diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/siphash.txt | 100 |
1 files changed, 100 insertions, 0 deletions
diff --git a/Documentation/siphash.txt b/Documentation/siphash.txt new file mode 100644 index 000000000000..e8e6ddbbaab4 --- /dev/null +++ b/Documentation/siphash.txt @@ -0,0 +1,100 @@ + SipHash - a short input PRF +----------------------------------------------- +Written by Jason A. Donenfeld <jason@zx2c4.com> + +SipHash is a cryptographically secure PRF -- a keyed hash function -- that +performs very well for short inputs, hence the name. It was designed by +cryptographers Daniel J. Bernstein and Jean-Philippe Aumasson. It is intended +as a replacement for some uses of: `jhash`, `md5_transform`, `sha_transform`, +and so forth. + +SipHash takes a secret key filled with randomly generated numbers and either +an input buffer or several input integers. It spits out an integer that is +indistinguishable from random. You may then use that integer as part of secure +sequence numbers, secure cookies, or mask it off for use in a hash table. + +1. Generating a key + +Keys should always be generated from a cryptographically secure source of +random numbers, either using get_random_bytes or get_random_once: + +siphash_key_t key; +get_random_bytes(&key, sizeof(key)); + +If you're not deriving your key from here, you're doing it wrong. + +2. Using the functions + +There are two variants of the function, one that takes a list of integers, and +one that takes a buffer: + +u64 siphash(const void *data, size_t len, const siphash_key_t *key); + +And: + +u64 siphash_1u64(u64, const siphash_key_t *key); +u64 siphash_2u64(u64, u64, const siphash_key_t *key); +u64 siphash_3u64(u64, u64, u64, const siphash_key_t *key); +u64 siphash_4u64(u64, u64, u64, u64, const siphash_key_t *key); +u64 siphash_1u32(u32, const siphash_key_t *key); +u64 siphash_2u32(u32, u32, const siphash_key_t *key); +u64 siphash_3u32(u32, u32, u32, const siphash_key_t *key); +u64 siphash_4u32(u32, u32, u32, u32, const siphash_key_t *key); + +If you pass the generic siphash function something of a constant length, it +will constant fold at compile-time and automatically choose one of the +optimized functions. + +3. Hashtable key function usage: + +struct some_hashtable { + DECLARE_HASHTABLE(hashtable, 8); + siphash_key_t key; +}; + +void init_hashtable(struct some_hashtable *table) +{ + get_random_bytes(&table->key, sizeof(table->key)); +} + +static inline hlist_head *some_hashtable_bucket(struct some_hashtable *table, struct interesting_input *input) +{ + return &table->hashtable[siphash(input, sizeof(*input), &table->key) & (HASH_SIZE(table->hashtable) - 1)]; +} + +You may then iterate like usual over the returned hash bucket. + +4. Security + +SipHash has a very high security margin, with its 128-bit key. So long as the +key is kept secret, it is impossible for an attacker to guess the outputs of +the function, even if being able to observe many outputs, since 2^128 outputs +is significant. + +Linux implements the "2-4" variant of SipHash. + +5. Struct-passing Pitfalls + +Often times the XuY functions will not be large enough, and instead you'll +want to pass a pre-filled struct to siphash. When doing this, it's important +to always ensure the struct has no padding holes. The easiest way to do this +is to simply arrange the members of the struct in descending order of size, +and to use offsetendof() instead of sizeof() for getting the size. For +performance reasons, if possible, it's probably a good thing to align the +struct to the right boundary. Here's an example: + +const struct { + struct in6_addr saddr; + u32 counter; + u16 dport; +} __aligned(SIPHASH_ALIGNMENT) combined = { + .saddr = *(struct in6_addr *)saddr, + .counter = counter, + .dport = dport +}; +u64 h = siphash(&combined, offsetofend(typeof(combined), dport), &secret); + +6. Resources + +Read the SipHash paper if you're interested in learning more: +https://131002.net/siphash/siphash.pdf |