diff options
Diffstat (limited to 'Documentation')
36 files changed, 797 insertions, 349 deletions
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index 2975291e296a..7d87dd73cbe4 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -28,7 +28,7 @@ PS_METHOD = $(prefer-db2x) ### # The targets that may be used. -.PHONY: xmldocs sgmldocs psdocs pdfdocs htmldocs mandocs installmandocs +PHONY += xmldocs sgmldocs psdocs pdfdocs htmldocs mandocs installmandocs BOOKS := $(addprefix $(obj)/,$(DOCBOOKS)) xmldocs: $(BOOKS) @@ -211,3 +211,9 @@ clean-dirs := $(patsubst %.xml,%,$(DOCBOOKS)) #man put files in man subdir - traverse down subdir- := man/ + + +# Declare the contents of the .PHONY variable as phony. We keep that +# information in a variable se we can use it in if_changed and friends. + +.PHONY: $(PHONY) diff --git a/Documentation/DocBook/deviceiobook.tmpl b/Documentation/DocBook/deviceiobook.tmpl index 6f41f2f5c6f6..90ed23df1f68 100644 --- a/Documentation/DocBook/deviceiobook.tmpl +++ b/Documentation/DocBook/deviceiobook.tmpl @@ -270,25 +270,6 @@ CPU B: spin_unlock_irqrestore(&dev_lock, flags) </para> </sect1> - <sect1> - <title>ISA legacy functions</title> - <para> - On older kernels (2.2 and earlier) the ISA bus could be read or - written with these functions and without ioremap being used. This is - no longer true in Linux 2.4. A set of equivalent functions exist for - easy legacy driver porting. The functions available are prefixed - with 'isa_' and are <function>isa_readb</function>, - <function>isa_writeb</function>, <function>isa_readw</function>, - <function>isa_writew</function>, <function>isa_readl</function>, - <function>isa_writel</function>, <function>isa_memcpy_fromio</function> - and <function>isa_memcpy_toio</function> - </para> - <para> - These functions should not be used in new drivers, and will - eventually be going away. - </para> - </sect1> - </chapter> <chapter> diff --git a/Documentation/RCU/whatisRCU.txt b/Documentation/RCU/whatisRCU.txt index 5ed85af88789..b4ea51ad3610 100644 --- a/Documentation/RCU/whatisRCU.txt +++ b/Documentation/RCU/whatisRCU.txt @@ -360,7 +360,7 @@ uses of RCU may be found in listRCU.txt, arrayRCU.txt, and NMI-RCU.txt. struct foo *new_fp; struct foo *old_fp; - new_fp = kmalloc(sizeof(*fp), GFP_KERNEL); + new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL); spin_lock(&foo_mutex); old_fp = gbl_foo; *new_fp = *old_fp; @@ -461,7 +461,7 @@ The foo_update_a() function might then be written as follows: struct foo *new_fp; struct foo *old_fp; - new_fp = kmalloc(sizeof(*fp), GFP_KERNEL); + new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL); spin_lock(&foo_mutex); old_fp = gbl_foo; *new_fp = *old_fp; diff --git a/Documentation/arm/Booting b/Documentation/arm/Booting index fad566bb02fc..76850295af8f 100644 --- a/Documentation/arm/Booting +++ b/Documentation/arm/Booting @@ -118,7 +118,7 @@ to store page tables. The recommended placement is 32KiB into RAM. In either case, the following conditions must be met: -- Quiesce all DMA capable devicess so that memory does not get +- Quiesce all DMA capable devices so that memory does not get corrupted by bogus network packets or disk data. This will save you many hours of debug. diff --git a/Documentation/arm/README b/Documentation/arm/README index 5ed6f3530b86..9b9c8226fdc4 100644 --- a/Documentation/arm/README +++ b/Documentation/arm/README @@ -89,7 +89,7 @@ Modules Although modularisation is supported (and required for the FP emulator), each module on an ARM2/ARM250/ARM3 machine when is loaded will take memory up to the next 32k boundary due to the size of the pages. - Therefore, modularisation on these machines really worth it? + Therefore, is modularisation on these machines really worth it? However, ARM6 and up machines allow modules to take multiples of 4k, and as such Acorn RiscPCs and other architectures using these processors can diff --git a/Documentation/arm/Setup b/Documentation/arm/Setup index 0abd0720d7ed..0cb1e64bde80 100644 --- a/Documentation/arm/Setup +++ b/Documentation/arm/Setup @@ -58,7 +58,7 @@ below: video_y This describes the character position of cursor on VGA console, and - is otherwise unused. (should not used for other console types, and + is otherwise unused. (should not be used for other console types, and should not be used for other purposes). memc_control_reg diff --git a/Documentation/cpusets.txt b/Documentation/cpusets.txt index 30c41459953c..159e2a0c3e80 100644 --- a/Documentation/cpusets.txt +++ b/Documentation/cpusets.txt @@ -18,7 +18,8 @@ CONTENTS: 1.4 What are exclusive cpusets ? 1.5 What does notify_on_release do ? 1.6 What is memory_pressure ? - 1.7 How do I use cpusets ? + 1.7 What is memory spread ? + 1.8 How do I use cpusets ? 2. Usage Examples and Syntax 2.1 Basic Usage 2.2 Adding/removing cpus @@ -317,7 +318,78 @@ the tasks in the cpuset, in units of reclaims attempted per second, times 1000. -1.7 How do I use cpusets ? +1.7 What is memory spread ? +--------------------------- +There are two boolean flag files per cpuset that control where the +kernel allocates pages for the file system buffers and related in +kernel data structures. They are called 'memory_spread_page' and +'memory_spread_slab'. + +If the per-cpuset boolean flag file 'memory_spread_page' is set, then +the kernel will spread the file system buffers (page cache) evenly +over all the nodes that the faulting task is allowed to use, instead +of preferring to put those pages on the node where the task is running. + +If the per-cpuset boolean flag file 'memory_spread_slab' is set, +then the kernel will spread some file system related slab caches, +such as for inodes and dentries evenly over all the nodes that the +faulting task is allowed to use, instead of preferring to put those +pages on the node where the task is running. + +The setting of these flags does not affect anonymous data segment or +stack segment pages of a task. + +By default, both kinds of memory spreading are off, and memory +pages are allocated on the node local to where the task is running, +except perhaps as modified by the tasks NUMA mempolicy or cpuset +configuration, so long as sufficient free memory pages are available. + +When new cpusets are created, they inherit the memory spread settings +of their parent. + +Setting memory spreading causes allocations for the affected page +or slab caches to ignore the tasks NUMA mempolicy and be spread +instead. Tasks using mbind() or set_mempolicy() calls to set NUMA +mempolicies will not notice any change in these calls as a result of +their containing tasks memory spread settings. If memory spreading +is turned off, then the currently specified NUMA mempolicy once again +applies to memory page allocations. + +Both 'memory_spread_page' and 'memory_spread_slab' are boolean flag +files. By default they contain "0", meaning that the feature is off +for that cpuset. If a "1" is written to that file, then that turns +the named feature on. + +The implementation is simple. + +Setting the flag 'memory_spread_page' turns on a per-process flag +PF_SPREAD_PAGE for each task that is in that cpuset or subsequently +joins that cpuset. The page allocation calls for the page cache +is modified to perform an inline check for this PF_SPREAD_PAGE task +flag, and if set, a call to a new routine cpuset_mem_spread_node() +returns the node to prefer for the allocation. + +Similarly, setting 'memory_spread_cache' turns on the flag +PF_SPREAD_SLAB, and appropriately marked slab caches will allocate +pages from the node returned by cpuset_mem_spread_node(). + +The cpuset_mem_spread_node() routine is also simple. It uses the +value of a per-task rotor cpuset_mem_spread_rotor to select the next +node in the current tasks mems_allowed to prefer for the allocation. + +This memory placement policy is also known (in other contexts) as +round-robin or interleave. + +This policy can provide substantial improvements for jobs that need +to place thread local data on the corresponding node, but that need +to access large file system data sets that need to be spread across +the several nodes in the jobs cpuset in order to fit. Without this +policy, especially for jobs that might have one thread reading in the +data set, the memory allocation across the nodes in the jobs cpuset +can become very uneven. + + +1.8 How do I use cpusets ? -------------------------- In order to minimize the impact of cpusets on critical kernel diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index c7a4d0faab22..495858b236b6 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt @@ -116,6 +116,17 @@ Who: Harald Welte <laforge@netfilter.org> --------------------------- +What: remove EXPORT_SYMBOL(kernel_thread) +When: August 2006 +Files: arch/*/kernel/*_ksyms.c +Why: kernel_thread is a low-level implementation detail. Drivers should + use the <linux/kthread.h> API instead which shields them from + implementation details and provides a higherlevel interface that + prevents bugs and code duplication +Who: Christoph Hellwig <hch@lst.de> + +--------------------------- + What: EXPORT_SYMBOL(lookup_hash) When: January 2006 Why: Too low-level interface. Use lookup_one_len or lookup_create instead. @@ -165,6 +176,18 @@ Who: Richard Knutsson <ricknu-0@student.ltu.se> and Greg Kroah-Hartman <gregkh@s --------------------------- +What: Usage of invalid timevals in setitimer +When: March 2007 +Why: POSIX requires to validate timevals in the setitimer call. This + was never done by Linux. The invalid (e.g. negative timevals) were + silently converted to more or less random timeouts and intervals. + Until the removal a per boot limited number of warnings is printed + and the timevals are sanitized. + +Who: Thomas Gleixner <tglx@linutronix.de> + +--------------------------- + What: I2C interface of the it87 driver When: January 2007 Why: The ISA interface is faster and should be always available. The I2C @@ -174,6 +197,17 @@ Who: Jean Delvare <khali@linux-fr.org> --------------------------- +What: remove EXPORT_SYMBOL(tasklist_lock) +When: August 2006 +Files: kernel/fork.c +Why: tasklist_lock protects the kernel internal task list. Modules have + no business looking at it, and all instances in drivers have been due + to use of too-lowlevel APIs. Having this symbol exported prevents + moving to more scalable locking schemes for the task list. +Who: Christoph Hellwig <hch@lst.de> + +--------------------------- + What: mount/umount uevents When: February 2007 Why: These events are not correct, and do not properly let userspace know diff --git a/Documentation/filesystems/v9fs.txt b/Documentation/filesystems/9p.txt index 24c7a9c41f0d..43b89c214d20 100644 --- a/Documentation/filesystems/v9fs.txt +++ b/Documentation/filesystems/9p.txt @@ -1,5 +1,5 @@ - V9FS: 9P2000 for Linux - ====================== + v9fs: Plan 9 Resource Sharing for Linux + ======================================= ABOUT ===== @@ -9,18 +9,19 @@ v9fs is a Unix implementation of the Plan 9 9p remote filesystem protocol. This software was originally developed by Ron Minnich <rminnich@lanl.gov> and Maya Gokhale <maya@lanl.gov>. Additional development by Greg Watson <gwatson@lanl.gov> and most recently Eric Van Hensbergen -<ericvh@gmail.com> and Latchesar Ionkov <lucho@ionkov.net>. +<ericvh@gmail.com>, Latchesar Ionkov <lucho@ionkov.net> and Russ Cox +<rsc@swtch.com>. USAGE ===== For remote file server: - mount -t 9P 10.10.1.2 /mnt/9 + mount -t 9p 10.10.1.2 /mnt/9 For Plan 9 From User Space applications (http://swtch.com/plan9) - mount -t 9P `namespace`/acme /mnt/9 -o proto=unix,name=$USER + mount -t 9p `namespace`/acme /mnt/9 -o proto=unix,uname=$USER OPTIONS ======= @@ -32,7 +33,7 @@ OPTIONS fd - used passed file descriptors for connection (see rfdno and wfdno) - name=name user name to attempt mount as on the remote server. The + uname=name user name to attempt mount as on the remote server. The server may override or ignore this value. Certain user names may require authentication. @@ -42,7 +43,7 @@ OPTIONS debug=n specifies debug level. The debug level is a bitmask. 