100 [1043:48cd] +191 -> Hawell HW-9004V1 diff --git a/Documentation/video4linux/et61x251.txt b/Documentation/video4linux/et61x251.txt deleted file mode 100644 index e0cdae491858..000000000000 --- a/Documentation/video4linux/et61x251.txt +++ /dev/null @@ -1,315 +0,0 @@ - - ET61X[12]51 PC Camera Controllers - Driver for Linux - ================================= - - - Documentation - - - -Index -===== -1. Copyright -2. Disclaimer -3. License -4. Overview and features -5. Module dependencies -6. Module loading -7. Module parameters -8. Optional device control through "sysfs" -9. Supported devices -10. Notes for V4L2 application developers -11. Contact information - - -1. Copyright -============ -Copyright (C) 2006-2007 by Luca Risolia <luca.risolia@studio.unibo.it> - - -2. Disclaimer -============= -Etoms is a trademark of Etoms Electronics Corp. -This software is not developed or sponsored by Etoms Electronics. - - -3. License -========== -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - - -4. Overview and features -======================== -This driver supports the video interface of the devices mounting the ET61X151 -or ET61X251 PC Camera Controllers. - -It's worth to note that Etoms Electronics has never collaborated with the -author during the development of this project; despite several requests, -Etoms Electronics also refused to release enough detailed specifications of -the video compression engine. - -The driver relies on the Video4Linux2 and USB core modules. It has been -designed to run properly on SMP systems as well. - -The latest version of the ET61X[12]51 driver can be found at the following URL: -http://www.linux-projects.org/ - -Some of the features of the driver are: - -- full compliance with the Video4Linux2 API (see also "Notes for V4L2 - application developers" paragraph); -- available mmap or read/poll methods for video streaming through isochronous - data transfers; -- automatic detection of image sensor; -- support for any window resolutions and optional panning within the maximum - pixel area of image sensor; -- image downscaling with arbitrary scaling factors from 1 and 2 in both - directions (see "Notes for V4L2 application developers" paragraph); -- two different video formats for uncompressed or compressed data in low or - high compression quality (see also "Notes for V4L2 application developers" - paragraph); -- full support for the capabilities of every possible image sensors that can - be connected to the ET61X[12]51 bridges, including, for instance, red, green, - blue and global gain adjustments and exposure control (see "Supported - devices" paragraph for details); -- use of default color settings for sunlight conditions; -- dynamic I/O interface for both ET61X[12]51 and image sensor control (see - "Optional device control through 'sysfs'" paragraph); -- dynamic driver control thanks to various module parameters (see "Module - parameters" paragraph); -- up to 64 cameras can be handled at the same time; they can be connected and - disconnected from the host many times without turning off the computer, if - the system supports hotplugging; -- no known bugs. - - -5. Module dependencies -====================== -For it to work properly, the driver needs kernel support for Video4Linux and -USB. - -The following options of the kernel configuration file must be enabled and -corresponding modules must be compiled: - - # Multimedia devices - # - CONFIG_VIDEO_DEV=m - -To enable advanced debugging functionality on the device through /sysfs: - - # Multimedia devices - # - CONFIG_VIDEO_ADV_DEBUG=y - - # USB support - # - CONFIG_USB=m - -In addition, depending on the hardware being used, the modules below are -necessary: - - # USB Host Controller Drivers - # - CONFIG_USB_EHCI_HCD=m - CONFIG_USB_UHCI_HCD=m - CONFIG_USB_OHCI_HCD=m - -And finally: - - # USB Multimedia devices - # - CONFIG_USB_ET61X251=m - - -6. Module loading -================= -To use the driver, it is necessary to load the "et61x251" module into memory -after every other module required: "videodev", "v4l2_common", "compat_ioctl32", -"usbcore" and, depending on the USB host controller you have, "ehci-hcd", -"uhci-hcd" or "ohci-hcd". - -Loading can be done as shown below: - - [root@localhost home]# modprobe et61x251 - -At this point the devices should be recognized. You can invoke "dmesg" to -analyze kernel messages and verify that the loading process has gone well: - - [user@localhost home]$ dmesg - - -7. Module parameters -==================== -Module parameters are listed below: -------------------------------------------------------------------------------- -Name: video_nr -Type: short array (min = 0, max = 64) -Syntax: <-1|n[,...]> -Description: Specify V4L2 minor mode number: - -1 = use next available - n = use minor number n - You can specify up to 64 cameras this way. - For example: - video_nr=-1,2,-1 would assign minor number 2 to the second - registered camera and use auto for the first one and for every - other camera. -Default: -1 -------------------------------------------------------------------------------- -Name: force_munmap -Type: bool array (min = 0, max = 64) -Syntax: <0|1[,...]> -Description: Force the application to unmap previously mapped buffer memory - before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not - all the applications support this feature. This parameter is - specific for each detected camera. - 0 = do not force memory unmapping - 1 = force memory unmapping (save memory) -Default: 0 -------------------------------------------------------------------------------- -Name: frame_timeout -Type: uint array (min = 0, max = 64) -Syntax: <n[,...]> -Description: Timeout for a video frame in seconds. This parameter is - specific for each detected camera. This parameter can be - changed at runtime thanks to the /sys filesystem interface. -Default: 2 -------------------------------------------------------------------------------- -Name: debug -Type: ushort -Syntax: <n> -Description: Debugging information level, from 0 to 3: - 0 = none (use carefully) - 1 = critical errors - 2 = significant information - 3 = more verbose messages - Level 3 is useful for testing only, when only one device - is used at the same time. It also shows some more information - about the hardware being detected. This module parameter can be - changed at runtime thanks to the /sys filesystem interface. -Default: 2 -------------------------------------------------------------------------------- - - -8. Optional device control through "sysfs" -========================================== -If the kernel has been compiled with the CONFIG_VIDEO_ADV_DEBUG option enabled, -it is possible to read and write both the ET61X[12]51 and the image sensor -registers by using the "sysfs" filesystem interface. - -There are four files in the /sys/class/video4linux/videoX directory for each -registered camera: "reg", "val", "i2c_reg" and "i2c_val". The first two files -control the ET61X[12]51 bridge, while the other two control the sensor chip. -"reg" and "i2c_reg" hold the values of the current register index where the -following reading/writing operations are addressed at through "val" and -"i2c_val". Their use is not intended for end-users, unless you know what you -are doing. Remember that you must be logged in as root before writing to them. - -As an example, suppose we were to want to read the value contained in the -register number 1 of the sensor register table - which is usually the product -identifier - of the camera registered as "/dev/video0": - - [root@localhost #] cd /sys/class/video4linux/video0 - [root@localhost #] echo 1 > i2c_reg - [root@localhost #] cat i2c_val - -Note that if the sensor registers cannot be read, "cat" will fail. -To avoid race conditions, all the I/O accesses to the files are serialized. - - -9. Supported devices -==================== -None of the names of the companies as well as their products will be mentioned -here. They have never collaborated with the author, so no advertising. - -From the point of view of a driver, what unambiguously identify a device are -its vendor and product USB identifiers. Below is a list of known identifiers of -devices mounting the ET61X[12]51 PC camera controllers: - -Vendor ID Product ID ---------- ---------- -0x102c 0x6151 -0x102c 0x6251 -0x102c 0x6253 -0x102c 0x6254 -0x102c 0x6255 -0x102c 0x6256 -0x102c 0x6257 -0x102c 0x6258 -0x102c 0x6259 -0x102c 0x625a -0x102c 0x625b -0x102c 0x625c -0x102c 0x625d -0x102c 0x625e -0x102c 0x625f -0x102c 0x6260 -0x102c 0x6261 -0x102c 0x6262 -0x102c 0x6263 -0x102c 0x6264 -0x102c 0x6265 -0x102c 0x6266 -0x102c 0x6267 -0x102c 0x6268 -0x102c 0x6269 - -The following image sensors are supported: - -Model Manufacturer ------ ------------ -TAS5130D1B Taiwan Advanced Sensor Corporation - -All the available control settings of each image sensor are supported through -the V4L2 interface. - - -10. Notes for V4L2 application developers -========================================= -This driver follows the V4L2 API specifications. In particular, it enforces two -rules: - -- exactly one I/O method, either "mmap" or "read", is associated with each -file descriptor. Once it is selected, the application must close and reopen the -device to switch to the other I/O method; - -- although it is not mandatory, previously mapped buffer memory should always -be unmapped before calling any "VIDIOC_S_CROP" or "VIDIOC_S_FMT" ioctl's. -The same number of buffers as before will be allocated again to match the size -of the new video frames, so you have to map the buffers again before any I/O -attempts on them. - -Consistently with the hardware limits, this driver also supports image -downscaling with arbitrary scaling factors from 1 and 2 in both directions. -However, the V4L2 API specifications don't correctly define how the scaling -factor can be chosen arbitrarily by the "negotiation" of the "source" and -"target" rectangles. To work around this flaw, we have added the convention -that, during the negotiation, whenever the "VIDIOC_S_CROP" ioctl is issued, the -scaling factor is restored to 1. - -This driver supports two different video formats: the first one is the "8-bit -Sequential Bayer" format and can be used to obtain uncompressed video data -from the device through the current I/O method, while the second one provides -"raw" compressed video data (without frame headers not related to the -compressed data). The current compression quality may vary from 0 to 1 and can -be selected or queried thanks to the VIDIOC_S_JPEGCOMP and VIDIOC_G_JPEGCOMP -V4L2 ioctl's. - - -11. Contact information -======================= -The author may be contacted by e-mail at <luca.risolia@studio.unibo.it>. - -GPG/PGP encrypted e-mail's are accepted. The GPG key ID of the author is -'FCE635A4'; the public 1024-bit key should be available at any keyserver; -the fingerprint is: '88E8 F32F 7244 68BA 3958 5D40 99DA 5D2A FCE6 35A4'. diff --git a/Documentation/video4linux/extract_xc3028.pl