summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/00-INDEX4
-rw-r--r--Documentation/cgroups/00-INDEX18
-rw-r--r--Documentation/cgroups/cgroups.txt10
-rw-r--r--Documentation/cgroups/cpusets.txt12
-rw-r--r--Documentation/cgroups/devices.txt2
-rw-r--r--Documentation/cgroups/memcg_test.txt2
-rw-r--r--Documentation/cgroups/memory.txt2
-rw-r--r--Documentation/filesystems/ext3.txt14
-rw-r--r--Documentation/ia64/kvm.txt2
-rw-r--r--Documentation/kernel-parameters.txt4
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt2
-rw-r--r--Documentation/scheduler/sched-rt-group.txt2
-rw-r--r--Documentation/vm/numa_memory_policy.txt3
-rw-r--r--Documentation/vm/page_migration3
-rw-r--r--Documentation/x86/x86_64/fake-numa-for-cpusets5
15 files changed, 58 insertions, 27 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX
index 2a39aeba1464..d05737aaa84b 100644
--- a/Documentation/00-INDEX
+++ b/Documentation/00-INDEX
@@ -86,6 +86,8 @@ cachetlb.txt
- describes the cache/TLB flushing interfaces Linux uses.
cdrom/
- directory with information on the CD-ROM drivers that Linux has.
+cgroups/
+ - cgroups features, including cpusets and memory controller.
connector/
- docs on the netlink based userspace<->kernel space communication mod.
console/
@@ -98,8 +100,6 @@ cpu-load.txt
- document describing how CPU load statistics are collected.
cpuidle/
- info on CPU_IDLE, CPU idle state management subsystem.
-cpusets.txt
- - documents the cpusets feature; assign CPUs and Mem to a set of tasks.
cputopology.txt
- documentation on how CPU topology info is exported via sysfs.
cris/
diff --git a/Documentation/cgroups/00-INDEX b/Documentation/cgroups/00-INDEX
new file mode 100644
index 000000000000..3f58fa3d6d00
--- /dev/null
+++ b/Documentation/cgroups/00-INDEX
@@ -0,0 +1,18 @@
+00-INDEX
+ - this file
+cgroups.txt
+ - Control Groups definition, implementation details, examples and API.
+cpuacct.txt
+ - CPU Accounting Controller; account CPU usage for groups of tasks.
+cpusets.txt
+ - documents the cpusets feature; assign CPUs and Mem to a set of tasks.
+devices.txt
+ - Device Whitelist Controller; description, interface and security.
+freezer-subsystem.txt
+ - checkpointing; rationale to not use signals, interface.
+memcg_test.txt
+ - Memory Resource Controller; implementation details.
+memory.txt
+ - Memory Resource Controller; design, accounting, interface, testing.
+resource_counter.txt
+ - Resource Counter API.
diff --git a/Documentation/cgroups/cgroups.txt b/Documentation/cgroups/cgroups.txt
index 4ea852345a47..6eb1a97e88ce 100644
--- a/Documentation/cgroups/cgroups.txt
+++ b/Documentation/cgroups/cgroups.txt
@@ -56,7 +56,7 @@ hierarchy, and a set of subsystems; each subsystem has system-specific
state attached to each cgroup in the hierarchy. Each hierarchy has
an instance of the cgroup virtual filesystem associated with it.
-At any one time there may be multiple active hierachies of task
+At any one time there may be multiple active hierarchies of task
cgroups. Each hierarchy is a partition of all tasks in the system.
User level code may create and destroy cgroups by name in an
@@ -124,10 +124,10 @@ following lines:
/ \
Prof (15%) students (5%)
-Browsers like firefox/lynx go into the WWW network class, while (k)nfsd go
+Browsers like Firefox/Lynx go into the WWW network class, while (k)nfsd go
into NFS network class.
-At the same time firefox/lynx will share an appropriate CPU/Memory class
+At the same time Firefox/Lynx will share an appropriate CPU/Memory class
depending on who launched it (prof/student).
With the ability to classify tasks differently for different resources
@@ -325,7 +325,7 @@ and then start a subshell 'sh' in that cgroup:
Creating, modifying, using the cgroups can be done through the cgroup
virtual filesystem.