0x01 = display verbose error messages 0x02 = developer debug (DEBUG_CURRENT) - 0x04 = display 9P trace + 0x04 = display 9p trace 0x08 = display VFS trace 0x10 = display Marshalling debug 0x20 = display RPC debug @@ -53,11 +54,11 @@ OPTIONS wfdno=n the file descriptor for writing with proto=fd - maxdata=n the number of bytes to use for 9P packet payload (msize) + maxdata=n the number of bytes to use for 9p packet payload (msize) port=n port to connect to on the remote server - noextend force legacy mode (no 9P2000.u semantics) + noextend force legacy mode (no 9p2000.u semantics) uid attempt to mount as a particular uid @@ -72,7 +73,7 @@ OPTIONS RESOURCES ========= -The Linux version of the 9P server is now maintained under the npfs project +The Linux version of the 9p server is now maintained under the npfs project on sourceforge (http://sourceforge.net/projects/npfs). There are user and developer mailing lists available through the v9fs project diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index 944cf109a6f5..99902ae6804e 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -121,7 +121,7 @@ Table 1-1: Process specific entries in /proc .............................................................................. File Content cmdline Command line arguments - cpu Current and last cpu in wich it was executed (2.4)(smp) + cpu Current and last cpu in which it was executed (2.4)(smp) cwd Link to the current working directory environ Values of environment variables exe Link to the executable of this process @@ -309,13 +309,13 @@ is the same by default: > cat /proc/irq/0/smp_affinity ffffffff -It's a bitmask, in wich you can specify wich CPUs can handle the IRQ, you can +It's a bitmask, in which you can specify which CPUs can handle the IRQ, you can set it by doing: > echo 1 > /proc/irq/prof_cpu_mask This means that only the first CPU will handle the IRQ, but you can also echo 5 -wich means that only the first and fourth CPU can handle the IRQ. +which means that only the first and fourth CPU can handle the IRQ. The way IRQs are routed is handled by the IO-APIC, and it's Round Robin between all the CPUs which are allowed to handle it. As usual the kernel has diff --git a/Documentation/filesystems/udf.txt b/Documentation/filesystems/udf.txt index e5213bc301f7..511b4230c053 100644 --- a/Documentation/filesystems/udf.txt +++ b/Documentation/filesystems/udf.txt @@ -26,6 +26,20 @@ The following mount options are supported: nostrict Unset strict conformance iocharset= Set the NLS character set +The uid= and gid= options need a bit more explaining. They will accept a +decimal numeric value which will be used as the default ID for that mount. +They will also accept the string "ignore" and "forget". For files on the disk +that are owned by nobody ( -1 ), they will instead look as if they are owned +by the default ID. The ignore option causes the default ID to override all +IDs on the disk, not just -1. The forget option causes all IDs to be written +to disk as -1, so when the media is later remounted, they will appear to be +owned by whatever default ID it is mounted with at that time. + +For typical desktop use of removable media, you should set the ID to that +of the interactively logged on user, and also specify both the forget and +ignore options. This way the interactive user will always see the files +on the disk as belonging to him. + The remaining are for debugging and disaster recovery: novrs Skip volume sequence recognition diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt index e56e842847d3..adaa899e5c90 100644 --- a/Documentation/filesystems/vfs.txt +++ b/Documentation/filesystems/vfs.txt @@ -230,10 +230,15 @@ only called from a process context (i.e. not from an interrupt handler or bottom half). alloc_inode: this method is called by inode_alloc() to allocate memory - for struct inode and initialize it. + for struct inode and initialize it. If this function is not + defined, a simple 'struct inode' is allocated. Normally + alloc_inode will be used to allocate a larger structure which + contains a 'struct inode' embedded within it. destroy_inode: this method is called by destroy_inode() to release - resources allocated for struct inode. + resources allocated for struct inode. It is only required if + ->alloc_inode was defined and simply undoes anything done by + ->alloc_inode. read_inode: this method is called to read a specific inode from the mounted filesystem. The i_ino member in the struct inode is @@ -443,14 +448,81 @@ otherwise noted. The Address Space Object ======================== -The address space object is used to identify pages in the page cache. - +The address space object is used to group and manage pages in the page +cache. It can be used to keep track of the pages in a file (or +anything else) and also track the mapping of sections of the file into +process address spaces. + +There are a number of distinct yet related services that an +address-space can provide. These include communicating memory +pressure, page lookup by address, and keeping track of pages tagged as +Dirty or Writeback. + +The first can be used independently to the others. The VM can try to +either write dirty pages in order to clean them, or release clean +pages in order to reuse them. To do this it can call the ->writepage +method on dirty pages, and ->releasepage on clean pages with +PagePrivate set. Clean pages without PagePrivate and with no external +references will be released without notice being given to the +address_space. + +To achieve this functionality, pages need to be placed on an LRU with +lru_cache_add and mark_page_active needs to be called whenever the +page is used. + +Pages are normally kept in a radix tree index by ->index. This tree +maintains information about the PG_Dirty and PG_Writeback status of +each page, so that pages with either of these flags can be found +quickly. + +The Dirty tag is primarily used by mpage_writepages - the default +->writepages method. It uses the tag to find dirty pages to call +->writepage on. If mpage_writepages is not used (i.e. the address +provides its own ->writepages) , the PAGECACHE_TAG_DIRTY tag is +almost unused. write_inode_now and sync_inode do use it (through +__sync_single_inode) to check if ->writepages has been successful in +writing out the whole address_space. + +The Writeback tag is used by filemap*wait* and sync_page* functions, +via wait_on_page_writeback_range, to wait for all writeback to +complete. While waiting ->sync_page (if defined) will be called on +each page that is found to require writeback. + +An address_space handler may attach extra information to a page, +typically using the 'private' field in the 'struct page'. If such +information is attached, the PG_Private flag should be set. This will +cause various VM routines to make extra calls into the address_space +handler to deal with that data. + +An address space acts as an intermediate between storage and +application. Data is read into the address space a whole page at a +time, and provided to the application either by copying of the page, +or by memory-mapping the page. +Data is written into the address space by the application, and then +written-back to storage typically in whole pages, however the +address_space has finer control of write sizes. + +The read process essentially only requires 'readpage'. The write +process is more complicated and uses prepare_write/commit_write or +set_page_dirty to write data into the address_space, and writepage, +sync_page, and writepages to writeback data to storage. + +Adding and removing pages to/from an address_space is protected by the +inode's i_mutex. + +When data is written to a page, the PG_Dirty flag should be set. It +typically remains set until writepage asks for it to be written. This +should clear PG_Dirty and set PG_Writeback. It can be actually +written at any point after PG_Dirty is clear. Once it is known to be +safe, PG_Writeback is cleared. + +Writeback makes use of a writeback_control structure... struct address_space_operations ------------------------------- This describes how the VFS can manipulate mapping of a file to page cache in -your filesystem. As of kernel 2.6.13, the following members are defined: +your filesystem. As of kernel 2.6.16, the following members are defined: struct address_space_operations { int (*writepage)(struct page *page, struct writeback_control *wbc); @@ -469,47 +541,148 @@ struct address_space_operations { loff_t offset, unsigned long nr_segs); struct page* (*get_xip_page)(struct address_space *, sector_t, int); + /* migrate the contents of a page to the specified target */ + int (*migratepage) (struct page *, struct page *); }; - writepage: called by the VM write a dirty page to backing store. + writepage: called by the VM to write a dirty page to backing store. + This may happen for data integrity reasons (i.e. 