b/Documentation/video4linux/extract_xc3028.pl index 47877deae6d7..47877deae6d7 100644..100755 --- a/Documentation/video4linux/extract_xc3028.pl +++ b/Documentation/video4linux/extract_xc3028.pl diff --git a/Documentation/video4linux/fimc.txt b/Documentation/video4linux/fimc.txt index fd02d9a4930a..25f4d3402722 100644 --- a/Documentation/video4linux/fimc.txt +++ b/Documentation/video4linux/fimc.txt @@ -58,7 +58,7 @@ Not currently supported: 4.1. Media device interface The driver supports Media Controller API as defined at -http://http://linuxtv.org/downloads/v4l-dvb-apis/media_common.html +http://linuxtv.org/downloads/v4l-dvb-apis/media_common.html The media device driver name is "SAMSUNG S5P FIMC". The purpose of this interface is to allow changing assignment of FIMC instances diff --git a/Documentation/video4linux/ibmcam.txt b/Documentation/video4linux/ibmcam.txt deleted file mode 100644 index a51055211e62..000000000000 --- a/Documentation/video4linux/ibmcam.txt +++ /dev/null @@ -1,323 +0,0 @@ -README for Linux device driver for the IBM "C-It" USB video camera - -INTRODUCTION: - -This driver does not use all features known to exist in -the IBM camera. However most of needed features work well. - -This driver was developed using logs of observed USB traffic -which was produced by standard Windows driver (c-it98.sys). -I did not have data sheets from Xirlink. - -Video formats: - 128x96 [model 1] - 176x144 - 320x240 [model 2] - 352x240 [model 2] - 352x288 -Frame rate: 3 - 30 frames per second (FPS) -External interface: USB -Internal interface: Video For Linux (V4L) -Supported controls: -- by V4L: Contrast, Brightness, Color, Hue -- by driver options: frame rate, lighting conditions, video format, - default picture settings, sharpness. - -SUPPORTED CAMERAS: - -Xirlink "C-It" camera, also known as "IBM PC Camera". -The device uses proprietary ASIC (and compression method); -it is manufactured by Xirlink. See http://xirlinkwebcam.sourceforge.net, -http://www.ibmpccamera.com, or http://www.c-itnow.com/ for details and pictures. - -This very chipset ("X Chip", as marked at the factory) -is used in several other cameras, and they are supported -as well: - -- IBM NetCamera -- Veo Stingray - -The Linux driver was developed with camera with following -model number (or FCC ID): KSX-XVP510. This camera has three -interfaces, each with one endpoint (control, iso, iso). This -type of cameras is referred to as "model 1". These cameras are -no longer manufactured. - -Xirlink now manufactures new cameras which are somewhat different. -In particular, following models [FCC ID] belong to that category: - -XVP300 [KSX-X9903] -XVP600 [KSX-X9902] -XVP610 [KSX-X9902] - -(see http://www.xirlink.com/ibmpccamera/ for updates, they refer -to these new cameras by Windows driver dated 12-27-99, v3005 BETA) -These cameras have two interfaces, one endpoint in each (iso, bulk). -Such type of cameras is referred to as "model 2". They are supported -(with exception of 352x288 native mode). - -Some IBM NetCameras (Model 4) are made to generate only compressed -video streams. This is great for performance, but unfortunately -nobody knows how to decompress the stream :-( Therefore, these -cameras are *unsupported* and if you try to use one of those, all -you get is random colored horizontal streaks, not the image! -If you have one of those cameras, you probably should return it -to the store and get something that is supported. - -Tell me more about all that "model" business --------------------------------------------- - -I just invented model numbers to uniquely identify flavors of the -hardware/firmware that were sold. It was very confusing to use -brand names or some other internal numbering schemes. So I found -by experimentation that all Xirlink chipsets fall into four big -classes, and I called them "models". Each model is programmed in -its own way, and each model sends back the video in its own way. - -Quirks of Model 2 cameras: -------------------------- - -Model 2 does not have hardware contrast control. Corresponding V4L -control is implemented in software, which is not very nice to your -CPU, but at least it works. - -This driver provides 352x288 mode by switching the camera into -quasi-352x288 RGB mode (800 Kbits per frame) essentially limiting -this mode to 10 frames per second or less, in ideal conditions on -the bus (USB is shared, after all). The frame rate -has to be programmed very conservatively. Additional concern is that -frame rate depends on brightness setting; therefore the picture can -be good at one brightness and broken at another! I did not want to fix -the frame rate at slowest setting, but I had to move it pretty much down -the scale (so that framerate option barely matters). I also noticed that -camera after first powering up produces frames slightly faster than during -consecutive uses. All this means that if you use 352x288 (which is -default), be warned - you may encounter broken picture on first connect; -try to adjust brightness - brighter image is slower, so USB will be able -to send all data. However if you regularly use Model 2 cameras you may -prefer 176x144 which makes perfectly good I420, with no scaling and -lesser demands on USB (300 Kbits per second, or 26 frames per second). - -Another strange effect of 352x288 mode is the fine vertical grid visible -on some colored surfaces. I am sure it is caused by me not understanding -what the camera is trying to say. Blame trade secrets for that. - -The camera that I had also has a hardware quirk: if disconnected, -it needs few minutes to "relax" before it can be plugged in again -(poorly designed USB processor reset circuit?) - -[Veo Stingray with Product ID 0x800C is also Model 2, but I haven't -observed this particular flaw in it.] - -Model 2 camera can be programmed for very high sensitivity (even starlight -may be enough), this makes it convenient for tinkering with. The driver -code has enough comments to help a programmer to tweak the camera -as s/he feels necessary. - -WHAT YOU NEED: - -- A supported IBM PC (C-it) camera (model 1 or 2) - -- A Linux box with USB support (2.3/2.4; 2.2 w/backport may work) - -- A Video4Linux compatible frame grabber program such as xawtv. - -HOW TO COMPILE THE DRIVER: - -You need to compile the driver only if you are a developer -or if you want to make changes to the code. Most distributions -precompile all modules, so you can go directly to the next -section "HOW TO USE THE DRIVER". - -The ibmcam driver uses usbvideo helper library (module), -so if you are studying the ibmcam code you will be led there. - -The driver itself consists of only one file in usb/ directory: -ibmcam.c. This file is included into the Linux kernel build -process if you configure the kernel for CONFIG_USB_IBMCAM. -Run "make xconfig" and in USB section you will find the IBM -camera driver. Select it, save the configuration and recompile. - -HOW TO USE THE DRIVER: - -I recommend to compile driver as a module. This gives you an -easier access to its configuration. The camera has many more -settings than V4L can operate, so some settings are done using -module options. - -To begin with, on most modern Linux distributions the driver -will be automatically loaded whenever you plug the supported -camera in. Therefore, you don't need to do anything. However -if you want to experiment with some module parameters then -you can load and unload the driver manually, with camera -plugged in or unplugged. - -Typically module is installed with command 'modprobe', like this: - -# modprobe ibmcam framerate=1 - -Alternatively you can use 'insmod' in similar fashion: - -# insmod /lib/modules/2.x.y/usb/ibmcam.o framerate=1 - -Module can be inserted with camera connected or disconnected. - -The driver can have options, though some defaults are provided. - -Driver options: (* indicates that option is model-dependent) - -Name Type Range [default] Example --------------- -------------- -------------- ------------------ -debug Integer 0-9 [0] debug=1 -flags Integer 0-0xFF [0] flags=0x0d -framerate Integer 0-6 [2] framerate=1 -hue_correction Integer 0-255 [128] hue_correction=115 -init_brightness Integer 0-255 [128] init_brightness=100 -init_contrast Integer 0-255 [192] init_contrast=200 -init_color Integer 0-255 [128] init_color=130 -init_hue Integer 0-255 [128] init_hue=115 -lighting Integer 0-2* [1] lighting=2 -sharpness Integer 0-6* [4] sharpness=3 -size Integer 0-2* [2] size=1 - -Options for Model 2 only: - -Name Type Range [default] Example --------------- -------------- -------------- ------------------ -init_model2_rg Integer 0..255 [0x70] init_model2_rg=128 -init_model2_rg2 Integer 0..255 [0x2f] init_model2_rg2=50 -init_model2_sat Integer 0..255 [0x34] init_model2_sat=65 -init_model2_yb Integer 0..255 [0xa0] init_model2_yb=200 - -debug You don't need this option unless you are a developer. - If you are a developer then you will see in the code - what values do what. 0=off. - -flags This is a bit mask, and you can combine any number of - bits to produce what you want. Usually you don't want - any of extra features this option provides: - - FLAGS_RETRY_VIDIOCSYNC 1 This bit allows to retry failed - VIDIOCSYNC ioctls without failing. - Will work with xawtv, will not - with xrealproducer. Default is - not set. - FLAGS_MONOCHROME 2 Activates monochrome (b/w) mode. - FLAGS_DISPLAY_HINTS 4 Shows colored pixels which have - magic meaning to developers. - FLAGS_OVERLAY_STATS 8 Shows tiny numbers on screen, - useful only for debugging. - FLAGS_FORCE_TESTPATTERN 16 Shows blue screen with numbers. - FLAGS_SEPARATE_FRAMES 32 Shows each frame separately, as - it was received from the camera. - Default (not set) is to mix the - preceding frame in to compensate - for occasional loss of Isoc data - on high frame rates. - FLAGS_CLEAN_FRAMES 64 Forces "cleanup" of each frame - prior to use; relevant only if - FLAGS_SEPARATE_FRAMES is set. - Default is not to clean frames, - this is a little faster but may - produce flicker if frame rate is - too high and Isoc data gets lost. - FLAGS_NO_DECODING 128 This flag turns the video stream - decoder off, and dumps the raw - Isoc data from the camera into - the reading process. Useful to - developers, but not to users. - -framerate This setting controls frame rate of the camera. This is - an approximate setting (in terms of "worst" ... "best") - because camera changes frame rate depending on amount - of light available. Setting 0 is slowest, 6 is fastest. - Beware - fast settings are very demanding and may not - work well with all video sizes. Be conservative. - -hue_correction This highly optional setting allows to adjust the - hue of the image in a way slightly different from - what usual "hue" control does. Both controls affect - YUV colorspace: regular "hue" control adjusts only - U component, and this "hue_correction" option similarly - adjusts only V component. However usually it is enough - to tweak only U or V to compensate for colored light or - color temperature; this option simply allows more - complicated correction when and if it is necessary. - -init_brightness These settings specify _initial_ values which will be -init_contrast used to set up the camera. If your V4L application has -init_color its own controls to adjust the picture then these -init_hue controls will be used too. These options allow you to - preconfigure the camera when it gets connected, before - any V4L application connects to it. Good for webcams. - -init_model2_rg These initial settings alter color balance of the -init_model2_rg2 camera on hardware level. All four settings may be used -init_model2_sat to tune the camera to specific lighting conditions. These -init_model2_yb settings only apply to Model 2 cameras. - -lighting This option selects one of three hardware-defined - photosensitivity settings of the camera. 