-To mount a cgroup hierarchy will all available subsystems, type:
+To mount a cgroup hierarchy with all available subsystems, type:
# mount -t cgroup xxx /dev/cgroup
The "xxx" is not interpreted by the cgroup code, but will appear in
@@ -539,7 +539,7 @@ always handled well.
void post_clone(struct cgroup_subsys *ss, struct cgroup *cgrp)
(cgroup_mutex held by caller)
-Called at the end of cgroup_clone() to do any paramater
+Called at the end of cgroup_clone() to do any parameter
initialization which might be required before a task could attach. For
example in cpusets, no task may attach before 'cpus' and 'mems' are set
up.
diff --git a/Documentation/cgroups/cpusets.txt b/Documentation/cgroups/cpusets.txt
index 0611e9528c7c..f9ca389dddf4 100644
--- a/Documentation/cgroups/cpusets.txt
+++ b/Documentation/cgroups/cpusets.txt
@@ -131,7 +131,7 @@ Cpusets extends these two mechanisms as follows:
- The hierarchy of cpusets can be mounted at /dev/cpuset, for
browsing and manipulation from user space.
- A cpuset may be marked exclusive, which ensures that no other
- cpuset (except direct ancestors and descendents) may contain
+ cpuset (except direct ancestors and descendants) may contain
any overlapping CPUs or Memory Nodes.
- You can list all the tasks (by pid) attached to any cpuset.
@@ -226,7 +226,7 @@ nodes with memory--using the cpuset_track_online_nodes() hook.
--------------------------------
If a cpuset is cpu or mem exclusive, no other cpuset, other than
-a direct ancestor or descendent, may share any of the same CPUs or
+a direct ancestor or descendant, may share any of the same CPUs or
Memory Nodes.
A cpuset that is mem_exclusive *or* mem_hardwall is "hardwalled",
@@ -427,7 +427,7 @@ child cpusets have this flag enabled.
When doing this, you don't usually want to leave any unpinned tasks in
the top cpuset that might use non-trivial amounts of CPU, as such tasks
may be artificially constrained to some subset of CPUs, depending on
-the particulars of this flag setting in descendent cpusets. Even if
+the particulars of this flag setting in descendant cpusets. Even if
such a task could use spare CPU cycles in some other CPUs, the kernel
scheduler might not consider the possibility of load balancing that
task to that underused CPU.
@@ -531,9 +531,9 @@ be idle.
Of course it takes some searching cost to find movable tasks and/or
idle CPUs, the scheduler might not search all CPUs in the domain
-everytime. In fact, in some architectures, the searching ranges on
+every time. In fact, in some architectures, the searching ranges on
events are limited in the same socket or node where the CPU locates,
-while the load balance on tick searchs all.
+while the load balance on tick searches all.
For example, assume CPU Z is relatively far from CPU X. Even if CPU Z
is idle while CPU X and the siblings are busy, scheduler can't migrate
@@ -601,7 +601,7 @@ its new cpuset, then the task will continue to use whatever subset
of MPOL_BIND nodes are still allowed in the new cpuset. If the task
was using MPOL_BIND and now none of its MPOL_BIND nodes are allowed
in the new cpuset, then the task will be essentially treated as if it
-was MPOL_BIND bound to the new cpuset (even though its numa placement,
+was MPOL_BIND bound to the new cpuset (even though its NUMA placement,
as queried by get_mempolicy(), doesn't change). If a task is moved
from one cpuset to another, then the kernel will adjust the tasks
memory placement, as above, the next time that the kernel attempts
diff --git a/Documentation/cgroups/devices.txt b/Documentation/cgroups/devices.txt
index 7cc6e6a60672..57ca4c89fe5c 100644
--- a/Documentation/cgroups/devices.txt
+++ b/Documentation/cgroups/devices.txt
@@ -42,7 +42,7 @@ suffice, but we can decide the best way to adequately restrict
movement as people get some experience with this. We may just want
to require CAP_SYS_ADMIN, which at least is a separate bit from
CAP_MKNOD. We may want to just refuse moving to a cgroup which
-isn't a descendent of the current one. Or we may want to use
+isn't a descendant of the current one. Or we may want to use
CAP_MAC_ADMIN, since we really are trying to lock down root.