'sync'), or + to free up memory (flush). The difference can be seen in + wbc->sync_mode. + The PG_Dirty flag has been cleared and PageLocked is true. + writepage should start writeout, should set PG_Writeback, + and should make sure the page is unlocked, either synchronously + or asynchronously when the write operation completes. + + If wbc->sync_mode is WB_SYNC_NONE, ->writepage doesn't have to + try too hard if there are problems, and may choose to write out + other pages from the mapping if that is easier (e.g. due to + internal dependencies). If it chooses not to start writeout, it + should return AOP_WRITEPAGE_ACTIVATE so that the VM will not keep + calling ->writepage on that page. + + See the file "Locking" for more details. readpage: called by the VM to read a page from backing store. + The page will be Locked when readpage is called, and should be + unlocked and marked uptodate once the read completes. + If ->readpage discovers that it needs to unlock the page for + some reason, it can do so, and then return AOP_TRUNCATED_PAGE. + In this case, the page will be relocated, relocked and if + that all succeeds, ->readpage will be called again. sync_page: called by the VM to notify the backing store to perform all queued I/O operations for a page. I/O operations for other pages associated with this address_space object may also be performed. + This function is optional and is called only for pages with + PG_Writeback set while waiting for the writeback to complete. + writepages: called by the VM to write out pages associated with the - address_space object. + address_space object. If wbc->sync_mode is WBC_SYNC_ALL, then + the writeback_control will specify a range of pages that must be + written out. If it is WBC_SYNC_NONE, then a nr_to_write is given + and that many pages should be written if possible. + If no ->writepages is given, then mpage_writepages is used + instead. This will choose pages from the address space that are + tagged as DIRTY and will pass them to ->writepage. set_page_dirty: called by the VM to set a page dirty. + This is particularly needed if an address space attaches + private data to a page, and that data needs to be updated when + a page is dirtied. This is called, for example, when a memory + mapped page gets modified. + If defined, it should set the PageDirty flag, and the + PAGECACHE_TAG_DIRTY tag in the radix tree. readpages: called by the VM to read pages associated with the address_space - object. + object. This is essentially just a vector version of + readpage. Instead of just one page, several pages are + requested. + readpages is only used for read-ahead, so read errors are + ignored. If anything goes wrong, feel free to give up. prepare_write: called by the generic write path in VM to set up a write - request for a page. - - commit_write: called by the generic write path in VM to write page to - its backing store. + request for a page. This indicates to the address space that + the given range of bytes is about to be written. The + address_space should check that the write will be able to + complete, by allocating space if necessary and doing any other + internal housekeeping. If the write will update parts of + any basic-blocks on storage, then those blocks should be + pre-read (if they haven't been read already) so that the + updated blocks can be written out properly. + The page will be locked. If prepare_write wants to unlock the + page it, like readpage, may do so and return + AOP_TRUNCATED_PAGE. + In this case the prepare_write will be retried one the lock is + regained. + + commit_write: If prepare_write succeeds, new data will be copied + into the page and then commit_write will be called. It will + typically update the size of the file (if appropriate) and + mark the inode as dirty, and do any other related housekeeping + operations. It should avoid returning an error if possible - + errors should have been handled by prepare_write. bmap: called by the VFS to map a logical block offset within object to - physical block number. This method is use by for the legacy FIBMAP - ioctl. Other uses are discouraged. - - invalidatepage: called by the VM on truncate to disassociate a page from its - address_space mapping. - - releasepage: called by the VFS to release filesystem specific metadata from - a page. - - direct_IO: called by the VM for direct I/O writes and reads. + physical block number. This method is used by the FIBMAP + ioctl and for working with swap-files. To be able to swap to + a file, the file must have a stable mapping to a block + device. The swap system does not go through the filesystem + but instead uses bmap to find out where the blocks in the file + are and uses those addresses directly. + + + invalidatepage: If a page has PagePrivate set, then invalidatepage + will be called when part or all of the page is to be removed + from the address space. This generally corresponds to either a + truncation or a complete invalidation of the address space + (in the latter case 'offset' will always be 0). + Any private data associated with the page should be updated + to reflect this truncation. If offset is 0, then + the private data should be released, because the page + must be able to be completely discarded. This may be done by + calling the ->releasepage function, but in this case the + release MUST succeed. + + releasepage: releasepage is called on PagePrivate pages to indicate + that the page should be freed if possible. ->releasepage + should remove any private data from the page and clear the + PagePrivate flag. It may also remove the page from the + address_space. If this fails for some reason, it may indicate + failure with a 0 return value. + This is used in two distinct though related cases. The first + is when the VM finds a clean page with no active users and + wants to make it a free page. If ->releasepage succeeds, the + page will be removed from the address_space and become free. + + The second case if when a request has been made to invalidate + some or all pages in an address_space. This can happen + through the fadvice(POSIX_FADV_DONTNEED) system call or by the + filesystem explicitly requesting it as nfs and 9fs do (when + they believe the cache may be out of date with storage) by + calling invalidate_inode_pages2(). + If the filesystem makes such a call, and needs to be certain + that all pages are invalidated, then its releasepage will + need to ensure this. Possibly it can clear the PageUptodate + bit if it cannot free private data yet. + + direct_IO: called by the generic read/write routines to perform + direct_IO - that is IO requests which bypass the page cache + and transfer data directly between the storage and the + application's address space. get_xip_page: called by the VM to translate a block number to a page. The page is valid until the corresponding filesystem is unmounted. Filesystems that want to use execute-in-place (XIP) need to implement it. An example implementation can be found in fs/ext2/xip.c. + migrate_page: This is used to compact the physical memory usage. + If the VM wants to relocate a page (maybe off a memory card + that is signalling imminent failure) it will pass a new page + and an old page to this function. migrate_page should + transfer any private data across and update any references + that it has to the page. The File Object =============== diff --git a/Documentation/firmware_class/firmware_sample_driver.c b/Documentation/firmware_class/firmware_sample_driver.c index d3ad2c24490a..ad3edaba4533 100644 --- a/Documentation/firmware_class/firmware_sample_driver.c +++ b/Documentation/firmware_class/firmware_sample_driver.c @@ -23,7 +23,6 @@ char __init inkernel_firmware[] = "let's say that this is firmware\n"; #endif static struct device ghost_device = { - .name = "Ghost Device", .bus_id = "ghost0", }; @@ -92,7 +91,7 @@ static void sample_probe_async(void) { /* Let's say that I can't sleep */ int error; - error = request_firmware_nowait (THIS_MODULE, + error = request_firmware_nowait (THIS_MODULE, FW_ACTION_NOHOTPLUG, "sample_driver_fw", &ghost_device, "my device pointer", sample_probe_async_cont); diff --git a/Documentation/firmware_class/firmware_sample_firmware_class.c b/Documentation/firmware_class/firmware_sample_firmware_class.c index 57b956aecbc5..9e1b0e4051cd 100644 --- a/Documentation/firmware_class/firmware_sample_firmware_class.c +++ b/Documentation/firmware_class/firmware_sample_firmware_class.c @@ -172,7 +172,6 @@ static void fw_remove_class_device(struct class_device *class_dev) static struct class_device *class_dev; static struct device my_device = { - .name = "Sample Device", .bus_id = "my_dev0", }; diff --git a/Documentation/kbuild/makefiles.txt b/Documentation/kbuild/makefiles.txt index 443230b43e09..a9c00facdf40 100644 --- a/Documentation/kbuild/makefiles.txt +++ b/Documentation/kbuild/makefiles.txt @@ -17,6 +17,7 @@ This document describes the Linux kernel Makefiles. --- 3.8 Command line dependency --- 3.9 Dependency tracking --- 3.10 Special Rules + --- 3.11 $(CC) support functions === 4 Host Program support --- 4.1 Simple Host Program @@ -38,7 +39,6 @@ This document describes the Linux kernel Makefiles. --- 6.6 Commands useful for building a boot image --- 6.7 Custom kbuild commands --- 6.8 Preprocessing linker scripts - --- 6.9 $(CC) support functions === 7 Kbuild Variables === 8 Makefile language @@ -106,9 +106,9 @@ This document is aimed towards normal developers and arch developers. Most Makefiles within the kernel are kbuild Makefiles that use the kbuild infrastructure. This chapter introduce the syntax used in the kbuild makefiles. -The preferred name for the kbuild files is 'Kbuild' but 'Makefile' will -continue to be supported. All new developmen is expected to use the -Kbuild filename. +The preferred name for the kbuild files are 'Makefile' but 'Kbuild' can +be used and if both a 'Makefile' and a 'Kbuild' file exists then the 'Kbuild' +file will be used. Section 3.1 "Goal definitions" is a quick intro, further chapters provide more details, with real examples. @@ -385,6 +385,102 @@ more details, with real examples. to prerequisites are referenced with $(src) (because they are not generated files). +--- 3.11 $(CC) support functions + + The kernel may be build with several different versions of + $(CC), each supporting a unique set of features and options. + kbuild provide basic support to check for valid options for $(CC). + $(CC) is useally the gcc compiler, but other alternatives are + available. + + as-option + as-option is used to check if $(CC) when used to compile + assembler (*.S) files supports the given option. An optional + second option may be specified if first option are not supported. + + Example: + #arch/sh/Makefile + cflags-y += $(call as-option,-Wa$(comma)-isa=$(isa-y),) + + In the above example cflags-y will be assinged the the option + -Wa$(comma)-isa=$(isa-y) if it is supported by $(CC). + The second argument is optional, and if supplied will be used + if first argument is not supported. + + cc-option + cc-option is used to check if $(CC) support a given option, and not + supported to use an optional second option. + + Example: + #arch/i386/Makefile + cflags-y += $(call cc-option,-march=pentium-mmx,-march=i586) + + In the above example cflags-y will be assigned the option + -march=pentium-mmx if supported by $(CC), otherwise -march-i586. + The second argument to cc-option is optional, and if omitted + cflags-y will be assigned no value if first option is not supported. + + cc-option-yn + cc-option-yn is used to check if gcc supports a given option + and return 'y' if supported, otherwise 'n'. + + Example: + #arch/ppc/Makefile + biarch := $(call cc-option-yn, -m32) + aflags-$(biarch) += -a32 + cflags-$(biarch) += -m32 + + In the above example $(biarch) is set to y if $(CC) supports the -m32 + option. When $(biarch) equals to y the expanded variables $(aflags-y) + and $(cflags-y) will be assigned the values -a32 and -m32. + + cc-option-align + gcc version >= 3.0 shifted type of options used to speify + alignment of functions, loops etc. $(cc-option-align) whrn used + as prefix to the align options will select the right prefix: + gcc < 3.00 + cc-option-align = -malign + gcc >= 3.00 + cc-option-align = -falign + + Example: + CFLAGS += $(cc-option-align)-functions=4 + + In the above example the option -falign-functions=4 is used for + gcc >= 3.00. For gcc < 3.00 -malign-functions=4 is used. + + cc-version + cc-version return a numerical version of the $(CC) compiler version. + The format is <major><minor> where both are two digits. So for example + gcc 3.41 would return 0341. + cc-version is useful when a specific $(CC) version is faulty in one + area, for example the -mregparm=3 were broken in some gcc version + even though the option was accepted by gcc. + + Example: + #arch/i386/Makefile + cflags-y += $(shell \ + if [ $(call cc-version) -ge 0300 ] ; then \ + echo "-mregparm=3"; fi ;) + + In the above example -mregparm=3 is only used for gcc version greater + than or equal to gcc 3.0. + + cc-ifversion + cc-ifversion test the version of $(CC) and equals last argument if + version expression is true. + + Example: + #fs/reiserfs/Makefile + EXTRA_CFLAGS := $(call cc-ifversion, -lt, 0402, -O1) + + In this example EXTRA_CFLAGS will be assigned the value -O1 if the + $(CC) version is less than 4.2. + cc-ifversion takes all the shell operators: + -eq, -ne, -lt, -le, -gt, and -ge + The third parameter may be a text as in this example, but it may also + be an expanded variable or a macro. + === 4 Host Program support @@ -973,74 +1069,6 @@ When kbuild executes the following steps are followed (roughly): architecture specific files. ---- 6.9 $(CC) support functions - - The kernel may be build with several different versions of - $(CC), each supporting a unique set of features and options. - kbuild provide basic support to check for valid options for $(CC). - $(CC) is useally the gcc compiler, but other alternatives are - available. - - cc-option - cc-option is used to check if $(CC) support a given option, and not - supported to use an optional second option. - - Example: - #arch/i386/Makefile - cflags-y += $(call cc-option,-march=pentium-mmx,-march=i586) - - In the above example cflags-y will be assigned the option - -march=pentium-mmx if supported by $(CC), otherwise -march-i586. - The second argument to cc-option is optional, and if omitted - cflags-y will be assigned no value if first option is not supported. - - cc-option-yn - cc-option-yn is used to check if gcc supports a given option - and return 'y' if supported, otherwise 'n'. - - Example: - #arch/ppc/Makefile - biarch := $(call cc-option-yn, -m32) - aflags-$(biarch) += -a32 - cflags-$(biarch) += -m32 - - In the above example $(biarch) is set to y if $(CC) supports the -m32 - option. When $(biarch) equals to y the expanded variables $(aflags-y) - and $(cflags-y) will be assigned the values -a32 and -m32. - - cc-option-align - gcc version >= 3.0 shifted type of options used to speify - alignment of functions, loops etc. $(cc-option-align) whrn used - as prefix to the align options will select the right prefix: - gcc < 3.00 - cc-option-align = -malign - gcc >= 3.00 - cc-option-align = -falign - - Example: - CFLAGS += $(cc-option-align)-functions=4 - - In the above example the option -falign-functions=4 is used for - gcc >= 3.00. For gcc < 3.00 -malign-functions=4 is used. - - cc-version - cc-version return a numerical version of the $(CC) compiler version. - The format is <major><minor> where both are two digits. So for example - gcc 3.41 would return 0341. - cc-version is useful when a specific $(CC) version is faulty in one - area, for example the -mregparm=3 were broken in some gcc version - even though the option was accepted by gcc. - - Example: - #arch/i386/Makefile - cflags-y += $(shell \ - if [ $(call cc-version) -ge 0300 ] ; then \ - echo "-mregparm=3"; fi ;) - - In the above example -mregparm=3 is only used for gcc version greater - than or equal to gcc 3.0. - - === 7 Kbuild Variables The top Makefile exports the following variables: diff --git a/Documentation/kbuild/modules.txt b/Documentation/kbuild/modules.txt index 7e77f93634ea..fcccf2432f98 100644 --- a/Documentation/kbuild/modules.txt +++ b/Documentation/kbuild/modules.txt @@ -13,6 +13,7 @@ In this document you will find information about: --- 2.2 Available targets --- 2.3 Available options --- 2.4 Preparing the kernel tree for module build + --- 2.5 Building separate files for a module === 3. Example commands === 4. Creating a kbuild file for an external module === 5. Include files @@ -22,7 +23,10 @@ In this document you will find information about: === 6. Module installation --- 6.1 INSTALL_MOD_PATH --- 6.2 INSTALL_MOD_DIR - === 7. Module versioning + === 7. Module versioning & Module.symvers + --- 7.1 Symbols fron the kernel (vmlinux + modules) + --- 7.2 Symbols and external modules + --- 7.3 Symbols from another external module === 8. Tips & Tricks --- 8.1 Testing for CONFIG_FOO_BAR @@ -88,7 +92,8 @@ when building an external module. make -C $KDIR M=$PWD modules_install Install the external module(s). Installation default is in /lib/modules/<kernel-version>/extra, - but may be prefixed with INSTALL_MOD_PATH - see separate chapter. + but may be prefixed with INSTALL_MOD_PATH - see separate + chapter. make -C $KDIR M=$PWD clean Remove all generated files for the module - the kernel @@ -131,6 +136,16 @@ when building an external module. Therefore a full kernel build needs to be executed to make module versioning work. +--- 2.5 Building separate files for a module + It is possible to build single files which is part of a module. + This works equal for the kernel, a module and even for external + modules. + Examples (module foo.ko, consist of bar.o, baz.o): + make -C $KDIR M=`pwd` bar.lst + make -C $KDIR M=`pwd` bar.o + make -C $KDIR M=`pwd` foo.ko + make -C $KDIR M=`pwd` / + === 3. Example commands @@ -422,7 +437,7 @@ External modules are installed in the directory: => Install dir: /lib/modules/$(KERNELRELEASE)/gandalf -=== 7. Module versioning +=== 7. Module versioning & Module.symvers Module versioning is enabled by the CONFIG_MODVERSIONS tag. @@ -432,11 +447,80 @@ when a module is loaded/used then the CRC values contained in the kernel are compared with similar values in the module. If they are not equal then the kernel refuses to load the module. -During a kernel build a file named Module.symvers will be generated. This -file includes the symbol version of all symbols within the kernel. If the -Module.symvers file is saved from the last full kernel compile one does not -have to do a full kernel compile to build a module version's compatible module. +Module.symvers contains a list of all exported symbols from a kernel build. + +--- 7.1 Symbols fron the kernel (vmlinux + modules) + + During a kernel build a file named Module.symvers will be generated. + Module.symvers contains all exported symbols from the kernel and + compiled modules. For each symbols the corresponding CRC value + is stored too. + + The syntax of the Module.symvers file is: + <CRC> <Symbol> <module> + Sample: + 0x2d036834 scsi_remove_host drivers/scsi/scsi_mod + For a kernel build without CONFIG_MODVERSIONING enabled the crc + would read: 0x00000000 + + Module.symvers serve two purposes. + 1) It list all exported symbols both from vmlinux and all modules + 2) It list CRC if CONFIG_MODVERSION is enabled + +--- 7.2 Symbols and external modules + + When building an external module the build system needs access to + the symbols from the kernel to check if all external symbols are + defined. This is done in the MODPOST step and to obtain all + symbols modpost reads Module.symvers from the kernel. + If a Module.symvers file is present in the directory where + the external module is being build this file will be read too. + During the MODPOST step a new Module.symvers file will be written + containing all exported symbols that was not defined in the kernel. + +--- 7.3 Symbols from another external module + + Sometimes one external module uses exported symbols from another + external module. Kbuild needs to have full knowledge on all symbols + to avoid spitting out warnings about undefined symbols. + Two solutions exist to let kbuild know all symbols of more than + one external module. + The method with a top-level kbuild file is recommended but may be + impractical in certain situations. + + Use a top-level Kbuild file + If you have two modules: 'foo', 'bar' and 'foo' needs symbols + from 'bar' then one can use a common top-level kbuild file so + both modules are compiled in same build. + + Consider following directory layout: + ./foo/ <= contains the foo module + ./bar/ <= contains the bar module + The top-level Kbuild file would then look like: + + #./Kbuild: (this file may also be named Makefile) + obj-y := foo/ bar/ + + Executing: + make -C $KDIR M=`pwd` + + will then do the expected and compile both modules with full + knowledge on symbols from both modules. + + Use an extra Module.symvers file + When an external module is build a Module.symvers file is + generated containing all exported symbols which are not + defined in the kernel. + To get access to symbols from module 'bar' one can copy the + Module.symvers file from the