0=bright light, - 1=Medium (default), 2=Low light. This setting affects - frame rate: the dimmer the lighting the lower the frame - rate (because longer exposition time is needed). The - Model 2 cameras allow values more than 2 for this option, - thus enabling extremely high sensitivity at cost of frame - rate, color saturation and imaging sensor noise. - -sharpness This option controls smoothing (noise reduction) - made by camera. Setting 0 is most smooth, setting 6 - is most sharp. Be aware that CMOS sensor used in the - camera is pretty noisy, so if you choose 6 you will - be greeted with "snowy" image. Default is 4. Model 2 - cameras do not support this feature. - -size This setting chooses one of several image sizes that are - supported by this driver. Cameras may support more, but - it's difficult to reverse-engineer all formats. - Following video sizes are supported: - - size=0 128x96 (Model 1 only) - size=1 160x120 - size=2 176x144 - size=3 320x240 (Model 2 only) - size=4 352x240 (Model 2 only) - size=5 352x288 - size=6 640x480 (Model 3 only) - - The 352x288 is the native size of the Model 1 sensor - array, so it's the best resolution the camera can - yield. The best resolution of Model 2 is 176x144, and - larger images are produced by stretching the bitmap. - Model 3 has sensor with 640x480 grid, and it works too, - but the frame rate will be exceptionally low (1-2 FPS); - it may be still OK for some applications, like security. - Choose the image size you need. The smaller image can - support faster frame rate. Default is 352x288. - -For more information and the Troubleshooting FAQ visit this URL: - - http://www.linux-usb.org/ibmcam/ - -WHAT NEEDS TO BE DONE: - -- The button on the camera is not used. I don't know how to get to it. - I know now how to read button on Model 2, but what to do with it? - -- Camera reports its status back to the driver; however I don't know - what returned data means. If camera fails at some initialization - stage then something should be done, and I don't do that because - I don't even know that some command failed. This is mostly Model 1 - concern because Model 2 uses different commands which do not return - status (and seem to complete successfully every time). - -- Some flavors of Model 4 NetCameras produce only compressed video - streams, and I don't know how to decode them. - -CREDITS: - -The code is based in no small part on the CPiA driver by Johannes Erdfelt, -Randy Dunlap, and others. Big thanks to them for their pioneering work on that -and the USB stack. - -I also thank John Lightsey for his donation of the Veo Stingray camera. diff --git a/Documentation/video4linux/m5602.txt b/Documentation/video4linux/m5602.txt deleted file mode 100644 index 4450ab13f37b..000000000000 --- a/Documentation/video4linux/m5602.txt +++ /dev/null @@ -1,12 +0,0 @@ -This document describes the ALi m5602 bridge connected -to the following supported sensors: -OmniVision OV9650, -Samsung s5k83a, -Samsung s5k4aa, -Micron mt9m111, -Pixel plus PO1030 - -This driver mimics the windows drivers, which have a braindead implementation sending bayer-encoded frames at VGA resolution. -In a perfect world we should be able to reprogram the m5602 and the connected sensor in hardware instead, supporting a range of resolutions and pixelformats - -Anyway, have fun and please report any bugs to m560x-driver-devel@lists.sourceforge.net diff --git a/Documentation/video4linux/ov511.txt b/Documentation/video4linux/ov511.txt deleted file mode 100644 index b3326b167ada..000000000000 --- a/Documentation/video4linux/ov511.txt +++ /dev/null @@ -1,288 +0,0 @@ -------------------------------------------------------------------------------- -Readme for Linux device driver for the OmniVision OV511 USB to camera bridge IC -------------------------------------------------------------------------------- - -Author: Mark McClelland -Homepage: http://alpha.dyndns.org/ov511 - -INTRODUCTION: - -This is a driver for the OV511, a USB-only chip used in many "webcam" devices. -Any camera using the OV511/OV511+ and the OV6620/OV7610/20/20AE should work. -Video capture devices that use the Philips SAA7111A decoder also work. It -supports streaming and capture of color or monochrome video via the Video4Linux -API. Most V4L apps are compatible with it. Most resolutions with a width and -height that are a multiple of 8 are supported. - -If you need more information, please visit the OV511 homepage at the above URL. - -WHAT YOU NEED: - -- If you want to help with the development, get the chip's specification docs at - http://www.ovt.com/omniusbp.html - -- A Video4Linux compatible frame grabber program (I recommend vidcat and xawtv) - vidcat is part of the w3cam package: http://mpx.freeshell.net/ - xawtv is available at: http://linux.bytesex.org/xawtv/ - -HOW TO USE IT: - -Note: These are simplified instructions. For complete instructions see: - http://alpha.dyndns.org/ov511/install.html - -You must have first compiled USB support, support for your specific USB host -controller (UHCI or OHCI), and Video4Linux support for your kernel (I recommend -making them modules.) Make sure "Enforce bandwidth allocation" is NOT enabled. - -Next, (as root): - - modprobe usbcore - modprobe usb-uhci <OR> modprobe usb-ohci - modprobe videodev - modprobe ov511 - -If it is not already there (it usually is), create the video device: - - mknod /dev/video0 c 81 0 - -Optionally, symlink /dev/video to /dev/video0 - -You will have to set permissions on this device to allow you to read/write -from it: - - chmod 666 /dev/video - chmod 666 /dev/video0 (if necessary) - -Now you are ready to run a video app! Both vidcat and xawtv work well for me -at 640x480. - -[Using vidcat:] - - vidcat -s 640x480 -p c > test.jpg - xview test.jpg - -[Using xawtv:] - -From the main xawtv directory: - - make clean - ./configure - make - make install - -Now you should be able to run xawtv. Right click for the options dialog. - -MODULE PARAMETERS: - - You can set these with: insmod ov511 NAME=VALUE - There is currently no way to set these on a per-camera basis. - - NAME: autobright - TYPE: integer (Boolean) - DEFAULT: 1 - DESC: Brightness is normally under automatic control and can't be set - manually by the video app. Set to 0 for manual control. - - NAME: autogain - TYPE: integer (Boolean) - DEFAULT: 1 - DESC: Auto Gain Control enable. This feature is not yet implemented. - - NAME: autoexp - TYPE: integer (Boolean) - DEFAULT: 1 - DESC: Auto Exposure Control enable. This feature is not yet implemented. - - NAME: debug - TYPE: integer (0-6) - DEFAULT: 3 - DESC: Sets the threshold for printing debug messages. The higher the value, - the more is printed. The levels are cumulative, and are as follows: - 0=no debug messages - 1=init/detection/unload and other significant messages - 2=some warning messages - 3=config/control function calls - 4=most function calls and data parsing messages - 5=highly repetitive mesgs - - NAME: snapshot - TYPE: integer (Boolean) - DEFAULT: 0 - DESC: Set to 1 to enable snapshot mode. read()/VIDIOCSYNC will block until - the snapshot button is pressed. Note: enabling this mode disables - /proc/video/ov511/<minor#>/button - - NAME: cams - TYPE: integer (1-4 for OV511, 1-31 for OV511+) - DEFAULT: 1 - DESC: Number of cameras allowed to stream simultaneously on a single bus. - Values higher than 1 reduce the data rate of each camera, allowing two - or more to be used at once. If you have a complicated setup involving - both OV511 and OV511+ cameras, trial-and-error may be necessary for - finding the optimum setting. - - NAME: compress - TYPE: integer (Boolean) - DEFAULT: 0 - DESC: Set this to 1 to turn on the camera's compression engine. This can - potentially increase the frame rate at the expense of quality, if you - have a fast CPU. You must load the proper compression module for your - camera before starting your application (ov511_decomp or ov518_decomp). - - NAME: testpat - TYPE: integer (Boolean) - DEFAULT: 0 - DESC: This configures the camera's sensor to transmit a colored test-pattern - instead of an image. This does not work correctly yet. - - NAME: dumppix - TYPE: integer (0-2) - DEFAULT: 0 - DESC: Dumps raw pixel data and skips post-processing and format conversion. - It is for debugging purposes only. Options are: - 0: Disable (default) - 1: Dump raw data from camera, excluding headers and trailers - 2: Dumps data exactly as received from camera - - NAME: led - TYPE: integer (0-2) - DEFAULT: 1 (Always on) - DESC: Controls whether the LED (the little light) on the front of the camera - is always off (0), always on (1), or only on when driver is open (2). - This is not supported with the OV511, and might only work with certain - cameras (ones that actually have the LED wired to the control pin, and - not just hard-wired to be on all the time). - - NAME: dump_bridge - TYPE: integer (Boolean) - DEFAULT: 0 - DESC: Dumps the bridge (OV511[+] or OV518[+]) register values to the system - log. Only useful for serious debugging/development purposes. - - NAME: dump_sensor - TYPE: integer (Boolean) - DEFAULT: 0 - DESC: Dumps the sensor register values to the system log. Only useful for - serious debugging/development purposes. - - NAME: printph - TYPE: integer (Boolean) - DEFAULT: 0 - DESC: Setting this to 1 will dump the first 12 bytes of each isoc frame. This - is only useful if you are trying to debug problems with the isoc data - stream (i.e.: camera initializes, but vidcat hangs until Ctrl-C). Be - warned that this dumps a large number of messages to your kernel log. - - NAME: phy, phuv, pvy, pvuv, qhy, qhuv, qvy, qvuv - TYPE: integer (0-63 for phy and phuv, 0-255 for rest) - DEFAULT: OV511 default values - DESC: These are registers 70h - 77h of the OV511, which control the - prediction ranges and quantization thresholds of the compressor, for - the Y and UV channels in the horizontal and vertical directions. See - the OV511 or OV511+ data sheet for more detailed descriptions. These - normally do not need to be changed. - - NAME: lightfreq - TYPE: integer (0, 