CAP_SYS_ADMIN is needed to modify the whitelist or move another
diff --git a/Documentation/cgroups/memcg_test.txt b/Documentation/cgroups/memcg_test.txt
index 8a11caf417a0..72db89ed0609 100644
--- a/Documentation/cgroups/memcg_test.txt
+++ b/Documentation/cgroups/memcg_test.txt
@@ -356,7 +356,7 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
(Shell-B)
# move all tasks in /cgroup/test to /cgroup
# /sbin/swapoff -a
- # rmdir /test/cgroup
+ # rmdir /cgroup/test
# kill malloc task.
Of course, tmpfs v.s. swapoff test should be tested, too.
diff --git a/Documentation/cgroups/memory.txt b/Documentation/cgroups/memory.txt
index e1501964df1e..a98a7fe7aabb 100644
--- a/Documentation/cgroups/memory.txt
+++ b/Documentation/cgroups/memory.txt
@@ -302,7 +302,7 @@ will be charged as a new owner of it.
unevictable - # of pages cannot be reclaimed.(mlocked etc)
Below is depend on CONFIG_DEBUG_VM.
- inactive_ratio - VM inernal parameter. (see mm/page_alloc.c)
+ inactive_ratio - VM internal parameter. (see mm/page_alloc.c)
recent_rotated_anon - VM internal parameter. (see mm/vmscan.c)
recent_rotated_file - VM internal parameter. (see mm/vmscan.c)
recent_scanned_anon - VM internal parameter. (see mm/vmscan.c)
diff --git a/Documentation/filesystems/ext3.txt b/Documentation/filesystems/ext3.txt
index e5f3833a6ef8..570f9bd9be2b 100644
--- a/Documentation/filesystems/ext3.txt
+++ b/Documentation/filesystems/ext3.txt
@@ -14,6 +14,11 @@ Options
When mounting an ext3 filesystem, the following option are accepted:
(*) == default
+ro Mount filesystem read only. Note that ext3 will replay
+ the journal (and thus write to the partition) even when
+ mounted "read only". Mount options "ro,noload" can be
+ used to prevent writes to the filesystem.
+
journal=update Update the ext3 file system's journal to the current
format.
@@ -27,7 +32,9 @@ journal_dev=devnum When the external journal device's major/minor numbers
identified through its new major/minor numbers encoded
in devnum.
-noload Don't load the journal on mounting.
+noload Don't load the journal on mounting. Note that this forces
+ mount of inconsistent filesystem, which can lead to
+ various problems.
data=journal All data are committed into the journal prior to being
written into the main file system.
@@ -92,9 +99,12 @@ nocheck
debug Extra debugging information is sent to syslog.
-errors=remount-ro(*) Remount the filesystem read-only on an error.
+errors=remount-ro Remount the filesystem read-only on an error.
errors=continue Keep going on a filesystem error.
errors=panic Panic and halt the machine if an error occurs.
+ (These mount options override the errors behavior
+ specified in the superblock, which can be
+ configured using tune2fs.)
data_err=ignore(*) Just print an error message if an error occurs
in a file data buffer in ordered mode.
diff --git a/Documentation/ia64/kvm.txt b/Documentation/ia64/kvm.txt
index 84f7cb3d5bec..ffb5c80bec3e 100644
--- a/Documentation/ia64/kvm.txt
+++ b/Documentation/ia64/kvm.txt
@@ -42,7 +42,7 @@ Note: For step 2, please make sure that host page size == TARGET_PAGE_SIZE of qe
hg clone http://xenbits.xensource.com/ext/efi-vfirmware.hg
you can get the firmware's binary in the directory of efi-vfirmware.hg/binaries.
- (3) Rename the firware you owned to Flash.fd, and copy it to /usr/local/share/qemu
+ (3) Rename the firmware you owned to Flash.fd, and copy it to /usr/local/share/qemu
4. Boot up Linux or Windows guests:
4.1 Create or install a image for guest boot. If you have xen experience, it should be easy.
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index bdc0c433e88c..421920897a37 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -1605,7 +1605,7 @@ and is between 256 and 4096 characters. It is defined in the file
nosoftlockup [KNL] Disable the soft-lockup detector.
noswapaccount [KNL] Disable accounting of swap in memory resource
- controller. (See Documentation/controllers/memory.txt)
+ controller. (See Documentation/cgroups/memory.txt)
nosync [HW,M68K] Disables sync negotiation for all devices.
@@ -1955,7 +1955,7 @@ and is between 256 and 4096 characters. It is defined in the file
relax_domain_level=
[KNL, SMP] Set scheduler's default relax_domain_level.