compilation of the 'bar' module + to the directory where the 'foo' module is build. + During the module build kbuild will read the Module.symvers + file in the directory of the external module and when the + build is finished a new Module.symvers file is created + containing the sum of all symbols defined and not part of the + kernel. + === 8. Tips & Tricks --- 8.1 Testing for CONFIG_FOO_BAR diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 44a25f3f51d1..f8cb55c30b0f 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -367,12 +367,17 @@ running once the system is up. tty<n> Use the virtual console device <n>. ttyS<n>[,options] + ttyUSB0[,options] Use the specified serial port. The options are of - the form "bbbbpn", where "bbbb" is the baud rate, - "p" is parity ("n", "o", or "e"), and "n" is bits. - Default is "9600n8". - - See also Documentation/serial-console.txt. + the form "bbbbpnf", where "bbbb" is the baud rate, + "p" is parity ("n", "o", or "e"), "n" is number of + bits, and "f" is flow control ("r" for RTS or + omit it). Default is "9600n8". + + See Documentation/serial-console.txt for more + information. See + Documentation/networking/netconsole.txt for an + alternative. uart,io,<addr>[,options] uart,mmio,<addr>[,options] diff --git a/Documentation/networking/packet_mmap.txt b/Documentation/networking/packet_mmap.txt index 8d4cf78258e4..4fc8e9874320 100644 --- a/Documentation/networking/packet_mmap.txt +++ b/Documentation/networking/packet_mmap.txt @@ -40,7 +40,7 @@ network interface card supports some sort of interrupt load mitigation or + How to use CONFIG_PACKET_MMAP -------------------------------------------------------------------------------- -From the user standpoint, you should use the higher level libpcap library, wich +From the user standpoint, you should use the higher level libpcap library, which is a de facto standard, portable across nearly all operating systems including Win32. @@ -217,8 +217,8 @@ called pg_vec, its size limits the number of blocks that can be allocated. kmalloc allocates any number of bytes of phisically contiguous memory from a pool of pre-determined sizes. This pool of memory is mantained by the slab -allocator wich is at the end the responsible for doing the allocation and -hence wich imposes the maximum memory that kmalloc can allocate. +allocator which is at the end the responsible for doing the allocation and +hence which imposes the maximum memory that kmalloc can allocate. In a 2.4/2.6 kernel and the i386 architecture, the limit is 131072 bytes. The predetermined sizes that kmalloc uses can be checked in the "size-<bytes>" @@ -254,7 +254,7 @@ and, the number of frames be <block number> * <block size> / <frame size> -Suposse the following parameters, wich apply for 2.6 kernel and an +Suposse the following parameters, which apply for 2.6 kernel and an i386 architecture: <size-max> = 131072 bytes @@ -360,7 +360,7 @@ TP_STATUS_LOSING : indicates there were packet drops from last time statistics where checked with getsockopt() and the PACKET_STATISTICS option. -TP_STATUS_CSUMNOTREADY: currently it's used for outgoing IP packets wich +TP_STATUS_CSUMNOTREADY: currently it's used for outgoing IP packets which it's checksum will be done in hardware. So while reading the packet we should not try to check the checksum. diff --git a/Documentation/networking/ray_cs.txt b/Documentation/networking/ray_cs.txt index 5427f8c7df95..145d27a52395 100644 --- a/Documentation/networking/ray_cs.txt +++ b/Documentation/networking/ray_cs.txt @@ -25,7 +25,7 @@ the essid= string parameter is available via the kernel command line. This will change after the method of sorting out parameters for all the PCMCIA drivers is agreed upon. If you must have a built in driver with nondefault parameters, they can be edited in -/usr/src/linux/drivers/net/pcmcia/ray_cs.c. Searching for MODULE_PARM +/usr/src/linux/drivers/net/pcmcia/ray_cs.c. Searching for module_param will find them all. Information on card services is available at: diff --git a/Documentation/nfsroot.txt b/Documentation/nfsroot.txt index a87d4af216c0..d56dc71d9430 100644 --- a/Documentation/nfsroot.txt +++ b/Documentation/nfsroot.txt @@ -3,6 +3,7 @@ Mounting the root filesystem via NFS (nfsroot) Written 1996 by Gero Kuhlmann <gero@gkminix.han.de> Updated 1997 by Martin Mares <mj@atrey.karlin.mff.cuni.cz> +Updated 2006 by Nico Schottelius <nico-kernel-nfsroot@schottelius.org> @@ -168,7 +169,6 @@ depend on what facilities are available: root. If it got a BOOTP answer the directory name in that answer is used. - 3.2) Using LILO When using LILO you can specify all necessary command line parameters with the 'append=' command in the LILO configuration @@ -177,7 +177,11 @@ depend on what facilities are available: LILO and its 'append=' command please refer to the LILO documentation. -3.3) Using loadlin +3.3) Using GRUB + When you use GRUB, you simply append the parameters after the kernel + specification: "kernel <kernel> <parameters>" (without the quotes). + +3.4) Using loadlin When you want to boot Linux from a DOS command prompt without having a local hard disk to mount as root, you can use loadlin. I was told that it works, but haven't used it myself yet. In @@ -185,7 +189,7 @@ depend on what facilities are available: lar to how LILO is doing it. Please refer to the loadlin docu- mentation for further information. -3.4) Using a boot ROM +3.5) Using a boot ROM This is probably the most elegant way of booting a diskless client. With a boot ROM the kernel gets loaded using the TFTP protocol. As far as I know, no commercial boot ROMs yet @@ -194,6 +198,13 @@ depend on what facilities are available: and its mirrors. They are called 'netboot-nfs' and 'etherboot'. Both contain everything you need to boot a diskless Linux client. +3.6) Using pxelinux + Using pxelinux you specify the kernel you built with + "kernel <relative-path-below /tftpboot>". The nfsroot parameters + are passed to the kernel by adding them to the "append" line. + You may perhaps also want to fine tune the console output, + see Documentation/serial-console.txt for serial console help. + diff --git a/Documentation/s390/driver-model.txt b/Documentation/s390/driver-model.txt index df09758bf3fe..efb674eda4d4 100644 --- a/Documentation/s390/driver-model.txt +++ b/Documentation/s390/driver-model.txt @@ -16,10 +16,12 @@ devices/ - 0.0.0000/0.0.0815/ - 0.0.0001/0.0.4711/ - 0.0.0002/ + - 0.1.0000/0.1.1234/ ... -In this example, device 0815 is accessed via subchannel 0, device 4711 via -subchannel 1, and subchannel 2 is a non-I/O subchannel. +In this example, device 0815 is accessed via subchannel 0 in subchannel set 0, +device 4711 via subchannel 1 in subchannel set 0, and subchannel 2 is a non-I/O +subchannel. Device 1234 is accessed via subchannel 0 in subchannel set 1. You should address a ccw device via its bus id (e.g. 0.0.4711); the device can be found under bus/ccw/devices/. @@ -97,7 +99,7 @@ is not available to the device driver. Each driver should declare in a MODULE_DEVICE_TABLE into which CU types/models and/or device types/models it is interested. This information can later be found -found in the struct ccw_device_id fields: +in the struct ccw_device_id fields: struct ccw_device_id { __u16 match_flags; @@ -208,6 +210,11 @@ Each ccwgroup device also provides an 'ungroup' attribute to destroy the device again (only when offline). This is a generic ccwgroup mechanism (the driver does not need to implement anything beyond normal removal routines). +A ccw device which is a member of a ccwgroup device carries a pointer to the +ccwgroup device in the driver_data of its device struct. This field must not be +touched by the driver - it should use the ccwgroup device's driver_data for its +private data. + To implement a ccwgroup driver, please refer to include/asm/ccwgroup.h. Keep in mind that most drivers will need to implement both a ccwgroup and a ccw driver (unless you have a meta ccw driver, like cu3088 for lcs and ctc). @@ -230,6 +237,8 @@ status - Can be 'online' or 'offline'. a channel path the user knows to be online, but the machine hasn't created a machine check for. +type - The physical type of the channel path. + 3. System devices ----------------- diff --git a/Documentation/serial-console.txt b/Documentation/serial-console.txt index 6c689b0df2b8..9a7bc8b3f479 100644 --- a/Documentation/serial-console.txt +++ b/Documentation/serial-console.txt @@ -17,11 +17,13 @@ The format of this option is: ttyX for any other virtual console ttySx for a serial port lp0 for the first parallel port + ttyUSB0 for the first USB serial device options: depend on the driver. For the serial port this - defines the baudrate/parity/bits of the port, - in the format BBBBPN, where BBBB is the speed, - P is parity (n/o/e), and N is bits. Default is + defines the baudrate/parity/bits/flow control of + the port, in the format BBBBPNF, where BBBB is the + speed, P is parity (n/o/e), N is number of bits, + and F is flow control ('r' for RTS). Default is 9600n8. The maximum baudrate is 115200. You can specify multiple console= options on the kernel command line. @@ -45,6 +47,9 @@ become the console. You will need to create a new device to use /dev/console. The official /dev/console is now character device 5,1. +(You can also use a network device as a console. See +Documentation/networking/netconsole.txt for information on that.) + Here's an example that will use /dev/ttyS1 (COM2) as the console. Replace the sample values as needed. diff --git a/Documentation/smart-config.txt b/Documentation/smart-config.txt index c9bed4cf8773..8467447b5a87 100644 --- a/Documentation/smart-config.txt +++ b/Documentation/smart-config.txt @@ -56,10 +56,6 @@ Here is the solution: writing one file per option. It updates only the files for options that have changed. - mkdep.c no longer generates warning messages for missing or unneeded - <linux/config.h> lines. The new top-level target 'make checkconfig' - checks for these problems. - Flag Dependencies Martin Von Loewis contributed another feature to this patch: diff --git a/Documentation/sound/oss/Introduction b/Documentation/sound/oss/Introduction index 15d4fb975ac0..f04ba6bb7395 100644 --- a/Documentation/sound/oss/Introduction +++ b/Documentation/sound/oss/Introduction @@ -69,7 +69,7 @@ are available, for example IRQ, address, DMA. Warning, the options for different cards sometime use different names for the same or a similar feature (dma1= versus dma16=). As a last -resort, inspect the code (search for MODULE_PARM). +resort, inspect the code (search for module_param). Notes: diff --git a/Documentation/sound/oss/cs46xx b/Documentation/sound/oss/cs46xx index 88d6cf8b39f3..b54432709863 100644 --- a/Documentation/sound/oss/cs46xx +++ b/Documentation/sound/oss/cs46xx @@ -88,7 +88,7 @@ parameters. for a copy email: twoller@crystal.cirrus.com MODULE_PARMS definitions ------------------------ -MODULE_PARM(defaultorder, "i"); +module_param(defaultorder, ulong, 0); defaultorder=N where N is a value from 1 to 12 The buffer order determines the size of the dma buffer for the driver. @@ -98,18 +98,18 @@ to not underrun the dma buffer as easily. As default, use 32k (order=3) rather than 64k as some of the games work more responsively. (2^N) * PAGE_SIZE = allocated buffer size -MODULE_PARM(cs_debuglevel, "i"); -MODULE_PARM(cs_debugmask, "i"); +module_param(cs_debuglevel, ulong, 0644); +module_param(cs_debugmask, ulong, 0644); cs_debuglevel=N cs_debugmask=0xMMMMMMMM where N is a value from 0 (no debug printfs), to 9 (maximum) 0xMMMMMMMM is a debug mask corresponding to the CS_xxx bits (see driver source). -MODULE_PARM(hercules_egpio_disable, "i"); +module_param(hercules_egpio_disable, ulong, 0); hercules_egpio_disable=N where N is a 0 (enable egpio), or a 1 (disable egpio support) -MODULE_PARM(initdelay, "i"); +module_param(initdelay, ulong, 0); initdelay=N This value is used to determine the millescond delay during the initialization code prior to powering up the PLL. On laptops this value can be used to @@ -118,19 +118,19 @@ system is booted under battery power then the mdelay()/udelay() functions fail t properly delay the required time. Also, if the system is booted under AC power and then the power removed, the mdelay()/udelay() functions will not delay properly. -MODULE_PARM(powerdown, "i"); +module_param(powerdown, ulong, 0); powerdown=N where N is 0 (disable any powerdown of the internal blocks) or 1 (enable powerdown) -MODULE_PARM(external_amp, "i"); +module_param(external_amp, bool, 0); external_amp=1 if N is set to 1, then force enabling the EAPD support in the primary AC97 codec. override the detection logic and force the external amp bit in the AC97 0x26 register to be reset (0). EAPD should be 0 for powerup, and 1 for powerdown. The VTB Santa Cruz card has inverted logic, so there is a special function for these cards. -MODULE_PARM(thinkpad, "i"); +module_param(thinkpad, bool, 0); thinkpad=1 if N is set to 1, then force enabling the clkrun functionality. Currently, when the part is being used, then clkrun is disabled for the entire system, diff --git a/Documentation/video4linux/CQcam.txt b/Documentation/video4linux/CQcam.txt index e415e3604539..464e4cec94cb 100644 --- a/Documentation/video4linux/CQcam.txt +++ b/Documentation/video4linux/CQcam.txt @@ -1,7 +1,7 @@ c-qcam - Connectix Color QuickCam video4linux kernel driver Copyright (C) 1999 Dave Forrest <drf5n@virginia.edu> - released under GNU GPL. + released under GNU GPL. 1999-12-08 Dave Forrest, written with kernel version 2.2.12 in mind @@ -45,21 +45,21 @@ configuration. The appropriate flags are: CONFIG_PNP_PARPORT M for autoprobe.o IEEE1284 readback module CONFIG_PRINTER_READBACK M for parport_probe.o IEEE1284 readback module CONFIG_VIDEO_DEV M for videodev.o video4linux module - CONFIG_VIDEO_CQCAM M for c-qcam.o Color Quickcam module + CONFIG_VIDEO_CQCAM M for c-qcam.o Color Quickcam module With these flags, the kernel should compile and install the modules. To record and monitor the compilation, I use: (make zlilo ; \ make modules; \ - make modules_install ; + make modules_install ; depmod -a ) &>log & less log # then a capital 'F' to watch the progress - + But that is my personal preference. 2.2 Configuration - + The configuration requires module configuration and device configuration. I like kmod or kerneld process with the /etc/modprobe.conf file so the modules can automatically load/unload as @@ -68,7 +68,7 @@ using MAKEDEV, or need to be created. The following sections detail these procedures. -2.1 Module Configuration +2.1 Module Configuration Using modules requires a bit of work to install and pass the parameters. Understand that entries in /etc/modprobe.conf of: @@ -128,9 +128,9 @@ system (CONFIG_PROC_FS), the parallel printer support (CONFIG_PRINTER), the IEEE 1284 system,(CONFIG_PRINTER_READBACK), you should be able to read some identification from your quickcam with - modprobe -v parport - modprobe -v parport_probe - cat /proc/parport/PORTNUMBER/autoprobe + modprobe -v parport + modprobe -v parport_probe + cat /proc/parport/PORTNUMBER/autoprobe Returns: CLASS:MEDIA; MODEL:Color QuickCam 2.0; @@ -140,7 +140,7 @@ Returns: and well. A common problem is that the current driver does not reliably detect a c-qcam, even though one is attached. In this case, - modprobe -v c-qcam + modprobe -v c-qcam or insmod -v c-qcam @@ -152,16 +152,16 @@ video4linux mailing list and archive for more current information. 3.1 Checklist: Can you get an image? - v4lgrab >qcam.ppm ; wc qcam.ppm ; xv qcam.ppm + v4lgrab >qcam.ppm ; wc qcam.ppm ; xv qcam.ppm - Is a working c-qcam connected to the port? - grep ^ /proc/parport/?/autoprobe + Is a working c-qcam connected to the port? + grep ^ /proc/parport/?/autoprobe - Do the /dev/video* files exist? - ls -lad /dev/video + Do the /dev/video* files exist? + ls -lad /dev/video - Is the c-qcam module loaded? - modprobe -v c-qcam ; lsmod + Is the c-qcam module loaded? + modprobe -v c-qcam ; lsmod Does the camera work with alternate programs? cqcam, etc? @@ -174,7 +174,7 @@ video4linux mailing list and archive for more current information. isn't, you might try patching the c-qcam module to add a parport=xxx option as in the bw-qcam module so you can specify the parallel port: - insmod -v c-qcam parport=0 + insmod -v c-qcam parport=0 And bypass the detection code, see ../../drivers/char/c-qcam.c and look for the 'qc_detect' code and call. @@ -183,12 +183,12 @@ look for the 'qc_detect' code and call. this work is documented at the video4linux2 site listed below. -9.0 --- A sample program using v4lgrabber, +9.0 --- A sample program using v4lgrabber, This program is a simple image grabber that will copy a frame from the first video device, /dev/video0 to standard output in portable pixmap format (.ppm) Using this like: 'v4lgrab | convert - c-qcam.jpg' -produced this picture of me at +produced this picture of me at http://mug.sys.virginia.edu/~drf5n/extras/c-qcam.jpg -------------------- 8< ---------------- 8< ----------------------------- @@ -202,8 +202,8 @@ produced this picture of me at * Use as: * v4lgrab >image.ppm * - * Copyright (C) 1998-05-03, Phil Blundell <philb@gnu.org> - * Copied from http://www.tazenda.demon.co.uk/phil/vgrabber.c + * Copyright (C) 1998-05-03, Phil Blundell <philb@gnu.org> + * Copied from http://www.tazenda.demon.co.uk/phil/vgrabber.c * with minor modifications (Dave Forrest, drf5n@virginia.edu). * */ @@ -225,55 +225,55 @@ produced this picture of me at #define READ_VIDEO_PIXEL(buf, format, depth, r, g, b) \ { \ - switch (format) \ - { \ - case VIDEO_PALETTE_GREY: \ - switch (depth) \ - { \ - case 4: \ - case 6: \ - case 8: \ - (r) = (g) = (b) = (*buf++ << 8);\ - break; \ - \ - case 16: \ - (r) = (g) = (b) = \ - *((unsigned short *) buf); \ - buf += 2; \ - break; \ - } \ - break; \ - \ - \ - case VIDEO_PALETTE_RGB565: \ - { \ - unsigned short tmp = *(unsigned short *)buf; \ - (r) = tmp&0xF800; \ - (g) = (tmp<<5)&0xFC00; \ - (b) = (tmp<<11)&0xF800; \ - buf += 2; \ - } \ - break; \ - \ - case VIDEO_PALETTE_RGB555: \ - (r) = (buf[0]&0xF8)<<8; \ - (g) = ((buf[0] << 5 | buf[1] >> 3)&0xF8)<<8; \ - (b) = ((buf[1] << 2 ) & 0xF8)<<8; \ - buf += 2; \ - break; \ - \ - case VIDEO_PALETTE_RGB24: \ - (r) = buf[0] << 8; (g) = buf[1] << 8; \ - (b) = buf[2] << 8; \ - buf += 3; \ - break; \ - \ - default: \ - fprintf(stderr, \ - "Format %d not yet supported\n", \ - format); \ - } \ -} + switch (format) \ + { \ + case VIDEO_PALETTE_GREY: \ + switch (depth) \ + { \ + case 4: \ + case 6: \ + case 8: \ + (r) = (g) = (b) = (*buf++ << 8);\ + break; \ + \ + case 16: \ + (r) = (g) = (b) = \ + *((unsigned short *) buf); \ + buf += 2; \ + break; \ + } \ + break; \ + \ + \ + case VIDEO_PALETTE_RGB565: \ + { \ + unsigned short tmp = *(unsigned short *)buf; \ + (r) = tmp&0xF800; \ + (g) = (tmp<<5)&0xFC00; \ + (b) = (tmp<<11)&0xF800; \ + buf += 2; \ + } \ + break; \ + \ + case VIDEO_PALETTE_RGB555: \ + (r) = (buf[0]&0xF8)<<8; \ + (g) = ((buf[0] << 5 | buf[1] >> 3)&0xF8)<<8; \ + (b) = ((buf[1] << 2 ) & 0xF8)<<8; \ + buf += 2; \ + break; \ + \ + case VIDEO_PALETTE_RGB24: \ + (r) = buf[0] << 8; (g) = buf[1] << 8; \ + (b) = buf[2] << 8; \ + buf += 3; \ + break; \ + \ + default: \ + fprintf(stderr, \ + "Format %d not yet supported\n", \ + format); \ + } \ +} int get_brightness_adj(unsigned char *image, long size, int *brightness) { long i, tot = 0; @@ -324,40 +324,40 @@ int main(int argc, char ** argv) if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) { vpic.depth=6; if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) { - vpic.depth=4; - if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) { - fprintf(stderr, "Unable to find a supported capture format.\n"); - close(fd); - exit(1); - } + vpic.depth=4; + if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) { + fprintf(stderr, "Unable to find a supported capture format.\n"); + close(fd); + exit(1); + } } } } else { vpic.depth=24; vpic.palette=VIDEO_PALETTE_RGB24; - + if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) { vpic.palette=VIDEO_PALETTE_RGB565; vpic.depth=16; - + if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) { - vpic.palette=VIDEO_PALETTE_RGB555; - vpic.depth=15; - - if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) { - fprintf(stderr, "Unable to find a supported capture format.\n"); - return -1; - } + vpic.palette=VIDEO_PALETTE_RGB555; + vpic.depth=15; + + if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) { + fprintf(stderr, "Unable to find a supported capture format.\n"); + return -1; + } } } } - + buffer = malloc(win.width * win.height * bpp); if (!buffer) { fprintf(stderr, "Out of memory.