50, or 60) - DEFAULT: 0 (use sensor default) - DESC: Sets the sensor to match your lighting frequency. This can reduce the - appearance of "banding", i.e. horizontal lines or waves of light and - dark that are often caused by artificial lighting. Valid values are: - 0 - Use default (depends on sensor, most likely 60 Hz) - 50 - For European and Asian 50 Hz power - 60 - For American 60 Hz power - - NAME: bandingfilter - TYPE: integer (Boolean) - DEFAULT: 0 (off) - DESC: Enables the sensor´s banding filter exposure algorithm. This reduces - or stabilizes the "banding" caused by some artificial light sources - (especially fluorescent). You might have to set lightfreq correctly for - this to work right. As an added bonus, this sometimes makes it - possible to capture your monitor´s output. - - NAME: fastset - TYPE: integer (Boolean) - DEFAULT: 0 (off) - DESC: Allows picture settings (brightness, contrast, color, and hue) to take - effect immediately, even in the middle of a frame. This reduces the - time to change settings, but can ruin frames during the change. Only - affects OmniVision sensors. - - NAME: force_palette - TYPE: integer (Boolean) - DEFAULT: 0 (off) - DESC: Forces the palette (color format) to a specific value. If an - application requests a different palette, it will be rejected, thereby - forcing it to try others until it succeeds. This is useful for forcing - greyscale mode with a color camera, for example. Supported modes are: - 0 (Allows all the following formats) - 1 VIDEO_PALETTE_GREY (Linear greyscale) - 10 VIDEO_PALETTE_YUV420 (YUV 4:2:0 Planar) - 15 VIDEO_PALETTE_YUV420P (YUV 4:2:0 Planar, same as 10) - - NAME: backlight - TYPE: integer (Boolean) - DEFAULT: 0 (off) - DESC: Setting this flag changes the exposure algorithm for OmniVision sensors - such that objects in the camera's view (i.e. your head) can be clearly - seen when they are illuminated from behind. It reduces or eliminates - the sensor's auto-exposure function, so it should only be used when - needed. Additionally, it is only supported with the OV6620 and OV7620. - - NAME: unit_video - TYPE: Up to 16 comma-separated integers - DEFAULT: 0,0,0... (automatically assign the next available minor(s)) - DESC: You can specify up to 16 minor numbers to be assigned to ov511 devices. - For example, "unit_video=1,3" will make the driver use /dev/video1 and - /dev/video3 for the first two devices it detects. Additional devices - will be assigned automatically starting at the first available device - node (/dev/video0 in this case). Note that you cannot specify 0 as a - minor number. This feature requires kernel version 2.4.5 or higher. - - NAME: remove_zeros - TYPE: integer (Boolean) - DEFAULT: 0 (do not skip any incoming data) - DESC: Setting this to 1 will remove zero-padding from incoming data. This - will compensate for the blocks of corruption that can appear when the - camera cannot keep up with the speed of the USB bus (eg. at low frame - resolutions). This feature is always enabled when compression is on. - - NAME: mirror - TYPE: integer (Boolean) - DEFAULT: 0 (off) - DESC: Setting this to 1 will reverse ("mirror") the image horizontally. This - might be necessary if your camera has a custom lens assembly. This has - no effect with video capture devices. - - NAME: ov518_color - TYPE: integer (Boolean) - DEFAULT: 0 (off) - DESC: Enable OV518 color support. This is off by default since it doesn't - work most of the time. If you want to try it, you must also load - ov518_decomp with the "nouv=0" parameter. If you get improper colors or - diagonal lines through the image, restart your video app and try again. - Repeat as necessary. - -WORKING FEATURES: - o Color streaming/capture at most widths and heights that are multiples of 8. - o Monochrome (use force_palette=1 to enable) - o Setting/getting of saturation, contrast, brightness, and hue (only some of - them work the OV7620 and OV7620AE) - o /proc status reporting - o SAA7111A video capture support at 320x240 and 640x480 - o Compression support - o SMP compatibility - -HOW TO CONTACT ME: - -You can email me at mark@alpha.dyndns.org . Please prefix the subject line -with "OV511: " so that I am certain to notice your message. - -CREDITS: - -The code is based in no small part on the CPiA driver by Johannes Erdfelt, -Randy Dunlap, and others. Big thanks to them for their pioneering work on that -and the USB stack. Thanks to Bret Wallach for getting camera reg IO, ISOC, and -image capture working. Thanks to Orion Sky Lawlor, Kevin Moore, and Claudio -Matsuoka for their work as well. diff --git a/Documentation/video4linux/se401.txt b/Documentation/video4linux/se401.txt deleted file mode 100644 index bd6526ec8dd7..000000000000 --- a/Documentation/video4linux/se401.txt +++ /dev/null @@ -1,54 +0,0 @@ -Linux driver for SE401 based USB cameras - -Copyright, 2001, Jeroen Vreeken - - -INTRODUCTION: - -The SE401 chip is the used in low-cost usb webcams. -It is produced by Endpoints Inc. (www.endpoints.com). -It interfaces directly to a cmos image sensor and USB. The only other major -part in a se401 based camera is a dram chip. - -The following cameras are known to work with this driver: - -Aox se401 (non-branded) cameras -Philips PVCV665 USB VGA webcam 'Vesta Fun' -Kensington VideoCAM PC Camera Model 67014 -Kensington VideoCAM PC Camera Model 67015 -Kensington VideoCAM PC Camera Model 67016 -Kensington VideoCAM PC Camera Model 67017 - - -WHAT YOU NEED: - -- USB support -- VIDEO4LINUX support - -More information about USB support for linux can be found at: -http://www.linux-usb.org - - -MODULE OPTIONS: - -When the driver is compiled as a module you can also use the 'flickerless' -option. With it exposure is limited to values that do not interfere with the -net frequency. Valid options for this option are 0, 50 and 60. (0=disable, -50=50hz, 60=60hz) - - -KNOWN PROBLEMS: - -The driver works fine with the usb-ohci and uhci host controller drivers, -the default settings also work with usb-uhci. But sending more than one bulk -transfer at a time with usb-uhci doesn't work yet. -Users of usb-ohci and uhci can safely enlarge SE401_NUMSBUF in se401.h in -order to increase the throughput (and thus framerate). - - -HELP: - -The latest info on this driver can be found at: -http://members.chello.nl/~j.vreeken/se401/ -And questions to me can be send to: -pe1rxq@amsat.org diff --git a/Documentation/video4linux/si470x.txt b/Documentation/video4linux/si470x.txt index 3a7823e01b4d..98c32925eb39 100644 --- a/Documentation/video4linux/si470x.txt +++ b/Documentation/video4linux/si470x.txt @@ -53,6 +53,9 @@ Testing is usually done with most application under Debian/testing: - kradio - Comfortable Radio Application for KDE - radio - ncurses-based radio application - mplayer - The Ultimate Movie Player For Linux +- v4l2-ctl - Collection of command line video4linux utilities +For example, you can use: +v4l2-ctl -d /dev/radio0 --set-ctrl=volume=10,mute=0 --set-freq=95.21 --all There is also a library libv4l, which can be used. It's going to have a function for frequency seeking, either by using hardware functionality as in radio-si470x @@ -75,8 +78,10 @@ commands. Please adjust the audio devices to your needs (/dev/dsp* and hw:x,x). If you just want to test audio (very poor quality): cat /dev/dsp1 > /dev/dsp -If you use OSS try: +If you use sox + OSS try: sox -2 --endian little -r 96000 -t oss /dev/dsp1 -t oss /dev/dsp +or using sox + alsa: +sox --endian little -c 2 -S -r 96000 -t alsa hw:1 -t alsa -r 96000 hw:0 If you use arts try: arecord -D hw:1,0 -r96000 -c2 -f S16_LE | artsdsp aplay -B - diff --git a/Documentation/video4linux/soc-camera.txt b/Documentation/video4linux/soc-camera.txt index 3f87c7da4ca2..f62fcdbc8b9f 100644 --- a/Documentation/video4linux/soc-camera.txt +++ b/Documentation/video4linux/soc-camera.txt @@ -9,32 +9,36 @@ The following terms are used in this document: of connecting to a variety of systems and interfaces, typically uses i2c for control and configuration, and a parallel or a serial bus for data. - camera host - an interface, to which a camera is connected. Typically a - specialised interface, present on many SoCs, e.g., PXA27x and PXA3xx, SuperH, + specialised interface, present on many SoCs, e.g. PXA27x and PXA3xx, SuperH, AVR32, i.MX27, i.MX31. - camera host bus - a connection between a camera host and a camera. Can be - parallel or serial, consists of data and control lines, e.g., clock, vertical + parallel or serial, consists of data and control lines, e.g. clock, vertical and horizontal synchronization signals. Purpose of the soc-camera subsystem ----------------------------------- -The soc-camera subsystem provides a unified API between camera host drivers and -camera sensor drivers. It implements a V4L2 interface to the user, currently -only the mmap method is supported. +The soc-camera subsystem initially provided a unified API between camera host +drivers and camera sensor drivers. Later the soc-camera sensor API has been +replaced with the V4L2 standard subdev API. This also made camera driver re-use +with non-soc-camera hosts possible. The camera host API to the soc-camera core +has been preserved. -This subsystem has been written to connect drivers for System-on-Chip (SoC) -video capture interfaces with drivers for CMOS camera sensor chips to enable -the reuse of sensor drivers with various hosts. The subsystem has been designed -to support multiple camera host interfaces and multiple cameras per interface, -although most applications have only one camera sensor. +Soc-camera implements a V4L2 interface to the user, currently only the "mmap" +method is supported by host drivers. However, the soc-camera core also provides +support for the "read" method. + +The subsystem has been designed to support multiple camera host interfaces and +multiple cameras per interface, although most applications have only one camera +sensor. Existing drivers ---------------- -As of 2.6.27-rc4 there are two host drivers in the mainline: pxa_camera.c for -PXA27x SoCs and sh_mobile_ceu_camera.c for SuperH SoCs, and four sensor drivers: -mt9m001.c, mt9m111.c, mt9v022.c and a generic soc_camera_platform.c driver. This -list is not supposed to be updated, look for more examples in your tree. +As of 3.7 there are seven host drivers in the mainline: atmel-isi.c, +mx1_camera.c (broken, scheduled for removal), mx2_camera.c, mx3_camera.c, +omap1_camera.c, pxa_camera.c, sh_mobile_ceu_camera.c, and multiple sensor +drivers under drivers/media/i2c/soc_camera/. Camera host API --------------- @@ -45,38 +49,37 @@ soc_camera_host_register(struct soc_camera_host *); function. The host object can be initialized as follows: -static struct soc_camera_host pxa_soc_camera_host = { - .drv_name = PXA_CAM_DRV_NAME, - .ops = &pxa_soc_camera_host_ops, -}; + struct soc_camera_host *ici; + ici->drv_name = DRV_NAME; + ici->ops = &camera_host_ops; + ici->priv = pcdev; + ici->v4l2_dev.dev = &pdev->dev; + ici->nr = pdev->id; All