- See Documentation/cpusets.txt.
+ See Documentation/cgroups/cpusets.txt.
reserve= [KNL,BUGS] Force the kernel to ignore some iomem area
diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt
index 6c238f59b2a9..249db3a15d15 100644
--- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt
+++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt
@@ -1,6 +1,6 @@
* Uploaded QE firmware
- If a new firwmare has been uploaded to the QE (usually by the
+ If a new firmware has been uploaded to the QE (usually by the
boot loader), then a 'firmware' child node should be added to the QE
node. This node provides information on the uploaded firmware that
device drivers may need.
diff --git a/Documentation/scheduler/sched-rt-group.txt b/Documentation/scheduler/sched-rt-group.txt
index 3ef339f491e0..5ba4d3fc625a 100644
--- a/Documentation/scheduler/sched-rt-group.txt
+++ b/Documentation/scheduler/sched-rt-group.txt
@@ -126,7 +126,7 @@ This uses the /cgroup virtual file system and "/cgroup/<cgroup>/cpu.rt_runtime_u
to control the CPU time reserved for each control group instead.
For more information on working with control groups, you should read
-Documentation/cgroups.txt as well.
+Documentation/cgroups/cgroups.txt as well.
Group settings are checked against the following limits in order to keep the configuration
schedulable:
diff --git a/Documentation/vm/numa_memory_policy.txt b/Documentation/vm/numa_memory_policy.txt
index 6aaaeb38730c..be45dbb9d7f2 100644
--- a/Documentation/vm/numa_memory_policy.txt
+++ b/Documentation/vm/numa_memory_policy.txt
@@ -8,7 +8,8 @@ The current memory policy support was added to Linux 2.6 around May 2004. This
document attempts to describe the concepts and APIs of the 2.6 memory policy
support.
-Memory policies should not be confused with cpusets (Documentation/cpusets.txt)
+Memory policies should not be confused with cpusets
+(Documentation/cgroups/cpusets.txt)
which is an administrative mechanism for restricting the nodes from which
memory may be allocated by a set of processes. Memory policies are a
programming interface that a NUMA-aware application can take advantage of. When
diff --git a/Documentation/vm/page_migration b/Documentation/vm/page_migration
index d5fdfd34bbaf..6513fe2d90b8 100644
--- a/Documentation/vm/page_migration
+++ b/Documentation/vm/page_migration
@@ -37,7 +37,8 @@ locations.
Larger installations usually partition the system using cpusets into
sections of nodes. Paul Jackson has equipped cpusets with the ability to
-move pages when a task is moved to another cpuset (See ../cpusets.txt).
+move pages when a task is moved to another cpuset (See
+Documentation/cgroups/cpusets.txt).
Cpusets allows the automation of process locality. If a task is moved to
a new cpuset then also all its pages are moved with it so that the
performance of the process does not sink dramatically. Also the pages
diff --git a/Documentation/x86/x86_64/fake-numa-for-cpusets b/Documentation/x86/x86_64/fake-numa-for-cpusets
index 33bb56655991..0f11d9becb0b 100644
--- a/Documentation/x86/x86_64/fake-numa-for-cpusets
+++ b/Documentation/x86/x86_64/fake-numa-for-cpusets
@@ -7,7 +7,8 @@ you can create fake NUMA nodes that represent contiguous chunks of memory and
assign them to cpusets and their attached tasks. This is a way of limiting the
amount of system memory that are available to a certain class of tasks.
-For more information on the features of cpusets, see Documentation/cpusets.txt.
+For more information on the features of cpusets, see
+Documentation/cgroups/cpusets.txt.
There are a number of different configurations you can use for your needs. For
more information on the numa=fake command line option and its various ways of
configuring fake nodes, see Documentation/x86/x86_64/boot-options.txt.
@@ -32,7 +33,7 @@ A machine may be split as follows with "numa=fake=4*512," as reported by dmesg:
On node 3 totalpages: 131072
Now following the instructions for mounting the cpusets filesystem from
-Documentation/cpusets.txt, you can assign fake nodes (i.e. contiguous memory
+Documentation/cgroups/cpusets.txt, you can assign fake nodes (i.e. contiguous memory
address spaces) to individual cpusets:
[root@xroads /]# mkdir exampleset