\n"); exit(1); } - + do { int newbright; read(fd, buffer, win.width * win.height * bpp); @@ -365,8 +365,8 @@ int main(int argc, char ** argv) if (f) { vpic.brightness += (newbright << 8); if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) { - perror("VIDIOSPICT"); - break; + perror("VIDIOSPICT"); + break; } } } while (f); @@ -381,7 +381,7 @@ int main(int argc, char ** argv) fputc(g>>8, stdout); fputc(b>>8, stdout); } - + close(fd); return 0; } diff --git a/Documentation/video4linux/README.cpia b/Documentation/video4linux/README.cpia index c95e7bbc0fdf..19cd3bf24981 100644 --- a/Documentation/video4linux/README.cpia +++ b/Documentation/video4linux/README.cpia @@ -87,7 +87,7 @@ hardware configuration of the parport. You can give the boot-parameter at the LILO-prompt or specify it in lilo.conf. I use the following append-line in lilo.conf: - append="parport=0x378,7,3" + append="parport=0x378,7,3" See Documentation/parport.txt for more information about the configuration of the parport and the values given above. Do not simply @@ -175,7 +175,7 @@ THANKS (in no particular order): - Manuel J. Petit de Gabriel <mpetit@dit.upm.es> for providing help with Isabel (http://isabel.dit.upm.es/) - Bas Huisman <bhuism@cs.utwente.nl> for writing the initial parport code -- Jarl Totland <Jarl.Totland@bdc.no> for setting up the mailing list +- Jarl Totland <Jarl.Totland@bdc.no> for setting up the mailing list and maintaining the web-server[3] - Chris Whiteford <Chris@informinteractive.com> for fixes related to the 1.02 firmware diff --git a/Documentation/video4linux/Zoran b/Documentation/video4linux/Zoran index 52c94bd7dca1..be9f21b84555 100644 --- a/Documentation/video4linux/Zoran +++ b/Documentation/video4linux/Zoran @@ -28,7 +28,7 @@ Iomega Buz: * Philips saa7111 TV decoder * Philips saa7185 TV encoder Drivers to use: videodev, i2c-core, i2c-algo-bit, - videocodec, saa7111, saa7185, zr36060, zr36067 + videocodec, saa7111, saa7185, zr36060, zr36067 Inputs/outputs: Composite and S-video Norms: PAL, SECAM (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps) Card number: 7 @@ -39,7 +39,7 @@ Linux Media Labs LML33: * Brooktree bt819 TV decoder * Brooktree bt856 TV encoder Drivers to use: videodev, i2c-core, i2c-algo-bit, - videocodec, bt819, bt856, zr36060, zr36067 + videocodec, bt819, bt856, zr36060, zr36067 Inputs/outputs: Composite and S-video Norms: PAL (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps) Card number: 5 @@ -50,7 +50,7 @@ Linux Media Labs LML33R10: * Philips saa7114 TV decoder * Analog Devices adv7170 TV encoder Drivers to use: videodev, i2c-core, i2c-algo-bit, - videocodec, saa7114, adv7170, zr36060, zr36067 + videocodec, saa7114, adv7170, zr36060, zr36067 Inputs/outputs: Composite and S-video Norms: PAL (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps) Card number: 6 @@ -61,7 +61,7 @@ Pinnacle/Miro DC10(new): * Philips saa7110a TV decoder * Analog Devices adv7176 TV encoder Drivers to use: videodev, i2c-core, i2c-algo-bit, - videocodec, saa7110, adv7175, zr36060, zr36067 + videocodec, saa7110, adv7175, zr36060, zr36067 Inputs/outputs: Composite, S-video and Internal Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps) Card number: 1 @@ -84,7 +84,7 @@ Pinnacle/Miro DC10(old): * * Micronas vpx3220a TV decoder * mse3000 TV encoder or Analog Devices adv7176 TV encoder * Drivers to use: videodev, i2c-core, i2c-algo-bit, - videocodec, vpx3220, mse3000/adv7175, zr36050, zr36016, zr36067 + videocodec, vpx3220, mse3000/adv7175, zr36050, zr36016, zr36067 Inputs/outputs: Composite, S-video and Internal Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps) Card number: 0 @@ -96,7 +96,7 @@ Pinnacle/Miro DC30: * * Micronas vpx3225d/vpx3220a/vpx3216b TV decoder * Analog Devices adv7176 TV encoder Drivers to use: videodev, i2c-core, i2c-algo-bit, - videocodec, vpx3220/vpx3224, adv7175, zr36050, zr36016, zr36067 + videocodec, vpx3220/vpx3224, adv7175, zr36050, zr36016, zr36067 Inputs/outputs: Composite, S-video and Internal Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps) Card number: 3 @@ -123,11 +123,11 @@ Note: use encoder=X or decoder=X for non-default i2c chips (see i2c-id.h) The best know TV standards are NTSC/PAL/SECAM. but for decoding a frame that information is not enough. There are several formats of the TV standards. -And not every TV decoder is able to handle every format. Also the every -combination is supported by the driver. There are currently 11 different -tv broadcast formats all aver the world. +And not every TV decoder is able to handle every format. Also the every +combination is supported by the driver. There are currently 11 different +tv broadcast formats all aver the world. -The CCIR defines parameters needed for broadcasting the signal. +The CCIR defines parameters needed for broadcasting the signal. The CCIR has defined different standards: A,B,D,E,F,G,D,H,I,K,K1,L,M,N,... The CCIR says not much about about the colorsystem used !!! And talking about a colorsystem says not to much about how it is broadcast. @@ -136,18 +136,18 @@ The CCIR standards A,E,F are not used any more. When you speak about NTSC, you usually mean the standard: CCIR - M using the NTSC colorsystem which is used in the USA, Japan, Mexico, Canada -and a few others. +and a few others. When you talk about PAL, you usually mean: CCIR - B/G using the PAL -colorsystem which is used in many Countries. +colorsystem which is used in many Countries. -When you talk about SECAM, you mean: CCIR - L using the SECAM Colorsystem +When you talk about SECAM, you mean: CCIR - L using the SECAM Colorsystem which is used in France, and a few others. There the other version of SECAM, CCIR - D/K is used in Bulgaria, China, -Slovakai, Hungary, Korea (Rep.), Poland, Rumania and a others. +Slovakai, Hungary, Korea (Rep.), Poland, Rumania and a others. -The CCIR - H uses the PAL colorsystem (sometimes SECAM) and is used in +The CCIR - H uses the PAL colorsystem (sometimes SECAM) and is used in Egypt, Libya, Sri Lanka, Syrain Arab. Rep. The CCIR - I uses the PAL colorsystem, and is used in Great Britain, Hong Kong, @@ -158,30 +158,30 @@ and is used in Argentinia, Uruguay, an a few others We do not talk about how the audio is broadcast ! -A rather good sites about the TV standards are: +A rather good sites about the TV standards are: http://www.sony.jp/ServiceArea/Voltage_map/ http://info.electronicwerkstatt.de/bereiche/fernsehtechnik/frequenzen_und_normen/Fernsehnormen/ and http://www.cabl.com/restaurant/channel.html Other weird things around: NTSC 4.43 is a modificated NTSC, which is mainly used in PAL VCR's that are able to play back NTSC. PAL 60 seems to be the same -as NTSC 4.43 . The Datasheets also talk about NTSC 44, It seems as if it would -be the same as NTSC 4.43. +as NTSC 4.43 . The Datasheets also talk about NTSC 44, It seems as if it would +be the same as NTSC 4.43. NTSC Combs seems to be a decoder mode where the decoder uses a comb filter to split coma and luma instead of a Delay line. But I did not defiantly find out what NTSC Comb is. Philips saa7111 TV decoder -was introduced in 1997, is used in the BUZ and -can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC N, NTSC 4.43 and SECAM +was introduced in 1997, is used in the BUZ and +can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC N, NTSC 4.43 and SECAM Philips saa7110a TV decoder was introduced in 1995, is used in the Pinnacle/Miro DC10(new), DC10+ and -can handle: PAL B/G, NTSC M and SECAM +can handle: PAL B/G, NTSC M and SECAM Philips saa7114 TV decoder -was introduced in 2000, is used in the LML33R10 and +was introduced in 2000, is used in the LML33R10 and can handle: PAL B/G/D/H/I/N, PAL N, PAL M, NTSC M, NTSC 4.43 and SECAM Brooktree bt819 TV decoder @@ -206,7 +206,7 @@ was introduced in 1996, is used in the BUZ can generate: PAL B/G, NTSC M Brooktree bt856 TV Encoder -was introduced in 1994, is used in the LML33 +was introduced in 1994, is used in the LML33 can generate: PAL B/D/G/H/I/N, PAL M, NTSC M, PAL-N (Argentina) Analog Devices adv7170 TV Encoder @@ -221,9 +221,9 @@ ITT mse3000 TV encoder was introduced in 1991, is used in the DC10 old can generate: PAL , NTSC , SECAM -The adv717x, should be able to produce PAL N. But you find nothing PAL N +The adv717x, should be able to produce PAL N. But you find nothing PAL N specific in the registers. Seem that you have to reuse a other standard -to generate PAL N, maybe it would work if you use the PAL M settings. +to generate PAL N, maybe it would work if you use the PAL M settings. ========================== @@ -261,7 +261,7 @@ Here's my experience of using LML33 and Buz on various motherboards: VIA MVP3 Forget it. Pointless. Doesn't work. -Intel 430FX (Pentium 200) +Intel 430FX (Pentium 200) LML33 perfect, Buz tolerable (3 or 4 frames dropped per movie) Intel 440BX (early stepping) LML33 tolerable. Buz starting to get annoying (6-10 frames/hour) @@ -438,52 +438,52 @@ importance of buffer sizes: > -q 25 -b 128 : 24.655.992 > -q 25 -b 256 : 25.859.820 -I woke up, and can't go to sleep again. I'll kill some time explaining why +I woke up, and can't go to sleep again. I'll kill some time explaining why this doesn't look strange to me. -Let's do some math using a width of 704 pixels. I'm not sure whether the Buz +Let's do some math using a width of 704 pixels. I'm not sure whether the Buz actually use that number or not, but that's not too important right now. -704x288 pixels, one field, is 202752 pixels. Divided by 64 pixels per block; -3168 blocks per field. Each pixel consist of two bytes; 128 bytes per block; -1024 bits per block. 100% in the new driver mean 1:2 compression; the maximum -output becomes 512 bits per block. Actually 510, but 512 is simpler to use +704x288 pixels, one field, is 202752 pixels. Divided by 64 pixels per block; +3168 blocks per field. Each pixel consist of two bytes; 128 bytes per block; +1024 bits per block. 100% in the new driver mean 1:2 compression; the maximum +output becomes 512 bits per block. Actually 510, but 512 is simpler to use for calculations. -Let's say that we specify d1q50. We thus want 256 bits per block; times 3168 -becomes 811008 bits; 101376 bytes per field. We're talking raw bits and bytes -here, so we don't need to do any fancy corrections for bits-per-pixel or such +Let's say that we specify d1q50. We thus want 256 bits per block; times 3168 +becomes 811008 bits; 101376 bytes per field. We're talking raw bits and bytes +here, so we don't need to do any fancy corrections for bits-per-pixel or such things. 