camera host methods are passed in a struct soc_camera_host_ops: -static struct soc_camera_host_ops pxa_soc_camera_host_ops = { +static struct soc_camera_host_ops camera_host_ops = { .owner = THIS_MODULE, - .add = pxa_camera_add_device, - .remove = pxa_camera_remove_device, - .suspend = pxa_camera_suspend, - .resume = pxa_camera_resume, - .set_fmt_cap = pxa_camera_set_fmt_cap, - .try_fmt_cap = pxa_camera_try_fmt_cap, - .init_videobuf = pxa_camera_init_videobuf, - .reqbufs = pxa_camera_reqbufs, - .poll = pxa_camera_poll, - .querycap = pxa_camera_querycap, - .try_bus_param = pxa_camera_try_bus_param, - .set_bus_param = pxa_camera_set_bus_param, + .add = camera_add_device, + .remove = camera_remove_device, + .set_fmt = camera_set_fmt_cap, + .try_fmt = camera_try_fmt_cap, + .init_videobuf2 = camera_init_videobuf2, + .poll = camera_poll, + .querycap = camera_querycap, + .set_bus_param = camera_set_bus_param, + /* The rest of host operations are optional */ }; .add and .remove methods are called when a sensor is attached to or detached -from the host, apart from performing host-internal tasks they shall also call -sensor driver's .init and .release methods respectively. .suspend and .resume -methods implement host's power-management functionality and its their -responsibility to call respective sensor's methods. .try_bus_param and -.set_bus_param are used to negotiate physical connection parameters between the -host and the sensor. .init_videobuf is called by soc-camera core when a -video-device is opened, further video-buffer management is implemented completely -by the specific camera host driver. The rest of the methods are called from +from the host. .set_bus_param is used to configure physical connection +parameters between the host and the sensor. .init_videobuf2 is called by +soc-camera core when a video-device is opened, the host driver would typically +call vb2_queue_init() in this method. Further video-buffer management is +implemented completely by the specific camera host driver. If the host driver +supports non-standard pixel format conversion, it should implement a +.get_formats and, possibly, a .put_formats operations. See below for more +details about format conversion. The rest of the methods are called from respective V4L2 operations. Camera API @@ -84,37 +87,21 @@ Camera API Sensor drivers can use struct soc_camera_link, typically provided by the platform, and used to specify to which camera host bus the sensor is connected, -and arbitrarily provide platform .power and .reset methods for the camera. -soc_camera_device_register() and soc_camera_device_unregister() functions are -used to add a sensor driver to or remove one from the system. The registration -function takes a pointer to struct soc_camera_device as the only parameter. -This struct can be initialized as follows: - - /* link to driver operations */ - icd->ops = &mt9m001_ops; - /* link to the underlying physical (e.g., i2c) device */ - icd->control = &client->dev; - /* window geometry */ - icd->x_min = 20; - icd->y_min = 12; - icd->x_current = 20; - icd->y_current = 12; - icd->width_min = 48; - icd->width_max = 1280; - icd->height_min = 32; - icd->height_max = 1024; - icd->y_skip_top = 1; - /* camera bus ID, typically obtained from platform data */ - icd->iface = icl->bus_id; - -struct soc_camera_ops provides .probe and .remove methods, which are called by -the soc-camera core, when a camera is matched against or removed from a camera -host bus, .init, .release, .suspend, and .resume are called from the camera host -driver as discussed above. Other members of this struct provide respective V4L2 -functionality. - -struct soc_camera_device also links to an array of struct soc_camera_data_format, -listing pixel formats, supported by the camera. +and optionally provide platform .power and .reset methods for the camera. This +struct is provided to the camera driver via the I2C client device platform data +and can be obtained, using the soc_camera_i2c_to_link() macro. Care should be +taken, when using soc_camera_vdev_to_subdev() and when accessing struct +soc_camera_device, using v4l2_get_subdev_hostdata(): both only work, when +running on an soc-camera host. The actual camera driver operation is implemented +using the V4L2 subdev API. Additionally soc-camera camera drivers can use +auxiliary soc-camera helper functions like soc_camera_power_on() and +soc_camera_power_off(), which switch regulators, provided by the platform and call +board-specific power switching methods. soc_camera_apply_board_flags() takes +camera bus configuration capability flags and applies any board transformations, +e.g. signal polarity inversion. soc_mbus_get_fmtdesc() can be used to obtain a +pixel format descriptor, corresponding to a certain media-bus pixel format code. +soc_camera_limit_side() can be used to restrict beginning and length of a frame +side, based on camera capabilities. VIDIOC_S_CROP and VIDIOC_S_FMT behaviour ---------------------------------------- @@ -153,8 +140,25 @@ implemented. User window geometry is kept in .user_width and .user_height fields in struct soc_camera_device and used by the soc-camera core and host drivers. The core updates these fields upon successful completion of a .s_fmt() call, but if these -fields change elsewhere, e.g., during .s_crop() processing, the host driver is +fields change elsewhere, e.g. during .s_crop() processing, the host driver is responsible for updating them. +Format conversion +----------------- + +V4L2 distinguishes between pixel formats, as they are stored in memory, and as +they are transferred over a media bus. Soc-camera provides support to +conveniently manage these formats. A table of standard transformations is +maintained by soc-camera core, which describes, what FOURCC pixel format will +be obtained, if a media-bus pixel format is stored in memory according to +certain rules. E.g. if V4L2_MBUS_FMT_YUYV8_2X8 data is sampled with 8 bits per +sample and stored in memory in the little-endian order with no gaps between +bytes, data in memory will represent the V4L2_PIX_FMT_YUYV FOURCC format. These +standard transformations will be used by soc-camera or by camera host drivers to +configure camera drivers to produce the FOURCC format, requested by the user, +using the VIDIOC_S_FMT ioctl(). Apart from those standard format conversions, +host drivers can also provide their own conversion rules by implementing a +.get_formats and, if required, a .put_formats methods. + -- Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de> diff --git a/Documentation/video4linux/stv680.txt b/Documentation/video4linux/stv680.txt deleted file mode 100644 index e3de33645308..000000000000 --- a/Documentation/video4linux/stv680.txt +++ /dev/null @@ -1,53 +0,0 @@ -Linux driver for STV0680 based USB cameras - -Copyright, 2001, Kevin Sisson - - -INTRODUCTION: - -STMicroelectronics produces the STV0680B chip, which comes in two -types, -001 and -003. The -003 version allows the recording and downloading -of sound clips from the camera, and allows a flash attachment. Otherwise, -it uses the same commands as the -001 version. Both versions support a -variety of SDRAM sizes and sensors, allowing for a maximum of 26 VGA or 20 -CIF pictures. The STV0680 supports either a serial or a usb interface, and -video is possible through the usb interface. - -The following cameras are known to work with this driver, although any -camera with Vendor/Product codes of 0553/0202 should work: - -Aiptek Pencam (various models) -Nisis QuickPix 2 -Radio Shack 'Kid's digital camera' (#60-1207) -At least one Trust Spycam model -Several other European brand models - -WHAT YOU NEED: - -- USB support -- VIDEO4LINUX support - -More information about USB support for linux can be found at: -http://www.linux-usb.org - - -MODULE OPTIONS: - -When the driver is compiled as a module, you can set a "swapRGB=1" -option, if necessary, for those applications that require it -(such as xawtv). However, the driver should detect and set this -automatically, so this option should not normally be used. - - -KNOWN PROBLEMS: - -The driver seems to work better with the usb-ohci than the usb-uhci host -controller driver. - -HELP: - -The latest info on this driver can be found at: -http://personal.clt.bellsouth.net/~kjsisson or at -http://stv0680-usb.sourceforge.net - -Any questions to me can be send to: kjsisson@bellsouth.net diff --git a/Documentation/video4linux/v4l2-controls.txt b/Documentation/video4linux/v4l2-controls.txt index cfe52c798d74..676f87366025 100644 --- a/Documentation/video4linux/v4l2-controls.txt +++ b/Documentation/video4linux/v4l2-controls.txt @@ -715,14 +715,20 @@ a control of this type whenever the first control belonging to a new control class is added. -Proposals for Extensions -======================== +Adding Notify Callbacks +======================= + +Sometimes the platform or bridge driver needs to be notified when a control +from a sub-device driver changes. You can set a notify callback by calling +this function: -Some ideas for future extensions to the spec: +void v4l2_ctrl_notify(struct v4l2_ctrl *ctrl, + void (*notify)(struct v4l2_ctrl *ctrl, void *priv), void *priv); -1) Add a V4L2_CTRL_FLAG_HEX to have values shown as hexadecimal instead of -decimal. Useful for e.g. video_mute_yuv. +Whenever the give control changes value the notify callback will be called +with a pointer to the control and the priv pointer that was passed with +v4l2_ctrl_notify. Note that the control's handler lock is held when the +notify function is called. -2) It is possible to mark in the controls array which controls have been -successfully written and which failed by for example adding a bit to the -control ID. Not sure if it is worth the effort, though. +There can be only one notify function per control handler. Any attempt +to set another notify function will cause a WARN_ON. diff --git a/Documentation/video4linux/v4l2-framework.txt b/Documentation/video4linux/v4l2-framework.txt index b89567ad04b7..a300b283a1a0 100644 --- a/Documentation/video4linux/v4l2-framework.txt +++ b/Documentation/video4linux/v4l2-framework.txt @@ -68,8 +68,7 @@ Structure of the framework The framework closely resembles the driver structure: it has a v4l2_device struct for the device instance data, a v4l2_subdev struct to refer to sub-device instances, the video_device struct stores V4L2 device node data -and in the future a v4l2_fh struct will keep track of filehandle instances -(this is not yet implemented). +and the v4l2_fh struct keeps track of filehandle instances. The V4L2 framework also optionally integrates with the media framework. If a driver sets the struct v4l2_device mdev field, sub-devices and video nodes diff --git a/Documentation/video4linux/w9968cf.txt b/Documentation/video4linux/w9968cf.txt deleted file mode 100644 index 9649450f3b90..000000000000 --- a/Documentation/video4linux/w9968cf.txt +++ /dev/null @@ -1,458 +0,0 @@ - - W996[87]CF JPEG USB Dual Mode Camera Chip - Driver for Linux 2.6 (basic version) - ========================================= - - - Documentation - - - -Index -===== -1. Copyright -2. Disclaimer -3. License -4. Overview -5. Supported devices -6. Module dependencies -7. Module loading -8. Module parameters -9. Contact information -10. Credits - - -1. Copyright -============ -Copyright (C) 2002-2004 by Luca Risolia <luca.risolia@studio.unibo.it> - - -2. Disclaimer -============= -Winbond is a trademark of Winbond Electronics Corporation. -This software is not sponsored or developed by Winbond. - - -3. License -========== -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - - -4. Overview -=========== -This driver supports the video streaming capabilities of the devices mounting -Winbond W9967CF and Winbond W9968CF JPEG USB Dual Mode Camera Chips. OV681 -based cameras should be supported as well. - -The driver is divided into two modules: the basic one, "w9968cf", is needed for -the supported devices to work; the second one, "w9968cf-vpp", is an optional -module, which provides some useful video post-processing functions like video -decoding, up-scaling and colour conversions. - -Note that the official kernels do neither include nor support the second -module for performance purposes. Therefore, it is always recommended to -download and install the latest and complete release of the driver, -replacing the existing one, if present. - -The latest and full-featured version of the W996[87]CF driver can be found at: -http://www.linux-projects.org. Please refer to the documentation included in -that package, if you are going to use it. - -Up to 32 cameras can be handled at the same time. They can be connected and -disconnected from the host many times without turning off the computer, if -your system supports the hotplug facility. - -To change the default settings for each camera, many parameters can be passed -through command line when the module is loaded into memory. - -The driver relies on the Video4Linux, USB and I2C core modules. It has been -designed to run properly on SMP systems as well. An additional module, -"ovcamchip", is mandatory; it provides support for some OmniVision image -sensors connected to the W996[87]CF chips; if found in the system, the module -will be automatically loaded by default (provided that the kernel has been -compiled with the automatic module loading option). - - -5. Supported devices -==================== -At the moment, known W996[87]CF and OV681 based devices are: -- Aroma Digi Pen VGA Dual Mode ADG-5000 (unknown image sensor) -- AVerMedia AVerTV USB (SAA7111A, Philips FI1216Mk2 tuner, PT2313L audio chip) -- Creative Labs Video Blaster WebCam Go (OmniVision OV7610 sensor) -- Creative Labs Video Blaster WebCam Go Plus (OmniVision OV7620 sensor) -- Lebon LDC-035A (unknown image sensor) -- Ezonics EZ-802 EZMega Cam (OmniVision OV8610C sensor) -- OmniVision OV8610-EDE (OmniVision OV8610 sensor) -- OPCOM Digi Pen VGA Dual Mode Pen Camera (unknown image sensor) -- Pretec Digi Pen-II (OmniVision OV7620 sensor) -- Pretec DigiPen-480 (OmniVision OV8610 sensor) - -If you know any other W996[87]CF or OV681 based cameras, please contact me. - -The list above does not imply that all those devices work with this driver: up -until now only webcams that have an image sensor supported by the "ovcamchip" -module work. Kernel messages will always tell you whether this is case. - -Possible external microcontrollers of those webcams are not supported: this -means that still images cannot be downloaded from the device memory. - -Furthermore, it's worth to note that I was only able to run tests on my -"Creative Labs Video Blaster WebCam Go". Donations of other models, for -additional testing and full support, would be much appreciated. - - -6. Module dependencies -====================== -For it to work properly, the driver needs kernel support for Video4Linux, USB -and I2C, and the "ovcamchip" module for the image sensor. Make sure you are not -actually using any external "ovcamchip" module, given that the W996[87]CF -driver depends on the version of the module present in the official kernels. - -The following options of the kernel configuration file must be enabled and -corresponding modules must be compiled: - - # Multimedia devices - # - CONFIG_VIDEO_DEV=m - - # I2C support - # - CONFIG_I2C=m - -The I2C core module can be compiled statically in the kernel as well. - - # OmniVision Camera Chip support - # - CONFIG_VIDEO_OVCAMCHIP=m - - # USB support - # - CONFIG_USB=m - -In addition, depending on the hardware being used, only one of the modules -below is necessary: - - # USB Host Controller Drivers - # - CONFIG_USB_EHCI_HCD=m - CONFIG_USB_UHCI_HCD=m - CONFIG_USB_OHCI_HCD=m - -And finally: - - # USB Multimedia devices - # - CONFIG_USB_W9968CF=m - - -7. Module loading -================= -To use the driver, it is necessary to load the "w9968cf" module into memory -after every other module required. - -Loading can be done this way, from root: - - [root@localhost home]# modprobe usbcore - [root@localhost home]# modprobe i2c-core - [root@localhost home]# modprobe videodev - [root@localhost home]# modprobe w9968cf - -At this point the pertinent devices should be recognized: "dmesg" can be used -to analyze kernel messages: - - [user@localhost home]$ dmesg - -There are a lot of parameters the module can use to change the default -settings for each device. To list every possible parameter with a brief -explanation about them and which syntax to use, it is recommended to run the -"modinfo" command: - - [root@locahost home]# modinfo w9968cf - - -8. Module parameters -==================== -Module parameters are listed below: -------------------------------------------------------------------------------- -Name: ovmod_load -Type: bool -Syntax: <0|1> -Description: Automatic 'ovcamchip' module loading: 0 disabled, 1 enabled. - If enabled, 'insmod' searches for the required 'ovcamchip' - module in the system, according to its configuration, and - loads that module automatically. This action is performed as - once soon as the 'w9968cf' module is loaded into memory. -Default: 1 -------------------------------------------------------------------------------- -Name: simcams -Type: int -Syntax: <n> -Description: Number of cameras allowed to stream simultaneously. - n may vary from 0 to 32. -Default: 32 -------------------------------------------------------------------------------- -Name: video_nr -Type: int array (min = 0, max = 32) -Syntax: <-1|n[,...]> -Description: Specify V4L minor mode number. - -1 = use next available - n = use minor number n - You can specify up to 32 cameras this way. - For example: - video_nr=-1,2,-1 would assign minor number 2 to the second - recognized camera and use auto for the first one and for every - other camera. -Default: -1 -------------------------------------------------------------------------------- -Name: packet_size -Type: int array (min = 0, max = 32) -Syntax: <n[,...]> -Description: Specify the maximum data payload size in bytes for alternate - settings, for each device. n is scaled between 63 and 1023. -Default: 1023 -------------------------------------------------------------------------------- -Name: max_buffers -Type: int array (min = 0, max = 32) -Syntax: <n[,...]> -Description: For advanced users. - Specify the maximum number of video frame buffers to allocate - for each device, from 2 to 32. -Default: 2 -------------------------------------------------------------------------------- -Name: double_buffer -Type: bool array (min = 0, max = 32) -Syntax: <0|1[,...]> -Description: Hardware double buffering: 0 disabled, 1 enabled. - It should be enabled if you want smooth video output: if you - obtain out of sync. video, disable it, or try to - decrease the 'clockdiv' module parameter value. -Default: 1 for every device. -------------------------------------------------------------------------------- -Name: clamping -Type: bool array (min = 0, max = 32) -Syntax: <0|1[,...]> -Description: Video data clamping: 0 disabled, 1 enabled. -Default: 0 for every device. -------------------------------------------------------------------------------- -Name: filter_type -Type: int array (min = 0, max = 32) -Syntax: <0|1|2[,...]> -Description: Video filter type. - 0 none, 1 (1-2-1) 3-tap filter, 2 (2-3-6-3-2) 5-tap filter. - The filter is used to reduce noise and aliasing artifacts - produced by the CCD or CMOS image sensor. -Default: 0 for every device. -------------------------------------------------------------------------------- -Name: largeview -Type: bool array (min = 0, max = 32) -Syntax: <0|1[,...]> -Description: Large view: 0 disabled, 1 enabled. -Default: 1 for every device. -------------------------------------------------------------------------------- -Name: upscaling -Type: bool array (min = 0, max = 32) -Syntax: <0|1[,...]> -Description: Software scaling (for non-compressed video only): - 0 disabled, 1 enabled. - Disable it if you have a slow CPU or you don't have enough - memory. -Default: 0 for every device. -Note: If 'w9968cf-vpp' is not present, this parameter is set to 0. -------------------------------------------------------------------------------- -Name: decompression -Type: int array (min = 0, max = 32) -Syntax: <0|1|2[,...]> -Description: Software video decompression: - 0 = disables decompression - (doesn't allow formats needing decompression). - 1 = forces decompression - (allows formats needing decompression only). - 2 = allows any permitted formats. - Formats supporting (de)compressed video are YUV422P and - YUV420P/YUV420 in any resolutions where width and height are - multiples of 16. -Default: 2 for every device. -Note: If 'w9968cf-vpp' is not present, forcing decompression is not - allowed; in this case this parameter is set to 2. -------------------------------------------------------------------------------- -Name: force_palette -Type: int array (min = 0, max = 32) -Syntax: <0|9|10|13|15|8|7|1|6|3|4|5[,...]> -Description: Force picture palette. - In order: - 0 = Off - allows any of the following formats: - 9 = UYVY 16 bpp - Original video, compression disabled - 10 = YUV420 12 bpp - Original video, compression enabled - 13 = YUV422P 16 bpp - Original video, compression enabled - 15 = YUV420P 12 bpp - Original video, compression enabled - 8 = YUVY 16 bpp - Software conversion from UYVY - 7 = YUV422 16 bpp - Software conversion from UYVY - 1 = GREY 8 bpp - Software conversion from UYVY - 6 = RGB555 16 bpp - Software conversion from UYVY - 3 = RGB565 16 bpp - Software conversion from UYVY - 4 = RGB24 24 bpp - Software conversion from UYVY - 5 = RGB32 32 bpp - Software conversion from UYVY - When not 0, this parameter will override 'decompression'. -Default: 0 for every device. Initial palette is 9 (UYVY). -Note: If 'w9968cf-vpp' is not present, this parameter is set to 9. -------------------------------------------------------------------------------- -Name: force_rgb -Type: bool array (min = 0, max = 32) -Syntax: <0|1[,...]