101376 bytes per field. -d1 video contains two fields per frame. Those sum up to 202752 bytes per +d1 video contains two fields per frame. Those sum up to 202752 bytes per frame, and one of those frames goes into each buffer. -But wait a second! -b128 gives 128kB buffers! It's not possible to cram +But wait a second! -b128 gives 128kB buffers! It's not possible to cram 202752 bytes of JPEG data into 128kB! -This is what the driver notice and automatically compensate for in your +This is what the driver notice and automatically compensate for in your examples. Let's do some math using this information: -128kB is 131072 bytes. In this buffer, we want to store two fields, which -leaves 65536 bytes for each field. Using 3168 blocks per field, we get -20.68686868... available bytes per block; 165 bits. We can't allow the -request for 256 bits per block when there's only 165 bits available! The -q50 -option is silently overridden, and the -b128 option takes precedence, leaving +128kB is 131072 bytes. In this buffer, we want to store two fields, which +leaves 65536 bytes for each field. Using 3168 blocks per field, we get +20.68686868... available bytes per block; 165 bits. We can't allow the +request for 256 bits per block when there's only 165 bits available! The -q50 +option is silently overridden, and the -b128 option takes precedence, leaving us with the equivalence of -q32. -This gives us a data rate of 165 bits per block, which, times 3168, sums up -to 65340 bytes per field, out of the allowed 65536. The current driver has -another level of rate limiting; it won't accept -q values that fill more than -6/8 of the specified buffers. (I'm not sure why. "Playing it safe" seem to be -a safe bet. Personally, I think I would have lowered requested-bits-per-block -by one, or something like that.) We can't use 165 bits per block, but have to -lower it again, to 6/8 of the available buffer space: We end up with 124 bits -per block, the equivalence of -q24. With 128kB buffers, you can't use greater +This gives us a data rate of 165 bits per block, which, times 3168, sums up +to 65340 bytes per field, out of the allowed 65536. The current driver has +another level of rate limiting; it won't accept -q values that fill more than +6/8 of the specified buffers. (I'm not sure why. "Playing it safe" seem to be +a safe bet. Personally, I think I would have lowered requested-bits-per-block +by one, or something like that.) We can't use 165 bits per block, but have to +lower it again, to 6/8 of the available buffer space: We end up with 124 bits +per block, the equivalence of -q24. With 128kB buffers, you can't use greater than -q24 at -d1. (And PAL, and 704 pixels width...) -The third example is limited to -q24 through the same process. The second -example, using very similar calculations, is limited to -q48. The only -example that actually grab at the specified -q value is the last one, which +The third example is limited to -q24 through the same process. The second +example, using very similar calculations, is limited to -q48. The only +example that actually grab at the specified -q value is the last one, which is clearly visible, looking at the file size. -- diff --git a/Documentation/video4linux/bttv/ICs b/Documentation/video4linux/bttv/ICs index 6b7491336967..611315f87c3e 100644 --- a/Documentation/video4linux/bttv/ICs +++ b/Documentation/video4linux/bttv/ICs @@ -14,13 +14,13 @@ Hauppauge Win/TV pci (version 405): Microchip 24LC02B or Philips 8582E2Y: 256 Byte EEPROM with configuration information - I2C 0xa0-0xa1, (24LC02B also responds to 0xa2-0xaf) + I2C 0xa0-0xa1, (24LC02B also responds to 0xa2-0xaf) Philips SAA5246AGP/E: Videotext decoder chip, I2C 0x22-0x23 TDA9800: sound decoder Winbond W24257AS-35: 32Kx8 CMOS static RAM (Videotext buffer mem) 14052B: analog switch for selection of sound source -PAL: +PAL: TDA5737: VHF, hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners TSA5522: 1.4 GHz I2C-bus controlled synthesizer, I2C 0xc2-0xc3 diff --git a/Documentation/video4linux/bttv/PROBLEMS b/Documentation/video4linux/bttv/PROBLEMS index 8e31e9e36bf7..2b8b0079f7c7 100644 --- a/Documentation/video4linux/bttv/PROBLEMS +++ b/Documentation/video4linux/bttv/PROBLEMS @@ -3,7 +3,7 @@ - Start capturing by pressing "c" or by selecting it via a menu!!! - The memory of some S3 cards is not recognized right: - + First of all, if you are not using XFree-3.2 or newer, upgrade AT LEAST to XFree-3.2A! This solved the problem for most people. @@ -31,23 +31,23 @@ (mostly with Trio 64 but also with some others) Get the free demo version of Accelerated X from www.xinside.com and try bttv with it. bttv seems to work with most S3 cards with Accelerated X. - + Since I do not know much (better make that almost nothing) about VGA card programming I do not know the reason for this. Looks like XFree does something different when setting up the video memory? - Maybe somebody can enlighten me? - Would be nice if somebody could get this to work with XFree since - Accelerated X costs more than some of the grabber cards ... - + Maybe somebody can enlighten me? + Would be nice if somebody could get this to work with XFree since + Accelerated X costs more than some of the grabber cards ... + Better linear frame buffer support for S3 cards will probably be in XFree 4.0. - + - Grabbing is not switched off when changing consoles with XFree. That's because XFree and some AcceleratedX versions do not send unmap events. - Some popup windows (e.g. of the window manager) are not refreshed. - + Disable backing store by starting X with the option "-bs" - When using 32 bpp in XFree or 24+8bpp mode in AccelX 3.1 the system diff --git a/Documentation/video4linux/bttv/README.quirks b/Documentation/video4linux/bttv/README.quirks index e8edb87df711..92e03929a6b2 100644 --- a/Documentation/video4linux/bttv/README.quirks +++ b/Documentation/video4linux/bttv/README.quirks @@ -38,9 +38,9 @@ tolerate. ------------------------ When using the 430FX PCI, the following rules will ensure -compatibility: +compatibility: - (1) Deassert REQ at the same time as asserting FRAME. + (1) Deassert REQ at the same time as asserting FRAME. (2) Do not reassert REQ to request another bus transaction until after finish-ing the previous transaction. diff --git a/Documentation/video4linux/bttv/THANKS b/Documentation/video4linux/bttv/THANKS index 2085399da7d4..950aa781c2e9 100644 --- a/Documentation/video4linux/bttv/THANKS +++ b/Documentation/video4linux/bttv/THANKS @@ -1,6 +1,6 @@ Many thanks to: -- Markus Schroeder <schroedm@uni-duesseldorf.de> for information on the Bt848 +- Markus Schroeder <schroedm@uni-duesseldorf.de> for information on the Bt848 and tuner programming and his control program xtvc. - Martin Buck <martin-2.buck@student.uni-ulm.de> for his great Videotext @@ -16,7 +16,7 @@ Many thanks to: - MIRO for providing a free PCTV card and detailed information about the components on their cards. (E.g. how the tuner type is detected) Without their card I could not have debugged the NTSC mode. - + - Hauppauge for telling how the sound input is selected and what components they do and will use on their radio cards. Also many thanks for faxing me the FM1216 data sheet. diff --git a/Documentation/video4linux/radiotrack.txt b/Documentation/video4linux/radiotrack.txt index 2b75345f13e3..d1f3ed199186 100644 --- a/Documentation/video4linux/radiotrack.txt +++ b/Documentation/video4linux/radiotrack.txt @@ -131,17 +131,17 @@ Check Stereo: BASE <-- 0xd8 (current volume, stereo detect, x=0xff ==> "not stereo", x=0xfd ==> "stereo detected" Set Frequency: code = (freq*40) + 10486188 - foreach of the 24 bits in code, - (from Least to Most Significant): - to write a "zero" bit, - BASE <-- 0x01 (audio mute, no stereo detect, radio + foreach of the 24 bits in code, + (from Least to Most Significant): + to write a "zero" bit, + BASE <-- 0x01 (audio mute, no stereo detect, radio disable, "zero" bit phase 1, tuner adjust) - BASE <-- 0x03 (audio mute, no stereo detect, radio + BASE <-- 0x03 (audio mute, no stereo detect, radio disable, "zero" bit phase 2, tuner adjust) - to write a "one" bit, - BASE <-- 0x05 (audio mute, no stereo detect, radio + to write a "one" bit, + BASE <-- 0x05 (audio mute, no stereo detect, radio disable, "one" bit phase 1, tuner adjust) - BASE <-- 0x07 (audio mute, no stereo detect, radio + BASE <-- 0x07 (audio mute, no stereo detect, radio disable, "one" bit phase 2, tuner adjust) ---------------------------------------------------------------------------- diff --git a/Documentation/video4linux/w9966.txt b/Documentation/video4linux/w9966.txt index e7ac33a7eb06..78a651254b84 100644 --- a/Documentation/video4linux/w9966.txt +++ b/Documentation/video4linux/w9966.txt @@ -26,7 +26,7 @@ is called VIDEO_PALETTE_YUV422 (16 bpp). A minimal test application (with source) is available from: http://hem.fyristorg.com/mogul/w9966.html -The slow framerate is due to missing DMA ECP read support in the +The slow framerate is due to missing DMA ECP read support in the parport drivers. I might add working EPP support later. Good luck! diff --git a/Documentation/video4linux/zr36120.txt b/Documentation/video4linux/zr36120.txt index 5d6357eefde4..ac6d92d01944 100644 --- a/Documentation/video4linux/zr36120.txt +++ b/Documentation/video4linux/zr36120.txt @@ -2,7 +2,7 @@ Driver for Trust Computer Products Framegrabber, version 0.6.1 ------ --- ----- -------- -------- ------------ ------- - - - - ZORAN ------------------------------------------------------ - Author: Pauline Middelink <middelin@polyware.nl> + Author: Pauline Middelink <middelin@polyware.nl> Date: 18 September 1999 Version: 0.6.1 @@ -115,7 +115,7 @@ After making/checking the devices do: <n> is the cardtype of the card you have. The cardnumber can be found in the source of zr36120. Look for tvcards. If your card is not there, please try if any other card gives some -response, and mail me if you got a working tvcard addition. +response, and mail me if you got a working tvcard addition. PS. <TVCard editors behold!) Dont forget to set video_input to the number of inputs diff --git a/Documentation/w1/masters/ds2482 b/Documentation/w1/masters/ds2482 new file mode 100644 index 000000000000..c5d5478d90b2 --- /dev/null +++ b/Documentation/w1/masters/ds2482 @@ -0,0 +1,31 @@ +Kernel driver ds2482 +==================== + +Supported chips: + * Maxim DS2482-100, Maxim DS2482-800 + Prefix: 'ds2482' + Addresses scanned: None + Datasheets: + http://pdfserv.maxim-ic.com/en/ds/DS2482-100-DS2482S-100.pdf + http://pdfserv.maxim-ic.com/en/ds/DS2482-800-DS2482S-800.pdf + +Author: Ben Gardner <bgardner@wabtec.com> + + +Description +----------- + +The Maixm/Dallas Semiconductor DS2482 is a I2C device that provides +one (DS2482-100) or eight (DS2482-800) 1-wire busses. + + +General Remarks +--------------- + +Valid addresses are 0x18, 0x19, 0x1a, and 0x1b. +However, the device cannot be detected without writing to the i2c bus, so no +detection is done. +You should force the device address. + +$ modprobe ds2482 force=0,0x18 + |