> -Description: Read RGB video data instead of BGR: - 1 = use RGB component ordering. - 0 = use BGR component ordering. - This parameter has effect when using RGBX palettes only. -Default: 0 for every device. -------------------------------------------------------------------------------- -Name: autobright -Type: bool array (min = 0, max = 32) -Syntax: <0|1[,...]> -Description: Image sensor automatically changes brightness: - 0 = no, 1 = yes -Default: 0 for every device. -------------------------------------------------------------------------------- -Name: autoexp -Type: bool array (min = 0, max = 32) -Syntax: <0|1[,...]> -Description: Image sensor automatically changes exposure: - 0 = no, 1 = yes -Default: 1 for every device. -------------------------------------------------------------------------------- -Name: lightfreq -Type: int array (min = 0, max = 32) -Syntax: <50|60[,...]> -Description: Light frequency in Hz: - 50 for European and Asian lighting, 60 for American lighting. -Default: 50 for every device. -------------------------------------------------------------------------------- -Name: bandingfilter -Type: bool array (min = 0, max = 32) -Syntax: <0|1[,...]> -Description: Banding filter to reduce effects of fluorescent - lighting: - 0 disabled, 1 enabled. - This filter tries to reduce the pattern of horizontal - light/dark bands caused by some (usually fluorescent) lighting. -Default: 0 for every device. -------------------------------------------------------------------------------- -Name: clockdiv -Type: int array (min = 0, max = 32) -Syntax: <-1|n[,...]> -Description: Force pixel clock divisor to a specific value (for experts): - n may vary from 0 to 127. - -1 for automatic value. - See also the 'double_buffer' module parameter. -Default: -1 for every device. -------------------------------------------------------------------------------- -Name: backlight -Type: bool array (min = 0, max = 32) -Syntax: <0|1[,...]> -Description: Objects are lit from behind: - 0 = no, 1 = yes -Default: 0 for every device. -------------------------------------------------------------------------------- -Name: mirror -Type: bool array (min = 0, max = 32) -Syntax: <0|1[,...]> -Description: Reverse image horizontally: - 0 = no, 1 = yes -Default: 0 for every device. -------------------------------------------------------------------------------- -Name: monochrome -Type: bool array (min = 0, max = 32) -Syntax: <0|1[,...]> -Description: The image sensor is monochrome: - 0 = no, 1 = yes -Default: 0 for every device. -------------------------------------------------------------------------------- -Name: brightness -Type: long array (min = 0, max = 32) -Syntax: <n[,...]> -Description: Set picture brightness (0-65535). - This parameter has no effect if 'autobright' is enabled. -Default: 31000 for every device. -------------------------------------------------------------------------------- -Name: hue -Type: long array (min = 0, max = 32) -Syntax: <n[,...]> -Description: Set picture hue (0-65535). -Default: 32768 for every device. -------------------------------------------------------------------------------- -Name: colour -Type: long array (min = 0, max = 32) -Syntax: <n[,...]> -Description: Set picture saturation (0-65535). -Default: 32768 for every device. -------------------------------------------------------------------------------- -Name: contrast -Type: long array (min = 0, max = 32) -Syntax: <n[,...]> -Description: Set picture contrast (0-65535). -Default: 50000 for every device. -------------------------------------------------------------------------------- -Name: whiteness -Type: long array (min = 0, max = 32) -Syntax: <n[,...]> -Description: Set picture whiteness (0-65535). -Default: 32768 for every device. -------------------------------------------------------------------------------- -Name: debug -Type: int -Syntax: <n> -Description: Debugging information level, from 0 to 6: - 0 = none (use carefully) - 1 = critical errors - 2 = significant information - 3 = configuration or general messages - 4 = warnings - 5 = called functions - 6 = function internals - Level 5 and 6 are useful for testing only, when only one - device is used. -Default: 2 -------------------------------------------------------------------------------- -Name: specific_debug -Type: bool -Syntax: <0|1> -Description: Enable or disable specific debugging messages: - 0 = print messages concerning every level <= 'debug' level. - 1 = print messages concerning the level indicated by 'debug'. -Default: 0 -------------------------------------------------------------------------------- - - -9. Contact information -====================== -I may be contacted by e-mail at <luca.risolia@studio.unibo.it>. - -I can accept GPG/PGP encrypted e-mail. My GPG key ID is 'FCE635A4'. -My public 1024-bit key should be available at your keyserver; the fingerprint -is: '88E8 F32F 7244 68BA 3958 5D40 99DA 5D2A FCE6 35A4'. - - -10. Credits -========== -The development would not have proceed much further without having looked at -the source code of other drivers and without the help of several persons; in -particular: - -- the I2C interface to kernel and high-level image sensor control routines have - been taken from the OV511 driver by Mark McClelland; - -- memory management code has been copied from the bttv driver by Ralph Metzler, - Marcus Metzler and Gerd Knorr; - -- the low-level I2C read function has been written by Frederic Jouault; - -- the low-level I2C fast write function has been written by Piotr Czerczak. diff --git a/Documentation/video4linux/zc0301.txt b/Documentation/video4linux/zc0301.txt deleted file mode 100644 index b41c83cf09f4..000000000000 --- a/Documentation/video4linux/zc0301.txt +++ /dev/null @@ -1,270 +0,0 @@ - - ZC0301 and ZC0301P Image Processor and Control Chip - Driver for Linux - =================================================== - - - Documentation - - - -Index -===== -1. Copyright -2. Disclaimer -3. License -4. Overview and features -5. Module dependencies -6. Module loading -7. Module parameters -8. Supported devices -9. Notes for V4L2 application developers -10. Contact information -11. Credits - - -1. Copyright -============ -Copyright (C) 2006-2007 by Luca Risolia <luca.risolia@studio.unibo.it> - - -2. Disclaimer -============= -This software is not developed or sponsored by Z-Star Microelectronics Corp. -Trademarks are property of their respective owner. - - -3. License -========== -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - - -4. Overview and features -======================== -This driver supports the video interface of the devices mounting the ZC0301 or -ZC0301P Image Processors and Control Chips. - -The driver relies on the Video4Linux2 and USB core modules. It has been -designed to run properly on SMP systems as well. - -The latest version of the ZC0301[P] driver can be found at the following URL: -http://www.linux-projects.org/ - -Some of the features of the driver are: - -- full compliance with the Video4Linux2 API (see also "Notes for V4L2 - application developers" paragraph); -- available mmap or read/poll methods for video streaming through isochronous - data transfers; -- automatic detection of image sensor; -- video format is standard JPEG; -- dynamic driver control thanks to various module parameters (see "Module - parameters" paragraph); -- up to 64 cameras can be handled at the same time; they can be connected and - disconnected from the host many times without turning off the computer, if - the system supports hotplugging; - - -5. Module dependencies -====================== -For it to work properly, the driver needs kernel support for Video4Linux and -USB. - -The following options of the kernel configuration file must be enabled and -corresponding modules must be compiled: - - # Multimedia devices - # - CONFIG_VIDEO_DEV=m - - # USB support - # - CONFIG_USB=m - -In addition, depending on the hardware being used, the modules below are -necessary: - - # USB Host Controller Drivers - # - CONFIG_USB_EHCI_HCD=m - CONFIG_USB_UHCI_HCD=m - CONFIG_USB_OHCI_HCD=m - -The ZC0301 controller also provides a built-in microphone interface. It is -supported by the USB Audio driver thanks to the ALSA API: - - # Sound - # - CONFIG_SOUND=y - - # Advanced Linux Sound Architecture - # - CONFIG_SND=m - - # USB devices - # - CONFIG_SND_USB_AUDIO=m - -And finally: - - # V4L USB devices - # - CONFIG_USB_ZC0301=m - - -6. Module loading -================= -To use the driver, it is necessary to load the "zc0301" module into memory -after every other module required: "videodev", "v4l2_common", "compat_ioctl32", -"usbcore" and, depending on the USB host controller you have, "ehci-hcd", -"uhci-hcd" or "ohci-hcd". - -Loading can be done as shown below: - - [root@localhost home]# modprobe zc0301 - -At this point the devices should be recognized. You can invoke "dmesg" to -analyze kernel messages and verify that the loading process has gone well: - - [user@localhost home]$ dmesg - - -7. Module parameters -==================== -Module parameters are listed below: -------------------------------------------------------------------------------- -Name: video_nr -Type: short array (min = 0, max = 64) -Syntax: <-1|n[,...]> -Description: Specify V4L2 minor mode number: - -1 = use next available - n = use minor number n - You can specify up to 64 cameras this way. - For example: - video_nr=-1,2,-1 would assign minor number 2 to the second - registered camera and use auto for the first one and for every - other camera. -Default: -1 -------------------------------------------------------------------------------- -Name: force_munmap -Type: bool array (min = 0, max = 64) -Syntax: <0|1[,...]> -Description: Force the application to unmap previously mapped buffer memory - before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not - all the applications support this feature. This parameter is - specific for each detected camera. - 0 = do not force memory unmapping - 1 = force memory unmapping (save memory) -Default: 0 -------------------------------------------------------------------------------- -Name: frame_timeout -Type: uint array (min = 0, max = 64) -Syntax: <n[,...]> -Description: Timeout for a video frame in seconds. This parameter is - specific for each detected camera. This parameter can be - changed at runtime thanks to the /sys filesystem interface. -Default: 2 -------------------------------------------------------------------------------- -Name: debug -Type: ushort -Syntax: <n> -Description: Debugging information level, from 0 to 3: - 0 = none (use carefully) - 1 = critical errors - 2 = significant information - 3 = more verbose messages - Level 3 is useful for testing only, when only one device - is used at the same time. It also shows some information - about the hardware being detected. This module parameter can be - changed at runtime thanks to the /sys filesystem interface. -Default: 2 -------------------------------------------------------------------------------- - - -8. Supported devices -==================== -None of the names of the companies as well as their products will be mentioned -here. They have never collaborated with the author, so no advertising. - -From the point of view of a driver, what unambiguously identify a device are -its vendor and product USB identifiers. Below is a list of known identifiers of -devices mounting the ZC0301 Image Processor and Control Chips: - -Vendor ID Product ID ---------- ---------- -0x041e 0x4017 -0x041e 0x401c -0x041e 0x401e -0x041e 0x401f -0x041e 0x4022 -0x041e 0x4034 -0x041e 0x4035 -0x041e 0x4036 -0x041e 0x403a -0x0458 0x7007 -0x0458 0x700c -0x0458 0x700f -0x046d 0x08ae -0x055f 0xd003 -0x055f 0xd004 -0x0ac8 0x0301 -0x0ac8 0x301b -0x0ac8 0x303b -0x10fd 0x0128 -0x10fd 0x8050 -0x10fd 0x804e - -The list above does not imply that all those devices work with this driver: up -until now only the ones that mount the following image sensors are supported; -kernel messages will always tell you whether this is the case: - -Model Manufacturer ------ ------------ -PAS202BCB PixArt Imaging, Inc. -PB-0330 Photobit Corporation - - -9. Notes for V4L2 application developers -======================================== -This driver follows the V4L2 API specifications. In particular, it enforces two -rules: - -- exactly one I/O method, either "mmap" or "read", is associated with each -file descriptor. Once it is selected, the application must close and reopen the -device to switch to the other I/O method; - -- although it is not mandatory, previously mapped buffer memory should always -be unmapped before calling any "VIDIOC_S_CROP" or "VIDIOC_S_FMT" ioctl's. -The same number of buffers as before will be allocated again to match the size -of the new video frames, so you have to map the buffers again before any I/O -attempts on them. - - -10. Contact information -======================= -The author may be contacted by e-mail at <luca.risolia@studio.unibo.it>. - -GPG/PGP encrypted e-mail's are accepted. The GPG key ID of the author is -'FCE635A4'; the public 1024-bit key should be available at any keyserver; -the fingerprint is: '88E8 F32F 7244 68BA 3958 5D40 99DA 5D2A FCE6 35A4'. - - -11. Credits -=========== -- Information about the chip internals needed to enable the I2C protocol have - been taken from the documentation of the ZC030x Video4Linux1 driver written - by Andrew Birkett <andy@nobugs.org>; -- The initialization values of the ZC0301 controller connected to the PAS202BCB - and PB-0330 image sensors have been taken from the SPCA5XX driver maintained - by Michel Xhaard <mxhaard@magic.fr>; -- Stanislav Lechev donated one camera. diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt index e0fa0ea2b187..119358dfb742 100644 --- a/Documentation/virtual/kvm/api.txt +++ b/Documentation/virtual/kvm/api.txt @@ -219,19 +219,6 @@ allocation of vcpu ids. For example, if userspace wants single-threaded guest vcpus, it should make all vcpu ids be a multiple of the number of vcpus per vcore. -On powerpc using book3s_hv mode, the vcpus are mapped onto virtual -threads in one or more virtual CPU cores. (This is because the -hardware requires all the hardware threads in a CPU core to be in the -same partition.) The KVM_CAP_PPC_SMT capability indicates the number -of vcpus per virtual core (vcore). The vcore id is obtained by -dividing the vcpu id by the number of vcpus per vcore. The vcpus in a -given vcore will always be in the same physical core as each other -(though that might be a different physical core from time to time). -Userspace can control the threading (SMT) mode of the guest by its -allocation of vcpu ids. For example, if userspace wants -single-threaded guest vcpus, it should make all vcpu ids be a multiple -of the number of vcpus per vcore. - For virtual cpus that have been created with S390 user controlled virtual machines, the resulting vcpu fd can be memory mapped at page offset KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual @@ -345,7 +332,7 @@ struct kvm_sregs { __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64]; }; -/* ppc -- see arch/powerpc/include/asm/kvm.h */ +/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */ interrupt_bitmap is a bitmap of pending external interrupts. At most one bit may be set. This interrupt has been acknowledged by the APIC @@ -892,12 +879,12 @@ It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr be identical. This allows large pages in the guest to be backed by large pages in the host. -The flags field supports two flag, KVM_MEM_LOG_DIRTY_PAGES, which instructs -kvm to keep track of writes to memory within the slot. See KVM_GET_DIRTY_LOG -ioctl. The KVM_CAP_READONLY_MEM capability indicates the availability of the -KVM_MEM_READONLY flag. When this flag is set for a memory region, KVM only -allows read accesses. Writes will be posted to userspace as KVM_EXIT_MMIO -exits. +The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and +KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of +writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to +use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it, +to make a new slot read-only. In this case, writes to this memory will be +posted to userspace as KVM_EXIT_MMIO exits. When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of the memory region are automatically reflected into the guest. For example, an @@ -931,7 +918,7 @@ documentation when it pops into existence). 4.37 KVM_ENABLE_CAP Capability: KVM_CAP_ENABLE_CAP -Architectures: ppc +Architectures: ppc, s390 Type: vcpu ioctl Parameters: struct kvm_enable_cap (in) Returns: 0 on success; -1 on error @@ -1792,6 +1779,7 @@ registers, find a list below: PPC | KVM_REG_PPC_VPA_SLB | 128 PPC | KVM_REG_PPC_VPA_DTL | 128 PPC | KVM_REG_PPC_EPCR | 32 + PPC | KVM_REG_PPC_EPR | 32 ARM registers are mapped using the lower 32 bits. The upper 16 of that is the register group type, or coprocessor number: @@ -2108,6 +2096,14 @@ KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm +KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an + I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel); + I/O interruption parameters in parm (subchannel) and parm64 (intparm, + interruption subclass) +KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm, + machine check interrupt code in parm64 (note that + machine checks needing further payload are not + supported by this ioctl) Note that the vcpu ioctl is asynchronous to vcpu execution. @@ -2359,8 +2355,8 @@ executed a memory-mapped I/O instruction which could not be satisfied by kvm. The 'data' member contains the written data if 'is_write' is true, and should be filled by application code otherwise. -NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR - and KVM_EXIT_PAPR the corresponding +NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR, + KVM_EXIT_PAPR and KVM_EXIT_EPR the corresponding operations are complete (and guest state is consistent) only after userspace has re-entered the kernel with KVM_RUN. The kernel side will first finish incomplete operations and then check for pending signals. Userspace @@ -2463,6 +2459,41 @@ The possible hypercalls are defined in the Power Architecture Platform Requirements (PAPR) document available from www.power.org (free developer registration required to access it). + /* KVM_EXIT_S390_TSCH */ + struct { + __u16 subchannel_id; + __u16 subchannel_nr; + __u32 io_int_parm; + __u32 io_int_word; + __u32 ipb; + __u8 dequeued; + } s390_tsch; + +s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled +and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O +interrupt for the target subchannel has been dequeued and subchannel_id, +subchannel_nr, io_int_parm and io_int_word contain the parameters for that +interrupt. ipb is needed for instruction parameter decoding. + + /* KVM_EXIT_EPR */ + struct { + __u32 epr; + } epr; + +On FSL BookE PowerPC chips, the interrupt controller has a fast patch +interrupt acknowledge path to the core. When the core successfully +delivers an interrupt, it automatically populates the EPR register with +the interrupt vector number and acknowledges the interrupt inside +the interrupt controller. + +In case the interrupt controller lives in user space, we need to do +the interrupt acknowledge cycle through it to fetch the next to be +delivered interrupt vector using this exit. + +It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an +external interrupt has just been delivered into the guest. User space +should put the acknowledged interrupt vector into the 'epr' field. + /* Fix the size of the union. */ char padding[256]; }; @@ -2584,3 +2615,34 @@ For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV: where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value. - The tsize field of mas1 shall be set to 4K on TLB0, even though the hardware ignores this value for TLB0. + +6.4 KVM_CAP_S390_CSS_SUPPORT + +Architectures: s390 +Parameters: none +Returns: 0 on success; -1 on error + +This capability enables support for handling of channel I/O instructions. + +TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are +handled in-kernel, while the other I/O instructions are passed to userspace. + +When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST +SUBCHANNEL intercepts. + +6.5 KVM_CAP_PPC_EPR + +Architectures: ppc +Parameters: args[0] defines whether the proxy facility is active +Returns: 0 on success; -1 on error + +This capability enables or disables the delivery of interrupts through the +external proxy facility. + +When enabled (args[0] != 0), every time the guest gets an external interrupt +delivered, it automatically exits into user space with a KVM_EXIT_EPR exit +to receive the topmost interrupt vector. + +When disabled (args[0] == 0), behavior is as if this facility is unsupported. + +When this capability is enabled, KVM_EXIT_EPR can occur. diff --git a/Documentation/virtual/kvm/mmu.txt b/Documentation/virtual/kvm/mmu.txt index fa5f1dbc6b23..43fcb761ed16 100644 --- a/Documentation/virtual/kvm/mmu.txt +++ b/Documentation/virtual/kvm/mmu.txt @@ -187,13 +187,6 @@ Shadow pages contain the following information: perform a reverse map from a pte to a gfn. When role.direct is set, any element of this array can be calculated from the gfn field when used, in this case, the array of gfns is not allocated. See role.direct and gfn. - slot_bitmap: - A bitmap containing one bit per memory slot. If the page contains a pte - mapping a page from memory slot n, then bit n of slot_bitmap will be set - (if a page is aliased among several slots, then it is not guaranteed that - all slots will be marked). - Used during dirty logging to avoid scanning a shadow page if none if its - pages need tracking. root_count: A counter keeping track of how many hardware registers (guest cr3 or pdptrs) are now pointing at the page. While this counter is nonzero, the |